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Abstract 22 

Granular sludge (GS) is a special self-aggregation biofilm. Extracellular polymeric substances (EPS) 23 

are mainly associated with the architectural structure, rheological behaviour and functional stability 24 

of fine granules, given that their significance to the physicochemical features of the biomass 25 

catalysing the biological purification process. This review targets the EPS excretion from GS and 26 

introduces newly identified EPS components, EPS distribution in different granules, how to 27 

effectively extract and recover EPS from granules, key parameters affecting EPS production, and the 28 

potential applications of EPS-based biomaterials. GS-based EPS components are highly diverse and 29 

a series of new contents are highlighted. Due to high diversity, emerging extraction standards are 30 

proposed and recovery process is capturing particular attention. The major components of EPS are 31 

found to be polysaccharides and proteins, which manifest a larger diversity of relative abundance, 32 

structures, physical and chemical characteristics, leading to the possibility to sustainably recover raw 33 

materials. EPS-based biomaterials not only act as alternatives to synthetic polymers in several 34 

applications but also figure in innovative industrial/environmental applications, including gel-35 

forming materials for paper industry, biosorbents, cement curing materials, and flame retardant 36 

materials. In the upcoming years, it is foreseen that productions of EPS-based biomaterials from 37 

renewable origins would make a significant contribution to the advancement of the circular economy. 38 

 39 
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1. Introduction 42 

Over 300 million tonnes of polymers are worldwide manufactured per year, where consuming merely 43 

approximately 6% of fossil produced, yet expecting to increase to 20% in the coming three decades 44 

(Payne et al., 2019). Whilst those of petrochemical origin dominate the polymers industry (about 99% 45 

in 2015). Together with environmental concerns, biopolymers produced from renewable resources 46 

become attractive and are currently the focus of intensive research efforts (Kreyenschulte et al., 2014). 47 

Due to the cost-effective production process, the application of biopolymers has become 48 

economically viable. Microbial polymers include intracellular and extracellular polymers. Compared 49 

with limited intracellular polymers (e.g. polyphosphate, glycogen) (Feng et al., 2020), extracellular 50 

polymeric substances (EPS) have drawn emerging commercial interest. EPS are the “sticky” materials 51 

secreted by bacterial consortia during cell metabolism and form a complex and diverse biopolymeric 52 

matrix consisting of proteins (PN), exopolysaccharides (PS), DNA, lipids, glycoprotein, S-layer and 53 

humic-like substances, etc. (Seviour et al., 2018). Unlike other natural sources, EPS can be extracted 54 

from a large range of biomass, holding specific superiorities compared with other polymers, because 55 

they are prevalent, bio-based, biodegradable, highly-productive rate and easier extraction procedure 56 

than oil-based synthesizing polymers.  57 

Currently, more studies on wastewater treatment plants (WWTPs) gradually shift from the aquatic 58 

environment protection (i.e., pollutant removal and water quality control) towards energy/resource 59 

recovery (Hao et al., 2019; Kehrein et al., 2020). The main waste product in WWTP is excess sludge 60 

and its processing cost accounts for nearly half of the total operational capital (de Valk et al., 2019). 61 

As reported, EPS take a large fraction of sludge dry weight, making EPS applicable in various fields 62 

including directly used as biomaterials or as rheological-modification additives, industrial sizing 63 

chemicals, and medical reagents (Feng et al., 2019; Lin et al., 2015). With this regard, EPS recovered 64 

from waste sludge holding the promises of achieving resource recovery and contributes to a circular 65 

economy (Seviour et al., 2018; van Leeuwen et al., 2018).  66 
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Granular sludge (GS) technologies gain more attention due to the unique advantages of efficient 67 

biomass retention and more compact reactors than traditional activated sludge systems. 68 

Biogranulation treatment units have many advantages, including 1) an excellent settleability; 2) an 69 

enhanced biomass withholding; 3) capacity of treating high level of carbon/nutrient load pollutants; 70 

4) increased toxicity tolerance (McSwain et al., 2005; Pronk et al., 2015). Characterisations correlated 71 

to different biological granule types originating from wastewater treatment units as well as their EPS 72 

contents are summarised in Table 1. Microbial granules exhibit a large size (> 0.2 mm), compact and 73 

spheroidal structure, and high settling velocities. Highly-diverse microbial communities inhabit in 74 

distinct granules (Nancharaiah and Reddy, 2018). The granule formation is governed by the microbial 75 

EPS, which are much higher than in any other types of biofilm (Ding et al., 2015). Some important 76 

functions concerning EPS have been described, such as a protective barrier against detrimental 77 

environment, maintenance of a stable structure, nutrient source, and organic substance sorption 78 

(Seviour et al., 2018). A significant yield of extracellular biopolymers has been extracted from 79 

different kinds of granules, e.g. about 25% of organic matter (volatile suspended solids, VSS) in 80 

aerobic granules (Felz et al., 2016); 40%-59% of VSS in anammox GS (Feng et al., 2019; Lotti et al., 81 

2019a; Ni et al., 2010a). Currently, aerobic granules hold the promising for resource recovery (i.e., 82 

phosphate, bioplastic, EPS) from wastewater, and perhaps can be integrated with the conventional 83 

water treatment process (Van der Hoek et al., 2016). Meanwhile, it should be noticed that large 84 

amounts of EPS are expected from anaerobic granules, given that there are over 1000 full-scale 85 

anaerobic reactors such as Upflow Anaerobic Sludge Blanket (UASB) reactors worldwide (Lim and 86 

Kim, 2014). The demonstration of EPS extraction from anaerobic granules would expand the great 87 

potential towards resource recovery. Interestingly, in many studies, the autotrophic anammox GS 88 

have been discovered to contain a large number of EPS contents (~594 mg/g VSS) compared with 89 

heterotrophic granules (Feng et al., 2019; Lotti et al., 2019a; Ni et al., 2010a). Like the conventional 90 

activated sludge technologies, waste granular sludge (WGS) from both full-scale and lab-scale GS 91 

reactors (Guo et al., 2020; Lin et al., 2015; Lotti et al., 2019b) is a concern due to the high processing 92 
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cost. Given the rapidly increasing number and size of AGS and anammox-GS installations, together 93 

with the large number of current AnGS reactors, strategies for the efficient WGS management are 94 

demanded. The aforementioned information suggests granulation technology holds great potential for 95 

EPS recovery as the raw biomaterials. Further study is necessarily dedicated to better designing and 96 

managing future biorefinery large-scale implementation, particularly in enhancement of quantity and 97 

quality of the biomaterials.  98 

This present review mainly focuses on the current status of EPS secreted from granular biomass, 99 

including anaerobic, aerobic, anaerobic ammonium oxidation (anammox) granules, hereafter referred 100 

to as AnGS, AGS, and anammox GS, respectively. To our best knowledge, this is the first review 101 

concerning on GS-based EPS. This present review aims at providing recent advances towards the 102 

conversion of EPS from the original sources - waste granular biomass to value-added products (i.e. 103 

biomaterials) (Fig. 1). The following aspects are highlighted: 1) new identified EPS components and 104 

