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Steady self-similar solutions to the supersonic flow of Bethe-Zel’dovich-Thompson fluids9

past compressive and rarefactive ramps are derived. Inviscid, non-heat-conducting, non-10

reacting and single-phase vapour or gas flow is assumed. For convex isentropes and11

shock adiabats in the pressure–specific volume plane (classical gasdynamic regime),12

the well-known oblique shock and centred Prandtl-Meyer fan occur at a compressive13

and rarefactive ramp, respectively. For non-convex isentropes and shock adiabats (non-14

classical gasdynamic regime), four additional wave configurations may possibly occur;15

these are composite waves in which a Prandtl-Meyer fan is adjacent up to two oblique16

shock waves. The steady two-dimensional counterparts of the wave curves defined for the17

one-dimensional Riemann problem are constructed. In the present context, such curves18

consist of all the possible states connected to a given initial state (namely, the uniform19

state upstream of the ramp/wedge) by means of a steady self-similar solution. In addition20

to the classical case, as many as six non-classical wave curve configurations are singled21

out. Moreover, the necessary conditions leading to each type of wave curves are analysed22

and a map of the upstream states leading to each configuration is determined.23

1. Introduction24

In the supersonic ramp problem, a supersonic uniform stream is deflected onto a sharp25

corner. The steady-state solution configurations of the ramp problem are fundamen-26

tal in gasdynamics, as they provide global or local structures in diverse flow fields:27

supersonic intakes and discharges, turbine flows, steady regular and Mach reflections,28

two-dimensional Riemann problems, just to mention a few. In the classical theory of29

gasdynamics, a compressive ramp produces two possible steady state configurations —30

the weak and the strong oblique shock configurations — provided the wedge angle doesn’t31

exceed the detachment angle, whereas a rarefaction ramp gives rise to a centred Prandtl-32

Meyer fan, see e.g. Thompson 1988. The picture given here applies to all substances33

described by convex equations of state (EoS), namely those featuring positive curvature34

of the isentropes in the pressure–specific volume diagram or, in non-dimensional terms,35

those exhibiting positive values of the fundamental derivative of gasdynamics Γ ,36

Γ =
v3

2c2

(
∂2P

∂v2

)
s

= 1− v

c

(
∂c

∂v

)
s

, (1.1)

where P is the pressure, v the specific volume, s the specific entropy and c the speed37

of sound. The thermodynamic quantity Γ was introduced by Thompson (1971), due to38
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the paramount role that it plays in delineating the dynamic behaviour of compressible39

flows (Bethe 1942; Zel’dovich 1946; Thompson & Lambrakis 1973; Landau & Lifshitz40

1987). Note, in particular, that 1 − Γ is a non-dimensional measure of the sound-speed41

variation with the density along isentropic processes. The asymptotic conditions on the42

EoS stemming from physical requirements imply that Γ is positive in the dilute-gas43

limit. Indeed, for a perfect gas the fundamental derivative is given by Γ = (γ + 1)/2 >44

1, where γ is the ratio of the specific heats. However, negative nonlinearities can in45

principle be observed in the close proximity to the liquid-vapour saturation curve and46

critical point. In substances conforming to a 3-dimensional Ising-like systems (including,47

e.g., common fluids such as water, methane, carbon dioxide), negative nonlinearity is48

predicted to appear in the near-critical vapour-liquid equilibrium region due to critical-49

point effects (Nannan et al. 2014, 2016). In addition, a family of high molecularly complex50

fluids, commonly referred to as Bethe-Zel’dovich-Thompson (BZT) fluids, is expected to51

exhibit negative nonlinearity in a finite vapour-phase thermodynamic region neighbouring52

the saturation curve. According to modern and most accurate thermodynamic models,53

candidate BZT fluids are believed to belong to the classes of hydrocarbons, fluorocarbons54

and siloxanes (Lambrakis & Thompson 1972; Cramer 1989a; Colonna et al. 2007). In spite55

of the various attempts (Ivanov & Novikov 1961; Borisov et al. 1983; Kutateladze et al.56

1987; Fergason et al. 2001; Thompson et al. 1986; Fergason et al. 2003; Colonna et al.57