EPS distribution in different granules; 2) EPS extraction and recovery; 3) key parameters affecting 105 

EPS production; 4) potential applications of EPS-based biomaterials. Fundamental protocols and 106 

technologies involved in these four essential aspects are introduced in different sections. As the 107 

prerequisite for the application of EPS-based biomaterials (Section 6), the guarantee for GS-based 108 

EPS production relies on the performance stability of GS installations. The granule stability and 109 

granulation process are keenly associated with the EPS components and distribution among the 110 

granules (Section 2, 3), resulting in distinct physicochemical properties. Prior to the application, how 111 

to obtain the maximum EPS extraction efficiency can be attributed to two aspects. One is to assess 112 

different extraction and recovery methods (Section 4). Another is to find out the key parameters 113 

inducing massive GS-based EPS production, but without invalidating reactor performance (Section 114 

5). Challenges and prospects are presented as well.  115 

 116 
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2. High diversity of GS-derived EPS contents: emerging classification criteria and new 117 

components appreciated  118 

EPS are secreted by the bacterial consortium during metabolism and their accumulation helps to 119 

bridge bacterial cells and other particles into aggregates. Several definitions of EPS forms are 120 

illustrated in Table 2. The most common one is according to the distribution: bound (B-EPS) and 121 

soluble EPS (S-EPS) (Raszka et al., 2006; Su et al., 2013). B-EPS are closely bound with cells that 122 

are further subdivided into loosely-bound (LB-EPS) and tightly-bound EPS (TB-EPS). The TB-EPS 123 

contents in biomass are practically higher, which may contribute to different properties of 124 

sludge/biofilm (Sheng and Yu, 2006). According to their nature, EPS can be also classified as slime 125 

and capsular (More et al., 2012; Raszka et al., 2006). Recently, emerging criteria are proposed to 126 

denominate EPS according to their specific physical, chemical or structural characteristics. For 127 

instance, given the electrical charge characterisation, EPS can be divided into anionic/cationic types; 128 

based on different physical-chemical characteristics, it can be alkaline/acidic/polar EPS (Caudan et 129 

al., 2012; Pronk et al., 2017). PN and PS with negative charges were verified in AGS-derived EPS 130 

(Seviour et al., 2012). Another conception “structural EPS” was proposed and discussed through 131 

extracting and characterizing EPS from AGS and anammox GS, and investigating the rheological 132 

behaviour of the formed hydrogel, which was considered to be well linked with the strong matrix of 133 

granular sludge (Boleij et al., 2019; Felz et al., 2016; Lin et al., 2018; Lotti et al., 2019b).  134 

EPS are dominated by the macromolecular compounds, but with a large broad molecular weight 135 

(MW) distribution, typically from a rather low (< 3 kDa) to a large MW (>235 kDa) (Boleij et al., 136 

2019; Feng et al., 2019; Wang et al., 2009). Feng et al. (2019) demonstrated that 77%-96% of PNs in 137 

EPS from anammox GS had over 3 kDa WM. Zhu et al. (2015) demonstrated the PN MW range in 138 

aerobic or anaerobic granules between 20 and 97 kDa, indicating high MW property favoured the 139 

sludge granulation. The highly-broad MW distribution further indicates the complex and diverse 140 

characteristics, and the biopolymeric matrix is mainly constituted by PS, PN, glycoconjugates, humic 141 

acid, nucleic acids etc. (Felz et al., 2020b; Flemming and Wingender, 2010; Gagliano et al., 2018) 142 
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(Fig. 2). In most studies, total PN (up to 60%) and total PS (40 − 95%) are demonstrated as majority 143 

constituents in extractable extracellular biopolymers (Dubé and Guiot, 2019; More et al., 2014). PN 144 

are reported more dominant than PS, with a PN/PS of 3-8 (Feng et al., 2019; Lotti et al., 2019a; 145 

McSwain et al., 2005). Thus far, much contribution has been accordingly dedicated to identifying 146 

new EPS contents, particularly with regard to PN, PS and heteropolymers with specific/putative 147 

functions (Boleij et al., 2019; de Graaff et al., 2019; Lotti et al., 2019b; Wong et al., 2019; Wong et 148 

al., 2020). Glycoproteins with a heterogeneous O-glycan structure from anammox GS-based EPS 149 

dominated by Candidatus Brocadia were identified, perhaps closely associated with system 150 

biogranulation process (Boleij et al., 2018). The recognized glycoprotein had a high MW component 151 

of over 235 kDa at the acid condition, underlying the presence of acid groups (i.e., –COOH, -OSO3−) 152 

(Boleij et al., 2018). Glycosylated amyloid‐like PN (Lin et al., 2018) were extracted from AGS with 153 

the dominance of ammonium-oxidizing bacteria. Aromatic PN-like and tryptophan PN-like 154 

substances were more abundant in the matrix of AGS/AnGS (Zhu et al., 2015). The secondary 155 

structure of PN also contributes to the granulation process and granules stability. Amyloids-like 156 

substances were found in anammox GS-derived EPS or hydrogel (Lotti et al., 2019b). Attention 157 

should be particularly paid to amino acids. A total of 14 amino acids (glycine, leucine, alanine, 158 

isoleucine etc.) were detected in AGS-EPS based on that method used isotope dilution mass 159 

spectrometry (Felz et al., 2020b). However, there is a limitation of this method, some amino acids 160 

cannot be detected: merely weight fraction of 1.5% of the total amino acids in structural EPS was 161 

detected. Recent quantitative proteomics analysis offers a powerful tool to identify extracellular PN 162 

with a high throughput. For instance, Chen et al. (2019) pointed out that the main role of the 163 

extracellular PN were associated with multivalent cations binding in anammox biofilm through 164 

iTRAQ-based quantitative proteomics. This technique is anticipated to be applied to characterize the 165 

PN in granular sludge. 166 

As to polysaccharides, two crucial constituents i.e.,  alginate-like exopolysaccharide (ALE) (Lin 167 

et al., 2010; Schambeck et al., 2020) and granulan (Seviour et al., 2010) have been identified as the 168 
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functional gel-forming constituents in AGS. Despite granulan and ALE display structural hydrogels 169 

properties, they are completely distinct. Granulan with a pKa of 9.0 was reported as a complex and 170 

highly-novel heteropolysaccharide (Seviour et al., 2010). ALE with a pKa of 4.5 was observed in 171 

granules from acetate-fed or mixture of an abattoir and domestic wastewater (Lin et al., 2010). Sialic 172 

acids with a nine-carbon backbone were discovered as a component of EPS from seawater-adapted 173 

AGS (de Graaff et al., 2019). Sialic acids might distribute in the outer layer of GS to protect galactose 174 

against enzyme degradation. Very recently, the linear heteropolysaccharides Glycosaminoglycans 175 

(GAGs) i.e., hyaluronic acid-like and sulfated GAGs-like biopolymers were discovered in both AGS 176 

and EPS products (Felz et al., 2020b). Interestingly sialic acids (1.6%) and sulfated 177 

glycosaminoglycans (2.4%) were also observed in anammox GS-derived EPS (Boleij et al., 2020). 178 

GAGs-like polymers and sialic acids might be widely distributed in granules and play an important 179 

role for the performance stability. Main sugar monomers in AnGS at high salinity were reported as 180 

mannose and N-acetyl galactosamine, indicating the protection role to the methanogenic consortia 181 

(Gagliano et al., 2018). Uronic acids (with a MW of > 10 kDa) contain glucuronic, galacturonic and 182 

mannuronic acids, which are commonly found in the PS of extracellular matrix, with the roles of 183 

supporting the granular structure and preventing bacteria detachment (Al-Halbouni et al., 2009; Jia 184 

et al., 2017). Monosaccharides in structural AGS-derived EPS were recently detected using HPAEC-185 

PAD, including some neutral sugars (glucose, galactose, mannose etc.), glucuronic acid, galacturonic 186 

acid, amino sugars (galactosamine and glucosamine) (Felz et al., 2020c).  187 

The high diversity of extracellular biopolymers results in the complexities and difficulties to 188 

appreciate the EPS components. In particular, PN-glycosylation phenomenon commonly happens in 189 

biofilm matrix, which further complicates the analytical process. More efforts by integrating 190 

multidisciplinary analyses should be devoted to understanding special EPS components (functions, 191 

physicochemical properties, etc. not only measuring the overall PN and carbohydrates contents), to 192 

improve the performance stability of GS technology (Felz et al., 2020c; Seviour et al., 2018).  193 

 194 
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3. Granular stability and heterogeneous spatial distribution of GS-derived EPS 195 

GS-based EPS distribution seems quite heterogeneous. Unravelling their spatial distribution is 196 

conducive to identify different components’ roles for granule formation and provides an overview 197 

and theoretical basis for accelerating the formation of granules. Thus, there are intensive researches 198 

(in situ or ex situ analyses) on the investigation of spatial distribution regarding GS-based EPS 199 

constituents (Seviour et al., 2018; Seviour et al., 2009a). For AnGS, with fluorescent lectin probes 200 

for specific saccharides, most PS were distributed in the external layer (Zhang and Fang, 2004). TB-201 

EPS were found positive for anaerobic granulation process in an expanded granular blanket for 202 

treating low-strength domestic sewage (Xu et al., 2018). Regarding AGS-based EPS distribution, two 203 

hypotheses including PN-core and non-PN core exist. McSwain et al. (2005) pointed out PN-204 

dominated core and PS-dominated shell contributed to the structural stability of glucose-fed AGS 205 

using the fluorescence staining method. Further, β-polysaccharides are mostly responsible for granule 206 

structural stability, functioning as a framework to support the surface layer (Adav et al., 2008b; Wang 207 

et al., 2005). Nevertheless, β-polysaccharides were witnessed as the granule core in an AGS reactor 208 

with the toxic-phenol presence in the influent; whilst α-polysaccharides together with lipids enriched 209 

in the surface of granules based on the method used in-situ staining all EPS components (Adav et al., 210 

2008a). Besides, according to Chen et al. (2007), wastewater types affected AGS-based EPS 211 

distribution through dye staining combined with the imaging technique (confocal laser scanning 212 

microscopy). Regarding acetate-fed AGS, the internal core was composed of PN and β-D-213 

glucopyranose PS; in contrast, the exterior shell was dominated by α-D-glucopyranose PS. However, 214 

for phenol-fed AGS spatial distribution of extracellular matrix was vastly different, characterized by 215 

a PN core and a α- and β-D-glucopyranose PS shell. It needs to stress that, the importance of EPS 216 

property and distribution to granular stability may weigh the biopolymer quantity (Wang et al., 2005). 217 

For instance, for AGS with acetate as the substrate, abundant EPS were present in the loose core, 218 

almost 6 folds (approximately 240 mg/cm3) of that in the shell, and non-soluble β-polysaccharides 219 
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accumulated in the outer layer of acetate-fed AGS. Due to that, excellent hydrophobic properties of 220 

exterior shell were observed, nearly 4 times (200%) of that in the granule core Wang et al. (2005). 221 

Regarding anammox GS, anammox cells could secrete more EPS (particularly the predominant 222 

PN contents) promoting the fast granulation process with both synthetic or real wastewater fed into 223 

the reactors (Boleij et al., 2019; Feng et al., 2019; Ni et al., 2010b; Wang et al., 2020). Wang et al. 224 

(2020) studied the significance of three sub-classifications of anammox GS-based EPS to adhesion 225 

behaviour with a rank of TB-EPS <  LB-EPS < S-EPS. Hence, they concluded that the stratified EPS 226 

promoted the initial adhesion to abiotic surfaces. Besides, the EPS distribution in anammox GS was 227 

demonstrated to be associated with enriched microorganisms (Ni et al., 2015). In high-anammox-228 

enriched GS, the internal core principally consisted of PN and β-D-glucopyranose PS, whilst α-D-229 

glucopyranose PS accumulated in both the inner layer and surface. Whereas in low-enriched granules, 230 

α-D-glucopyranose PS primarily gathered in shell margin and the β-D-glucopyranose PS distributed 231 

in the inner layer and exterior shell, whilst PN were present throughout the whole granules. Compared 232 

with the stability of low- and high- enriched anammox granules, the former endowed higher stability, 233 

inconsistent with the granule strength test. In addition, microscopic observation found that the layer 234 

thickness of biopolymers embedding cells of anammox GS was higher than AGS and AnGS (Ni et 235 

al., 2015). 236 

As mentioned above, the spatial distribution of GS-based EPS shows heterogeneous and diverse. 237 

Significant differences are reported in different kinds of granules as well. Notably, there are no 238 

universal conclusions, and some results are even controversial, e.g. the theories of PN-core and non-239 

PN core in AGS. The heterogeneous EPS distribution can be attributed to the complexity of EPS 240 

components (Section 2) resulting from operational conditions, anaerobic or aerobic environment, 241 

microbial communities (e.g., filamentous growth), and the subsequent biological and chemical 242 

transformations, etc. (Chen et al., 2010; Zhang et al., 2015). Particularly, the relationship between 243 