2008; Mathijssen et al. 2015), experimental evidence of non-classical behaviour is lacking58

due to many technical problems, e.g. the risk of explosion and thermal decomposition at59

the high temperatures where non-classical effects would potentially occur and the very60

limited pressure and temperature ranges encompassing the negative-Γ region predicted61

by state-of-the-art thermodynamic models.62

In the thermodynamic domain where the fundamental derivative can possibly change63

its sign, the EoS is locally non-convex. Local loss of convexity has dramatic implications64

on the governing equations, as it possibly leads to the formation of non-classical waves65

such as expansion shocks, shock waves with either upstream or downstream sonic states,66

composite and split waves (Thompson 1971; Thompson & Lambrakis 1973; Cramer &67

Kluwick 1984; Cramer & Sen 1986, 1987; Cramer 1989b; Menikoff & Plohr 1989; Bates68

& Montgomery 1999; Kluwick 2001).69

Our understanding of the basic mechanisms and flow structures in non-classical gas-70

dynamics mainly originates from the investigation of unsteady one-dimensional flows71

(see, e.g., Cramer & Kluwick 1984; Cramer & Sen 1986) and steady nozzle flows (see72

Cramer & Fry 1993; Kluwick 1993; Guardone & Vimercati 2016). Within the non-classical73

context, the steady supersonic flow past solid wedges was only partially examined in74

the scientific literature. In his pioneering work, Thompson (1971) studied the formation75

of the two elementary wave configurations in the ramp problem for negative-Γ fluids:76

the oblique rarefaction shock and the compressive Prandtl-Meyer fan, which represent77

the non-classical counterparts of the classical compression shock and rarefaction fan.78

Recently, the ramp problem for BZT fluids was investigated by Kluwick & Cox (2018)79

in the transonic approximation, with the further assumption that |Γ | � 1, namely80

in the vicinity of the transition line Γ = 0. In this framework, the parameter space81

determining the solution configuration includes the wedge angle, the upstream Mach82

number, the upstream fundamental derivative and its isentropic derivative with respect83

to the density. The authors showed that, through the scaling originally introduced by84

Cramer & Tarkenton (1992), the parameter space can be reduced to dimension two.85

Five different ranges of these similarities parameters were identified, which correspond86

to qualitative different flow scenarios. The resulting picture is considerably rich, due87

to the possibility of observing, in addition to inverted gasdynamic behaviour (viz.88
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rarefaction oblique shocks and compression Prandtl-Meyer fans), also composite waves89

configurations, in which a Prandtl-Meyer fan is adjacent to an oblique shock wave.90

Menikoff & Plohr (1989) suggested the possibility of studying planar, supersonic and91

self-similar flows moving from the one-dimensional Riemann problem for an arbitrary92

equation of state. If a solution exhibiting no length scale is sought (e.g. self-similar93

solutions), a set of ordinary differential equations is obtained which produces three94

distinct waves families, for both two-dimensional steady supersonic flows and unsteady95

one-dimensional flows (see, e.g., Godlewski & Raviart 2013). One wave family is linearly96

degenerate (in two dimensions with a multiplicity of two) and corresponds to contact97

discontinuities, while the other two families are non-degenerate (except at isolated points98

in non-classical flows) and are associated with acoustic and shock waves. Oblique shocks99

in two dimensions satisfy the one-dimensional Rankine-Hugoniot relations in the direction100

normal to the shock front. Smooth solutions consist of wave fans, spreading either in the101

two-dimensional space or in one dimension as time progresses. Thus, unsteady normal102

shocks translate into steady oblique shocks and unsteady wave fans become Prandtl-103

Mayer waves. The qualitative equivalence between these wave patterns is key to extend104

the tools and concept developed for the one-dimensional Riemann problem to steady,105

self-similar flow in two dimensions.106

In this study, the steady supersonic planar flow of BZT fluids over compressive and107

rarefactive ramps is systematically investigated by identifying each self-similar flow108

configuration that is compatible with the boundary condition imposed by the solid109

wedge. Following the same line of Menikoff & Plohr (1989), the analysis of the ramp110

problem is traced back to the construction of steady two-dimensional wave curves, which111

consist of all the states connected to a given supersonic upstream state by means of a112

steady self-similar planar wave. Similarities and differences with the wave curves of the113

one-dimensional Riemann problem are discussed. The proposed analytical approach —114

undertaken here in a fully non-linear perspective, differently from the asymptotic theory115

developed by Kluwick & Cox (2018) — leads to the identification of seven different wave-116

curve types, six of which are of purely non-classical type. The latter cases all include117

branches where the solution of the ramp problem consists of a composite wave (e.g.118

combination of Prandtl-Meyer fan and oblique shock). As the wave-curve configuration119