EPS distribution and microorganisms’ distribution is unknown. On the other hand, more powerful 244 

analytical techniques are expected to be applied to identify the EPS spatial distribution. Among 245 
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different approaches, in-situ staining technique has been commonly explored to visualize the 3-D 246 

distribution of cells, PN, and PS for many years. 247 

 248 

4. Extraction and recovery of GS-based EPS with the consideration of general and specific 249 

criteria 250 

Prior to understanding the roles of key biopolymers and the application of EPS, the prerequisite is 251 

protocol development to extract and recover EPS from different granules. As agreed in intensive 252 

literature (Felz et al., 2016; Feng et al., 2019; Sheng et al., 2010), EPS composition and 253 

characterisation largely depend on the extraction methods. More exactly, given the high diversity of 254 

GS-based EPS in Section 2, distinct extraction and recovery methods can result in a series of 255 

differences in terms of quantity (the total yield, EPS components, etc.) and quality (biochemical 256 

properties, functional groups, etc.) of the extractable exopolymers. The whole process includes 257 

sample preparation, extraction, purification (optional), enrichment, and recovery. Thus far, intensive 258 

efforts have been dedicated to EPS extraction (Sheng and Yu, 2006). Techniques for EPS extraction 259 

contain physical, chemical, or biological approaches according to Table 3 (Li et al., 2014; Lotti et al., 260 

2019a; Ma et al., 2012; Ni et al., 2010a; Ni et al., 2015; Sheng et al., 2010; Xing et al., 2016; Xing et 261 

al., 2015; Zhang et al., 2016a; Zhang et al., 2016c). The main disruptive physical treatments include 262 

centrifugation, sonication, blending, and heating, etc. Physical methods highlight using physical force 263 

(shearing, heat, etc.) to disrupt and dissolve polymer from extracellular matrix, allowing softly to 264 

extract a small number of EPS but with a guarantee of cell integrity. Chemical extraction techniques 265 

include chelating agents, cation exchange resins (CER), alkaline, acid or aldehydic reagents to 266 

solubilize polymers. Biological method contains enzymatic treatment. Generally, chemical methods 267 

are more effective and appear to yield a relatively higher EPS amount (Sheng et al., 2010). For 268 

instance, as verified by a series of physical/chemical tests to extract AGS (Felz et al., 2016) and 269 

anammox GS (Feng et al., 2019), the highest effectiveness of EPS yield was derived from the method 270 

of heating (80 oC) at alkaline conditions, in which pH increase boosted the dissociation of acidic 271 
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groups in EPS. Using alkaline reagents (Na2CO3 or NaOH) can solubilise most PN of EPS matrix, 272 

while acid method can solubilise most PS components but with a very low yield (Aravinthan et al., 273 

2001; Feng et al., 2019). Alkaline treatment or CER mainly targets ionic biopolymer interactions 274 

while aldehydic reagents (e.g., formamide or formaldehyde) function as cell fixation and thus reduce 275 

cell lysis during extraction, so non-specific aldehydic methods are widely combined with alkaline 276 

treatment. In spite of many efforts, thus far the extraction protocol is still not universal (Seviour et al., 277 

2018). 278 

Critical criteria of polymer extraction are that (Sheng et al., 2010), 1) to extract maximum 279 

extracellular biopolymers; 2) not to disrupt the structure of EPS; 3) to minimize cell lysis. In addition 280 

to those conditions, a method with the advantages of less time consumption and friendly-operation 281 

would be a benefit (Feng et al., 2019). These traditional criteria have been used to evaluate the method 282 

effectiveness with the purposes of the fundamental investigation of EPS structure, compositions, 283 

characteristics, and function during the water treatment process, which can be classified as general 284 

targets. Another important aspect to be considered is the differences between GS and traditional 285 

flocculent sludge, extracting GS-based EPS requires more intensive extraction methods than flocs. 286 

With this regard, new criteria emerge according to different research purposes. For instance, harsh 287 

methods (e.g. heating at high temperature and violent sonication) can be applied to damage cell 288 

integrity instead of keeping cells intact, aiming at deciphering the roles of more diverse and unknown 289 

biopolymers (Felz et al., 2016). However, the existing extraction and recovery methods, so far, have 290 

never considered in terms of the usefulness of the extractable materials for specific practical 291 

application and resource recovery. Hence, this is another aspect that requires to be considered when 292 

it comes to reusing the recovered EPS-based biomaterial for applications.  293 

Recovering EPS with sufficient purity and amounts is essential to illustrate the structure and 294 

function of innovative biopolymers and subsequent analyses (e.g., PN interpretation by proteomics). 295 

As shown in Table 4, EPS recovery can be achieved by solvent/ethanol precipitation (Li et al., 2014), 296 

acid precipitation (Boleij et al., 2019; Lotti et al., 2019a), centrifugal filter device with a membrane 297 
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(Feng et al., 2019), and purification by dialysis (Felz et al., 2016; Liu and Fang, 2002) or 298 

electrophoretic/chromatographic techniques (Seviour et al., 2010). However, one issue facing 299 

currently consists in the diffificulties to compare different recovery methods, considering that the 300 

work on comparison and optimization of different recovery methods are seldomly concerned. 301 

 302 

5. Key parameters affecting EPS production: keeping the balance between ‘appropriate’ and 303 

‘excessive’  304 

Microbial communities and their selective environment are crucial elements to regulate EPS excretion 305 

behaviour, in terms of constitutes, structure, and physicochemical properties of EPS extractable 306 

products. With this regard, the parameters on EPS production can be divided into two categories: 307 

internal factors and external environmental conditions (i.e. operational parameters, feeding substrates, 308 

and exogenous substances) (Fig. 3). External conditions drive the change of microbial communities 309 

and the presence of unique microorganisms at special conditions (Gagliano et al., 2020). The 310 

microbiome in different GS systems has diverse metabolism activities, thus triggering the obviously-311 

distinct EPS synthesis and production behavior. Its complexity makes limited information on the 312 

functional roles of the microbial communities and specific microorganisms to drive cells aggregation 313 

and maintain GS stable. Related contents and yields of EPS derived from distinct GS types and reactor 314 

configurations are summarized in Table A1 in Support Information. PS- and PN-related biopolymers 315 

are predominant components of the extracellular matrix. Notably, in AnGS-derived EPS matrix, PN 316 

and humic acid were sometimes witnessed as the main constituents, with lower PS concentrations 317 

(Guibaud et al., 2012; Métivier et al., 2013). Regardless of granules types, the PN/PS ratios are at a 318 

high level, more than 1.0 in most studies. This finding indicates an essential feature with relatively 319 

high PN contents for granule formation and maintenance (McSwain et al., 2005). It seems that 320 

anammox consortia are more effective in EPS excretion, given that both PN and PS contents in 321 

anammox GS-derived EPS are relatively higher compared to AnGS (methanogenic granules) and 322 

AGS (Zhang et al., 2016a). The underlying reason can be attributed to the EPS’ biodegradability, 323 
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which means heterotrophic microorganisms can degrade EPS as carbon and energy sources. On the 324 

contrary, autotrophic growth bacteria i.e., anammox, are not capable of catabolizing organic 325 

substances and therefore accumulate more EPS. Besides, the metabolism of intracellular storages may 326 

influence microbial EPS production. For instance, intracellular storage of polyhydroxybutyrate in 327 

AGS induced more microbial production of EPS, facilitating the granule formation (Wang et al., 328 

2014).  329 

Typically, GS-based EPS have positive effects on microbial resistance to stress-induced external 330 

environments, resulted from substrates, salinity, shear force, toxic compounds, nanoparticles, heavy 331 

metals, feast-famine feeding strategy, etc. Fig. 4 displays the EPS components change at different 332 

stressful conditions. Generally, environmental stress stimulated more total EPS production. 333 

Particularly PN contents increased in the presence of toxic compounds, but with fewer influences on 334 

PS contents. These findings suggest that high extracellular PN contents benefit nucleation and 335 

granular formation. Although harsh conditions stimulate biopolymer secretion, granular stability and 336 

strength would not improve accordingly. Therefore, it may be deduced the existence of a threshold 337 

for extracellular PN contents: within this threshold, more extracellular PN produced would stimulate 338 

the granular formation and stability; on the contrary, excessive EPS may adversely affect the 339 

performance of granular systems. 340 

 341 

5.1 Substrates 342 

Different substrates influence the shift of microbial community due to diverse microbial metabolisms. 343 

Accordingly, different types of substrates (e.g., molecular size, category) fed to the reactors influence 344 

EPS excretion behavior. For instance, Gagliano et al. (2020) compared the different molecular sizes 345 

of substrates i.e., macro proteins and micro amino acids (proline, leucine, and glutamic acid) on EPS 346 

production and granulation of AnGS under saline conditions. The replacement of macro tryptone 347 

using single amino acids led to the granule disappearance, suggesting that a complex proteinaceous 348 

substrate may stimulate granulation process under saline conditions. Similarly, distinct substrate 349 
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types have proved the discrepancies. For example, high PN contents were found in the PN-grown 350 

granule, representing 220 ± 20 mg/g TS, which was 1.6 folds of that in the cannery-fed granules (most 351 

all soluble saccharides). Notably, the PN-fed AnGS exhibited very poor bulk features, such as low 352 

density, unideal shear strength and weaken settleability (Batstone and Keller, 2001).  353 

The substrates concentration (organic or nitrogen loading rate, referred to as OLR or NLR, 354 

respectively) is another essential factor affecting EPS production or morphological shapes of different 355 

granules. For instance, Long et al. (2015) highlighted that OLR under 15 kg/(m3 d) positively 356 

stimulated the maintenance of AGS structure; while granule disintegration occurred with OLR over 357 

18 kg/(m3 d). OLR rise promoted anaerobic-core growth in the inner region due to the enlarged 358 

granular dimension and restricted oxygen transfer, and further resulted in the granule instability. 359 

Batstone and Keller (2001) compared the EPS constituents using two brewery effluents with different 360 

OLR of 7 and 7.5 kg COD/m3 d, respectively. EPS yield, PN, and PS contents of brewery-fed AnGS 361 

showed an increased tendency with higher OLR. Zhang et al. (2016a) studied NLR effects on 362 

Anammox GS-derived EPS production via changing NLR at different levels. Results showed that 363 

EPS yield reasonably rose with the NLR lower than 10 g N/(L d), due to bacteria metabolism and 364 

stress-induced influences of nitrogen substances. However, a high level of NLR at 20 g N/(L d) 365 

resulted in the excessive EPS excretion, leading to granule instability and a deteriorated performance 366 

due to biomass washout. Overall, proper extracellular biopolymers excretion benefits granule stability 367 

and system performance; it would enhance granule settleability and biomass retention in the reactor 368 

units. While excessive EPS trigger negative influences on the granulation process (Zhang et al., 369 

2016a), or even cause granule collapse (Long et al., 2015). Notwithstanding, EPS production behavior 370 

should not only take into account EPS amount, but requires to link physicochemical properties 371 

(hydrophobicity) with the formation and maintenance of granules. 372 

 373 
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5.2 Salinity 374 

Exposing to saline/hypersaline conditions leads to a modification of EPS constituents/structure, and 375 

granule surface properties (e.g., an increase of hydrophobicity) (Corsino et al., 2017; Wang et al., 376 

2017). As shown in Fig. 4, many studies indicated salinity increment resulted in an increased PN 377 

secretion (Campo et al., 2018; Corsino et al., 2017; Ou et al., 2018). Such behavior may attribute to 378 

the protective mechanism in terms of adjustment osmotic pressure of microorganisms and cation-π 379 

interactions of monovalent ions with extracellular PN. By Fourier Transform Infrared Spectrometer 380 

analysis, the PN-related peaks (amide I and amide II) largely improved saline-resistance capacity for 381 

granules (Ou et al., 2018). Functional PN including porin, periplasmic-binding PN associated with 382 

transmembrane transport were found over-expression, further underlying the importance of highly 383 

active microorganisms under stressful saline conditions (Wang et al., 2017). It needs to stress that, 384 

the increase tendency in EPS yield/ constituents was not always proportional to salt concentration 385 

elevated (Corsino et al., 2017; Ou et al., 2018): some studies even obtained controversial conclusions. 386 

For example, an increment of salt concentration caused a decrease of PN contents in AGS-EPS 387 

(Corsino et al., 2017) or PS contents in anammox GS-EPS (Fang et al., 2018). Li et al. (2017b) 388 

observed a drop of overall AGS-EPS yield with an elevation of marine water fraction, whereas PN 389 

components in extracellular matrix maintained at a stable level. Interestingly, saline stress stimulated 390 

the production of abundant ALE and its enhanced gelling features was proven positive to the 391 

granulation process (Li et al., 2017b). Such differences can be due to complex EPS components, 392 

seeded sludge, unique bacterial strains, microbial community, and kinds of restricting substances. 393 

Therefore, the halophilic microorganisms and EPS production-related microbial communities are 394 

supposed to be associated with EPS component variation, however, little information is concerned 395 

about it.  396 

 397 
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5.3 Shear force 398 

Hydrodynamic shear force is an essential factor affecting granule formation (Liu and Tay, 2002) and 399 

is closely associated with regulating bacterial EPS secretion from granular sludge (Fernández et al., 400 

2014; Tay et al., 2001; Wu et al., 2009). Researchers conclude that increment of shear force promotes 401 

granule formation (Tsuneda et al., 2003) and stimulates more EPS production. However, the change 402 

of EPS components in different granules shows different tendencies. For instance, the importance of 403 

exopolysaccharides in AGS-derived EPS was highlighted: aeration rate increment led to a PS-content 404 

increase but PS-content loss resulting in granule disintegration (Tay et al., 2001). However, in glucose 405 

fed-AnGS, PN contents were illustrated to accelerate extracellular PN secretion at high shear force; 406 

while PS content fluctuated less than the PN content (Wu et al., 2009). Interestingly, over-produced 407 

extracellular PN (over 80.5 mg/g VSS) would be detrimental for nucleation (Wu et al., 2009). Some 408 

researchers argued that the shear force may be the unnecessary factor during granulation process. 409 