is determined by the properties of the uniform supersonic state upstream of the wedge, the120

corresponding parameter space (e.g. the upstream pressure, density and Mach number) is121

explored. Eventually, the necessary conditions for the occurrence of each of the identified122

wave-curve types are singled out and a map of the upstream states leading the different123

configurations is delineated.124

The structure of this work is as follows. In §2, the mathematical description of the125

fluid flow is recalled for the special case of two-dimensional steady self-similar flows126

that are compatible with a prescribed supersonic conditions at upstream infinity. The127

elementary waves that can possibly occur in these flows are defined. In §3, we describe128

how the established concepts for the one-dimensional Riemann problem can be suitably129

translated into the present two-dimensional steady context, thus leading to the definition130

of the wave curves for the ramp problem. The construction of these curves from one-131

parameter families of elementary waves is treated. The structure of the wave curves is132

then analysed by first considering their projection in a thermodynamic plane (§4) and133

secondly those on common polar diagrams (§5). The van der Waals model of a BZT fluid134

is used for explanatory purposes. Section 6 presents the development of the map of the135

upstream states that are associated to each type of wave curve. Section 7 outlines the136

concluding remarks.137



4 Davide Vimercati, Alfred Kluwick, Alberto Guardone

2. Formulation138

We restrict our attention to the steady two-dimensional flow equations that model139

equilibrium fluid dynamics in the limit of vanishing viscosity and heat conductivity,140

namely steady two-dimensional Euler equations141

∂xFx(q) + ∂yFy(q) = 0, (2.1)

where142

q = (ρ, ρux, ρuy, ρe+ ρu2/2) (2.2)

is the vector of conservative variables, in which ρ is the density, ux, uy and u are the
velocity x-component, y-component and magnitude, respectively, and e is the specific
internal energy. The fluxes Fx and Fy are given by

Fx(q) = (ρux, ρu
2
x + P, ρuxuy, ρh

tux), (2.3)

Fy(q) = (ρuy, ρuxuy, ρu
2
y + P, ρhtuy), (2.4)

where P is the pressure and ht = e+ P/ρ+ u2/2 is the specific total enthalpy.143

The steady two-dimensional Euler equations are classified as elliptic, parabolic or144

hyperbolic depending on the value of the flow Mach number M ,145

M = u/c, (2.5)

see, e.g., Godlewski & Raviart (2013). System (2.1) is of the elliptic type if M < 1 and146

of the parabolic type if M = 1. If M > 1, system (2.1) is hyperbolic in every direction147

(i.e. timelike direction) that is not perpendicular to characteristic lines (Dafermos 2010).148

In a cartesian x–y coordinate system, we consider, with reference to the ramp problem,
a solid boundary described by the the equations

y = 0, x 6 0, (2.6)

y = (tanϑr)x, x > 0, (2.7)

where ϑr is the ramp angle. The corner of the ramp is thus located at x = 0, y = 0. Along149

the solid wall, slip boundary condition is enforced. A uniform flow state is prescribed at150

infinite upstream x = −∞, which is aligned with the wall (uy = 0) and supersonic.151

In this study, self-similar solutions of the steady supersonic ramp problem are exam-152

ined. These are functions of the form q(x, y) = w(y/x) that satisfy the integral form153

of the conservation law associated with (2.1) in the domain (circular sector) delimited154

by the solid wall, along with the boundary conditions imposed on the wall itself and at155

upstream infinity. On physical grounds, we shall also limit ourself to consider self-similar156

solutions that are piecewise C1. Introducing ξ = y/x, this means that w(ξ) is continuously157

differentiable except for a finite number of points at which w has a jump discontinuity158

or is continuous but not differentiable. As a consequence, we examine solutions that are159

constant along rays emanating from the corner of the ramp; in the solution flow field, a160

finite number of rays, carrying jump discontinuities in w or its gradient, separate circular161

sectors where w is continuously differentiable. In the following, the building blocks for the162

construction of self-similar solutions of the steady supersonic ramp problem are described.163

These are the continuously differentiable simple waves, the discontinuous waves (shocks164

and contacts) and the composite waves, which are combination of the previous ones.165

2.1. Simple waves166

The flow pattern corresponding to a non-trivial, continuously differentiable function167

w(ξ) is called a centred simple wave and in the physical plane it takes the form of a fan,168
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commonly denoted as Prandtl-Meyer fan, converging at a single point. At points where169

w(ξ) is continuous and differentiable, equation (2.1) is equivalent to the generalized170

eigenvalue problem171 (
Ay(w(ξ))− ξAx(w(ξ))