Therefore, the interactions between EPS production behavior, shear force, and granule maintenance 410 

are still unknown. 411 

 412 

5.4 Toxic substances: organic compounds, nanoparticles, and heavy metals 413 

Toxic exposures can inhibit or even poison microbial growth through interacting, modifying and 414 

degrading cell structures together with metabolic functions. Up to now, comprehensive studies have 415 

stated the sensitivity of biomass to the presence of toxic compounds. These toxic compounds include 416 

emerging contaminants (e.g., Tetracycline (TC) (Shi et al., 2013), Bisphenol A (BPA) (Li et al., 417 

2015b), 4-chlorophenol (4-CP) (Wei et al., 2015b)), nanoparticles (NPs) (He et al., 2020; Li et al., 418 

2015a; Mu et al., 2012) and heavy metals (Zhang et al., 2016b), which are closely associated with the 419 

granular stability. As shown in Fig. 4, regardless of differences of toxic chemicals and GS types, EPS 420 

yield quantities show an increased tendency except for the cases of extremely-high concentration. It 421 

is not surprising that granular biomasses have the self-protection behaviour against a poisonous event 422 

by producing more EPS acting as the buffer between cells and toxic chemicals. PN contents tend to 423 
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increase after the exposure of toxic substances, but no significant difference in PS content is observed. 424 

This finding suggests PN contents not only play important roles in the GS structure stability 425 

(Flemming and Wingender, 2010), but in resistance to adverse conditions resulted from poisonous 426 

compound suppression. Further, the functional groups of EPS are modified due to that toxic event 427 

happened. For example, Shi et al. (2013) proposed that tetracycline greatly changed PN functional 428 

groups of AGS-derived EPS but showed fewer effects on PS contents. Su et al. (2019) investigated 429 

the antibiotic amoxicillin effects on AnGS-based EPS. For TB-EPS, there was no C-H bending 430 

vibration band, whilst the bands of amide I and C-H stretching vibration were enhanced. In addition 431 

to the protective roles of EPS matrix, Zhang et al. (2016b) pointed out that many negatively charged 432 

functional groups (-COOH, -OH, etc.) in EPS may electrostatically attract Cu2+, by this the 433 

electrostatic repulsive force of granules would accordingly decrease. 434 

Nanoparticles (NPs) come to slightly different conclusions, e.g., the presence of nanoscale zero-435 

valent iron (nZVI) caused a significant reduction in AnGS-derived EPS (He et al., 2020). PN, PS, and 436 

humic-like substances were reduced by 15%, 27%, and 15% as a result of 1 g/L nZVI present in the 437 

EPS solution. On the contrary, high concentration EPS decreased H2 generation rate from nZVI and 438 

benefited methanogenesis process by reducing the nZVI inhabitation. Mu et al. (2012) observed that 439 

in an AnGS system, no significant effects on EPS secretion and methane generation were observed 440 

in case of ZnO NPs with a dosage of under 50 mg/g TSS; but the system experienced adverse 441 

performances with a high level of NPs addition (> 100 mg/g TSS). The interactions between EPS and 442 

NPs resulted in a fluctuation of system performance, NPs corrosion, the modification of granule 443 

surface characterization (surface valence, electrostatic force etc.) and the instability of granules (He 444 

et al., 2020). These works are conducive to deeply understand EPS’ adsorption property. 445 

Comprehensive investigations are expected to dedicate to the following aspects: 1) to identify the 446 

potential binding capacity of biopolymers, which is determined by binding sites), 2) to validate 447 

priority order of multiple adsorption sites for toxic contaminants, and 3) to characterize thermal 448 

dynamics during the NPs adsorption process.  449 
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 450 

5.5 Essential cations 451 

Mineral cations not only are essential for metabolism for microorganisms, but potentially stimulate 452 

the granule formation and bacterial restoration in damaged or suppressed biological systems. Among 453 

the cations, Calcium ions (Ca2+) are one key parameter for granular formation (Liu et al., 2020), the 454 

activity restoration (Zhang et al., 2016b), and bioprocess improvement (Ma et al., 2020), thus 455 

resulting in the variation of EPS components and characterisations. For example, Ma et al. (2020) 456 

observed a high level of Ca2+ (1000-2000 mg/L) not only caused the change of functional groups of 457 

AnGS-derived EPS, but simultaneously enhanced EPS production and anaerobic sludge digestion. 458 

This finding may attribute to stability damage resulted from the Ca2+ addition, leading to microbial 459 

consortia to produce more biopolymers against the inhibited situation. Also, Ca2+ was reported to 460 

play an important role for destructed anammox cells to restore their metabolic growth (Zhang et al., 461 

2016b). Liu et al. (2020) proposed a strategy by combining an external conditioning step with Ca2+ 462 

addition before reintroducing effluent sludge into SBR, which led to an increased EPS yield and an 463 

acceleration of AGS formation. 464 

 465 

5.6 Feast/famine feeding strategy 466 

The effects of starvation on both AGS and AnGS have been widely explored. As agreed, a long 467 

starvation period leads to low wastewater treatment efficiency and poor treatment capacity. However, 468 

it generates a positive effect on microbial granulation as it promotes granules formation and stability. 469 

The starvation period is closely interrelated to the selection pressure, concentrations and types of 470 

provided substrates. It is therefore difficult to evaluate its contribution. On the other hand, longer 471 

starvation time seems to enhance the PN enrichment in the extracellular matrix (Rusanowska et al., 472 

2019). Similarly, as discovered by Kang and Yuan (2017), the yeast-fed AGS generated a higher EPS 473 

yield at lower OLR, although granule disintegration was witnessed at the lowest organic load. This 474 

phenomenon may attribute to the fast substrates consumption within a short period at a lower OLR, 475 
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causing a longer famine period for the microorganisms. In this case, more exopolymers are probably 476 

produced by microorganisms, serving as a carbon and energy source to support endogenous 477 

respiration to survive at the substrate-restricted conditions (Corsino et al., 2017). However, Campo 478 

et al. (2018) held a different view that it was mostly in the feast stage that EPS can be taken up by 479 

bacteria as an extra substrate. This may be due to the extremely hypersaline environment, which 480 

means for the more energy demand for microorganisms to adapt salinity conditions. 481 

 482 

5.7 Temperature  483 

Temperature is a crucial factor for microbial metabolisms and reactor performance. For the anaerobic 484 

process, anaerobic digesters can be operated at mesophilic (25°C-40°C) or thermophilic (> 45°C) 485 

conditions (Lim & Kim, 2014). In thermostatic anaerobic reactors, the extractable EPS amount of 486 

AnGS at thermophilic conditions is usually smaller than that under the mesophilic conditions (Lim 487 

& Kim, 2014). Furthermore, the amounts of PN and PS were enhanced by mesophilic conditions 488 

while higher lipid content was present in AnGS at long-term thermophilic conditions (Schmidt and 489 

Ahring, 1994). The lower PN and PS could be resulted from restricted growths of sensitive 490 

methanogens and acetogens, or the accelerated degradation of EPS due to the thermodynamics. It is 491 

still unknown that if the short-term temperature shocks would induce the variation of AnGS-based 492 

EPS. However, with the increased-temperature shock, different phenomena were observed in an 493 

anammox UASB reactor. It is well known that the ideal temperature for the anammox process is 494 

mesophilic ranging from 30°C to 37°C (Chen et al., 2020). By short-term temperature shocks (15°C, 495 

25°C, and 55°C), an obvious increase in EPS content of anammox GS was observed, especially after 496 

the 55°C shock for 4 h (Chen et al., 2020). It seems reasonable that the sudden change of atmosphere 497 

temperature led to the quick response in EPS increase of anammox GS due to the protective 498 

mechanisms.  499 

 500 
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6. EPS-based biomaterials and their applications contributing to the circular economy 501 

For practical industrial application, extraction and recovery of enough amount of EPS from sludge 502 

samples is the prerequisite. Aerobic granules yield a high ALE content of up to 330 mg/g VSS (Felz 503 

et al., 2016; Meng et al., 2019). As calculated, in the Netherlands, the recovered AGS-based ALE is 504 

anticipated to achieve 85 kton in the coming decade (Pronk et al., 2015; van Leeuwen et al., 2018). 505 

According to the UASB process for a 100,000 inhabitant WWTP (Andreoli et al., 2007), it could 506 

yield 150 kg EPS/d (Andreoli et al., 2007). A higher EPS content can be extracted from anammox 507 

GS (40% w/w) (Feng et al., 2019; Lotti et al., 2019a). As calculated, the anammox GS-based EPS 508 

amounts reached to 185 kg-EPS/d from full-scale partial nitrification/anammox reactors (Lackner et 509 

al., 2014). From a circular economy perspective, EPS extracted from waste GS can be considered a 510 

resource to be used as far as possible, thanks to their peculiar characteristics. In comparison with the 511 

linear economy, the circular economy highlights waste recovery, environmental advantage, and 512 

valuation /economic superiority. Several potential applications to recover GS-derived EPS exist, such 513 

as paper industry, medical, and construction industry (Kim et al., 2020; van Leeuwen et al., 2018). 514 

These industrial solutions of GS-derived EPS, pave the way for further use of “wastes” from WWTP 515 

by resource recovery, attributing added-value to sludge, reducing the amount of refuse to be handled 516 

and so promoting a perspective shift from wastewater treatment to “Biorefinery” or “Resource 517 

Recovery”.  518 

 519 

6.1 EPS-based hydrogel as coating materials 520 

GS-based EPS are described to endow the gel formation properties, e.g. AGS-derived ALE (Karakas 521 

et al., 2020) and anammox-GS-based hydrogel (Lotti et al., 2019b) to display a rheological 522 

performance. The differences of EPS-based hydrogel from AGS and anammox GS consist in the 523 

functional components and the gel-forming mechanisms. ALE forms hydrogels with divalent cations 524 

solution (CaCl2) at pH 4.5. AGS-derived ALE is composed of neutral sugars, amino sugars, PN, 525 

uronic acids, and polyphenolic compounds (Felz et al., 2020c) and somehow resembles standard 526 
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sodium alginate (Sepúlveda-Mardones et al., 2019). But ALE is different from commercial alginate, 527 

characterised by relatively high levels of poly glucuronic acid blocks, up to 69% (Lin et al., 2010). 528 

Notably, because of the high complexity of ALE constitutes, gelling mechanism of AGS-ALE can 529 

attribute to both ionic cross-linking and interactive reactions of multiple functional groups of 530 

structural EPS (Felz et al., 2020a). In contrast, regarding anammox GS-based hydrogel, extracted 531 

EPS displayed filming properties without cations addition which is necessary for AGS-derived ALE 532 

(Lotti et al., 2019b). Functional amyloid fibrils were observed in TEM images and may be the key 533 

component of the complex hydrogel network.  534 

The hydrogel-forming capacity of GS-based EPS implies some potential applications (Karakas et 535 

al., 2020; Lotti et al., 2019b). One promising application is used as a raw biomaterial for industrial 536 

paper coating to increase the properties of waterproof or grease resistance (Lin et al., 2015; Lotti et 537 

al., 2019b). Both AGS-ALE and anammox GS-EPS were homogeneously distributed on papers and 538 

proved an obviously-improved water-proof capacity (Lin et al., 2015; Lotti et al., 2019b). Particularly, 539 

hydrogel resulted from anammox GS-derived EPS was capable of forming a barrier and acting as a 540 

repellent for grease, oil and waxes (Lotti et al., 2019b). The functional groups present in EPS provide 541 

abundant binding sites, both hydrophilic and hydrophobic functional groups, which are closely related 542 

to the enhanced features. Notwithstanding this, the complex mechanism is still unclear. The roles of 543 

PN and other EPS components during coating are less considered and required yet to be determined. 544 

With this regard, the research on the extraction of hydrogel-forming exopolymers and understanding 545 

physicochemical properties and their interactions with each other or with non-gel-forming EPS is 546 

helpful to unveil the EPS roles in both granule formation and their potential application as coating 547 

and sizing agents. 548 

 549 

6.2 Curing of cement 550 

The curing process is associated with reducing moisture loss from the surface of cement-based 551 

materials, which is pivotal in construction engineering (Zlopasa et al., 2014). Retaining cement 552 
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surface moist is very important to avoid cracking resulted from drying shrinkage. Given the 553 

hydrophilic properties and high similarity with alginates, AGS-derived EPS has been applied to 554 

improve the curing of cement. Moreover, it has become a commercial material (Karakas et al., 2020). 555 

The extension of construction materials’ endurance would benefit from the application of eco-friendly 556 

and cost-effective EPS-based biomaterials. On the other hand, the use of EPS-based biopolymers 557 

could avoid much on-site working load to keep the moisture of concrete, which is time-consuming 558 

and needs extra labor investment (Zlopasa et al., 2014). Up to now, only AGS-based EPS was reported 559 

to feasibly cure cement in lab-scale tests due to their hydrophilic properties and high similarity with 560 

alginates. The reliability of real applications requires to be investigated in the future. Also, more trials 561 

are expected to study the protective behavior of different kinds of GS-EPS to construction materials.  562 