)
w′(ξ) = 0, (2.8)

where Ax(q) = DqFx(q) and Ay(q) = DqFy(q) are the Jacobians of the fluxes. It follows172

that either w′(ξ) = 0 or173

ξ = λk(w(ξ)), for some k ∈ {1, ..., 4} (2.9)

and174

w′(ξ) = rk(w(ξ))/αk(w(ξ)), for some k ∈ {1, ..., 4} , (2.10)

where λk and rk denote the k-th eigenvalue and right eigenvector, respectively, in the175

generalized eigenvalue problem (2.8) and αk = Dqλk(q)·rk(q) is the so-called nonlinearity176

factor (see appendix A). Note also that the ray marking the transition between a simple-177

wave region and a uniform flow region is a point of jump discontinuity for w′(ξ).178

Since ξ = x/y is a real number, relation (2.9) implies that the eigenvalue λk is also179

real. It is well-known (see, e.g., Thompson 1988) that the characteristic equation of the180

eigenvalue problem (2.8) always gives a real root λ = tanϑ of multiplicity two, where181

ϑ = tan−1(uy/ux) is the angle formed by the particle path with the x-axis (positive182

if counter-clockwise), whereas the remaining roots are real if and only if the flow is183

supersonic (M > 1). For supersonic flow, the eigenvalues of the steady planar Euler184

equations can be written as185

λ1 = tan(ϑ− µ), λ2,3 = tanϑ, λ4 = tan(ϑ+ µ), (2.11)

in which the angle µ = sin−1(1/M) is called the Mach angle. The characteristic curves,186

having slope dy/dx = λk in the physical x–y plane, are thus the particle paths and187

the curves that locally form an angle ±µ with the particle paths. Because of this, the188

characteristics of the 1–field and 4–field (the k–field is the characteristic field associated189

with λk and rk) are also referred to as right-running and left-running acoustic waves,190

respectively. Equation (2.9) implies that the rays in a centred simple wave correspond to191

characteristic lines.192

Relation (2.10) asserts that the states within a centred simple wave all lie along an193

integral curve of rk(q). However, in order that w′(ξ) stays finite, the nonlinearity factor194

appearing in (2.10) must not be zero. With a proper scaling of the eigenvectors, the195

nonlinearity factors read (appendix A)196

α1,4 = Γ, α2,3 = 0, (2.12)

thus showing, together with relation (2.10), that continuously differentiable waves are not197

possible in the 2–field and 3–field (which are linearly degenerate and give rise to contact198

discontinuities, see §2.2) and in the 1–field and 4–field at degenerate points Γ = 0. In199

other words, centred simple waves can only take place in the acoustic wave families200

(1–field or 4–field) if Γ 6= 0.201

For each characteristic field of an n-dimensional system of conservation laws (in our202

case n = 4) is defined a set of n − 1 Riemann invariants (Dafermos 2010). A Riemann203

invariant of the k-th field is a scalar-valued function that is constant along the integral204

curve of rk(q). The Riemann invariants of the 1–field and 4–field are the triplets205 {
s, ht, ϑ− ν (1–field),

s, ht, ϑ+ ν (4–field),
(2.13)
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where206

ν = ν0 +

∫ u

u0

√
M2 − 1

du

u
= ν0 −

∫ P

P0

√
M2 − 1

ρu2
dP (2.14)

is the Prandtl-Meyer function, in which subscript 0 refers to a reference state (in fluids207

exhibiting Γ < 1, the above forms of the Prandtl-Meyer function are valid at all velocities208

and pressures, contrarily to the more common form parametrized using the Mach number,209

see Cramer & Crickenberger 1992). Therefore, the flow field within a centred simple wave210

has constant entropy and total enthalpy. By examining the eigenvectors r1 and r4 (see211

appendix A), it is readily seen that P ′(ξ) ≷ 0, u′(ξ) ≶ 0 and ϑ′(ξ) ≷ 0 if Γ ≷ 0212

within left-running simple waves, while P ′(ξ) ≶ 0, u′(ξ) ≷ 0 and ϑ′(ξ) ≷ 0 if Γ ≷ 0 in213

right-running simple waves.214

2.2. Shock waves and contact discontinuities215

The turning of a supersonic stream can also be accomplished by means of discontinuous216

waves. If w has a jump discontinuity along the ray ξ, the balance laws of mass, momentum217

and energy assume the form218

[Fy − ξFx] = 0, (2.15)

where [·] denotes the jump across the discontinuity. Equations (2.15) are the well-known
set of Rankine-Hugoniot relations (see, e.g., Thompson 1988), which can be conveniently
recast as