 563 

6.3 Biosorbent materials 564 

As aforementioned, EPS act as the primary barrier to prevent toxic substances from entering bacterial 565 

cells. The extractable EPS products from AGS or anammox GS were found to be able to form 566 

hydrogel (Felz et al., 2016; Lin et al., 2013; Lotti et al., 2019b; Seviour et al., 2009b). Hydrogels are 567 

types of gel with the swelling (solution adsorption) and de-swelling (solution exuding) characteristics 568 

(Shen et al., 2006). Accordingly, GS-derived EPS have been proven to be a cost-effective biosorbent 569 

biomaterial for a variety of water treatment. Numerous reports document the capability of GS-derived 570 

EPS to bind heavy metal ions (Ni 2+, Pb2+, Cd2+) (Guibaud et al., 2012; Li et al., 2017a) or organic 571 

pollutants (Suh and Kim, 2000). However, different kinds of granules display distinct removal 572 

capacities, e.g., EPS extracted from AnGS possessed a larger contribution to the Ni2+ adsorption 573 

compared with AGS-EPS (Li et al., 2017a). Similarly, GS-based EPS matrix possesses the capacity 574 

of dye pollutant removal, e.g. using AGS-based EPS to remove methylene blue (Wei et al., 2015a). 575 

The involved mechanisms for the biosorption process include physisorption (i.e., physical contact 576 

and electrostatic attraction), ion-exchange function, the binding sites of EPS, and chemical 577 

precipitation (Li et al., 2017a). The primary mechanism attributes to the physicochemical interactions 578 
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between the adsorbates and functional groups of GS-EPS (Li et al., 2017a; Liu et al., 2015), e.g., the 579 

removal of Pb2+, Cd2+, and Zn2+ due to complexation by the functional groups of –COOH and –OH 580 

from AGS-derived EPS (Liu et al., 2015); the adsorption of Cu2+ due to –COOH of PN from 581 

anammox GS-based EPS (Li et al., 2020). It seems amino groups in AGS and AnGS play crucial 582 

roles for Ni2+ sorption as well (Li et al., 2017a).  583 

GS-based EPS have been demonstrated to endow the capacity of the removal of heavy metals 584 

and organic pollutants due to their specific gel-forming properties. It should be noticed that the 585 

biosorption effectiveness of EPS largely depends on solution pH, T, conductivity, efficient contacting 586 

area/time between EPS and pollutants, EPS sources pollutant structure and concentration (Guibaud 587 

et al., 2012). Hence, based on the literature data, a comparison of biosorption capacity of EPS with 588 

other biosorbents is still an open research question, due to the variety of biosorbents studied, pollutant 589 

considered, experimental techniques used, etc. In addition to the fundamental adsorption behaviour, 590 

the performance stability and selectivity in presence of multi-valent cations or organic pollutants with 591 

different charges (positive) are seldom addressed. The selectivity may result in the competition 592 

between different substances, further inducing the occurrence of unexpected desorption. 593 

 594 

6.4 Flame retardant materials 595 

Another advantage would be the reduction of consumptions of halogenated fire retardants. AGS-596 

based EPS were proven to be extinguished bio-based flame retardant materials of flax fabrics due to 597 

effective char formation (Kim et al., 2020). Kim et al. (2020) compared Bunsen vertical burning 598 

behaviour using two different EPS extracted from AGS and flocculent sludge to cover flax fabric. 599 

These two EPS endowed self-extinguishing properties, indicating their feasibility being as coating 600 

materials (Kim et al., 2020). Nowadays, halogenated flame retardants cover almost 31% of the market 601 

of flame retardants even though they are known as a series of hazardous influences to humans and 602 

the environment due to the emissions of poisonous contaminants as dioxins and furans (Kim et al., 603 

2020). With this regard, the EPS extracted from GS could be a nice alternative. 604 
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 605 

7. Conclusions and prospects: where are the bottlenecks? 606 

A better unravelling of the fundamental aspects in terms of EPS composition and the regulation of 607 

EPS production has created the foundation to change the critical status of waste sludge management 608 

and wastewater treatment in WWTP. Also, it helps to increase sustainable EPS production as value-609 

added biomaterials, causing a technological alternative to sludge management. Meanwhile, many 610 

efforts are expected to be dedicated to understanding the functions and properties of complex GS-611 

based exopolymers. Future work can focus on the below aspects: 612 

 613 

EPS-based biomaterials in the circular economy. EPS-based materials originating from natural 614 

sources are renewable and sustainable, holding the great potential for industrial application. The 615 

information on EPS recovery and their conversion into bioproducts with added values gives a 616 

unique/new perspective on a less fossil fuel-dependent economy. The investment into capital 617 

equipment costs and operational expenses are largely dependent on production scale and extraction 618 

methods for EPS production. However, there is still a lack of a comprehensive study to evaluate the 619 

whole process in terms of environmental and economic impacts of EPS recovery through life cycle 620 

assessments. More work is expected to focus on the industrial applicability, economic and 621 

environmental effects during extraction and commercial process of GS-derived biomaterials. 622 

 623 

Identification of complex EPS components. The EPS components are far complex, however, one 624 

disadvantage of the commonly-used analytical methods (e.g. traditional colorimetric methods) is non-625 

specific. The PN-glycosylation phenomena further increased the difficulty and complexity to depict 626 

the glycoconjugates (Felz et al., 2020c). Emerging techniques (e.g., omics, sequencing) are expected 627 

to be integrated to analyse biopolymer composition, structural properties, and multiple functionalities. 628 

The long period of granule formation and frequent performance fluctuation are typical restricting 629 

factors for large-scale application of GS technology (Lin et al. 2020). The mechanisms for EPS 630 
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synthesis and its contribution to granulation are normally hypothesis-based. Thus, deciphering the 631 

EPS generation behaviour during the granulation process should encompass specific attention to the 632 

physicochemical structure that can be further exploited in up-cycle product manufacturing. 633 

 634 

EPS extraction and recovery methods. The standard for biopolymer extraction should be determined 635 

based on different purposes. It must consider whether the traditional standards are applicable to EPS 636 

extraction for industrial applications. The considerable yield amounts with an ideal structure are more 637 

important than cell lysis. Some GS-EPS components could not be effectively derived according to 638 

the traditional extraction protocol (Felz et al., 2020c). Emerging EPS extraction methods should take 639 

into account high efficiency, cost-effective, user-friendly and less chemical additives. Besides, 640 

purification methods for the extracted EPS are bottlenecks for the current EPS recovery. The 641 

optimization protocol for EPS recovery should be adapted based on specific research goals.  642 

 643 

Relationship between different EPS components. Most studies investigate the EPS components (e.g. 644 

PN and PS) separately. However, the relationship between different fractions is unknown. As far as 645 

we know, exopolysaccharides, PN and humic acids in EPS matrix or hydrogel can bind cations, 646 

stabilize metal NPs, and be used as sizing reagents due to abundant binding sites. However, 647 

information on the interactions of different components of EPS or and other substances (i.e., cations, 648 

NP, non-gelling components) are still unclear.  649 
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