[ρun] = 0, (2.16)

[P + ρu2n] = 0, (2.17)

[ρunut] = 0, (2.18)

[ρunh
t] = 0, (2.19)

where un and ut are the normal and tangential velocity components, with respect to the219

shock front. System (2.16)-(2.19) includes both contact discontinuities and shock waves,220

which are distinguished according to the value of the mass flux m = ρun across the221

discontinuity front. For contact discontinuities m = 0, while for shock waves m 6= 0.222

The states that can be connected by means of contact discontinuities lie on the integral223

curves of r2(q) and r3(q), see Godlewski & Raviart (2013). The corresponding Riemann224

invariants are225 {
P, ϑ, s (2–field),

P, ϑ, u (3–field),
(2.20)

thus indicating that the discontinuous waves of the 2–field are vorticity waves (or slip226

lines, i.e. jumps in the velocity magnitude at the same pressure, entropy and flow227

direction) and those of the 3–field are entropy waves (i.e. entropy jumps at constant228

pressure and velocity).229

Shock waves are discontinuities in the acoustic wave families (1–field and 4–field) and230

thanks to the conservation of the tangential velocity (2.18) they can be represented as231

normal shocks to which a uniform velocity field, parallel to the shock front, is superposed.232

It is easily checked that if the normal velocity decreases when the shock front is crossed233

(from the mass and normal momentum relations, the shock is compressive), the shock234

wave deviates the flow towards the front itself; the opposite occurs if the normal velocity235

increases (rarefaction shock). This means that [ϑ] ≷ 0 if [P ] ≷ 0 for left-running shock236

waves (4–field) and [ϑ] ≶ 0 if [P ] ≷ 0 for right-running shocks (1–field). In addition, from237

(2.19) with ρun 6= 0, it follows the total enthalpy is conserved across the shock. The jump238
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conditions can be combined into the well-known Hugoniot relation239

[h]− 1

2
[P ](v− + v+) = 0, (2.21)

where subscripts “−” and “+” denote the pre-shock and post-shock state, respectively.240

The Hugoniot relation determines the set (Hugoniot locus) of the thermodynamic states241

that can be connected by means of a shock wave. In the P–v plane, the Hugoniot locus242

is commonly referred to as the shock adiabat.243

The Rankine-Hugoniot relations must be complemented with suitable admissibility244

criteria in order to rule out unphysical solutions. The second law of thermodynamics245

requires that the entropy does not increase across the shock, namely246

s+ > s−. (2.22)

For the shock to be stable against normal perturbations (with respect to its front), the247

speed ordering relation248

Mn+ 6 1 6Mn−, (2.23)

where Mn = un/c is the normal flow Mach number, must be satisfied (Landau & Lifshitz249

1987). Conditions (2.22) and (2.23) have a useful geometrical interpretation in the P–v250

plane (see Thompson & Lambrakis 1973; Cramer 1989b; Kluwick 2001). For an entropy251

increasing shock, the area between v− and v+ under the shock adiabat must be larger252

than that under the Rayleigh line, the straight line connecting the pre-shock and post-253

shock states (from equations 2.16-2.17, the slope of the Rayleigh line is [P ]/[v] = −m2).254

The speed ordering relation results in the following condition on the slopes of the shock255

adiabat and Rayleigh line:256

dP

dv

∣∣∣∣
+

6
[P ]

[v]
6

dP

dv

∣∣∣∣
−
, (2.24)

where the derivative is taken along the shock adiabat centred on (P−, v−). A further257

criterion is that the Rayleigh line must not cut the shock adiabat at interior points; this258

amounts to require the existence of the one-dimensional thermoviscous profile associated259

with the normal flow (Cramer 1989b). Some consequences of these admissibility criteria260

are as follows. For convex shock adiabats as in classical gasdynamics, the above require-261

ments are simultaneously satisfied if and only if the shock is pressure-increasing. If the262

shock adiabat is non-convex, there may appear branches where only rarefaction shocks263

are admissible (for example, in the region where the shock adiabat is concave) or where264

one or more of the above conditions fail and therefore no shock wave is admissible.265

An additional requirement in multi-dimensional flows is that the shock front is not266

unstable to transverse perturbations of its front. This condition, introduced by D’yakov267

(1954) and Erpenbeck (1962), reads268

−1 6 − [P ]

[v]

(
dP

dv

∣∣∣∣
+

)−1
6 1 + 2Mn+. (2.25)

Assuming dP/dv|+ < 0, which is the typical behaviour for most real fluids (Landau &269

Lifshitz 1987) and it is also observed here throughout, condition (2.25) is satisfied if the270

speed ordering relation holds. Additional comments concerning the neutral stability to271

transverse perturbations are provided in the concluding section 7.272

2.3. Composite waves273

Following the loss of genuine nonlinearity due to crossing of the Γ = 0 locus, in274
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addition to the elementary waves described above, composite waves in which two or275

more elementary waves propagate as a single entity can possibly occur (Menikoff & Plohr276

1989; Kluwick 2001). In order that a composite wave exists, the propagation rays of its277

elementary waves must be compatible, i.e. they must neither collide nor split. This rules278

out the case that composite waves be formed by elementary waves of different families.279

Composite waves can be obtained by stitching together simple waves and shock waves280

of a given acoustic wave family (of course, two or more adjacent simple waves can be281

regarded as forming a single simple wave and two or more adjacent discontinuities can282

be seen as a single discontinuity). In order that a shock wave is adjacent to a simple283

waves fan, the shock must propagate on the same ray as the edge of the fan, which in284

turn implies that Mn = 1 on the side of the shock wave neighbouring the fan (Cramer285

et al. 1986). By analogy with the nomenclature of one-dimensional unsteady flows, on286

the side where Mn = 1 the shock is said to be sonic. Thus, if Mn− = 1 the shock is287

termed pre-sonic and if Mn+ = 1 the shock is post-sonic, while if Mn = 1 on both sides,288

the shock is double-sonic.289

If the sonic condition Mn = 1 holds on one side of the shock, then relation (2.24) is290

satisfied with equality on that side, namely the Rayleigh line is tangent to the shock291

adiabat. At such points on the shock adiabat, the entropy, the mass flux and the slope292

of the Rayleigh line are all local extrema (see, e.g, Landau & Lifshitz 1987). It can be293

shown that the thermodynamic state in the sonic side of the sonic shock exhibits Γ < 0294

if the shock is compressive, whereas Γ > 0 if the shock is rarefactive (Menikoff & Plohr295

1989; Kluwick 2001). From the arguments of sections 2.1 and 2.2 on the variation of the296

flow angle and the pressure across simple waves and shock waves, it is readily obtained297

that both the flow angle and the pressure are monotonic within a composite wave.298

As it is shown below, the topology of Γ in typical BZT fluids imposes a constraint on299

the maximum number of simple wave fans or shock waves that can possibly appear in a300

composite wave.301

3. Solution of the ramp problem and wave curves302

With reference to the ramp problem, we now investigate the wave configurations that303

can possibly deliver the turning of an upstream supersonic stream in a steady flow. Across304

entropy and shear waves there is neither mass flux nor deviation of the particle paths (cf.305

2.20), therefore the uniform supersonic flow can be turned only across acoustic or shock306

waves. We immediately note that the presence of both left-running and right-running307

waves emanating from the ramp corner is not compatible with the boundary conditions308

imposed by the solid boundary. Thus, if the flow domain is above the solid boundary309

(e.g., y > 0 for the uniform supersonic stream), only a left-running wave can deliver the310

deflection of the upstream flow and it is at the same time compatible with the condition311

of flow uniformity at upstream infinity. On the contrary, a right-running wave is required312

if the the flow domain is below the solid boundary.313

Downstream of these wave patterns, a slip line bringing the flow to rest can always314

be added without changing the overall deflection (several contact waves can be added315

further downstream). Because we are ultimately interested in describing the structure316

of the waves that can possibly deliver the turning of the uniform supersonic stream,317

henceforth we conveniently assume that the angle ϑr appearing in (2.6) coincides with318

the flow deviation across waves of the acoustic fields. That is, the following treatment319

is valid if one interprets the ramp angle as the turning angle of the uniform supersonic320

flow (in the absence of downstream contact waves, this is exactly the angle of the solid321

boundary).322
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In terms of self-similar wave patterns, the two-dimensional steady supersonic flow323

involves several analogies with the one-dimensional unsteady case. As is well-known (see,324

e.g., Godlewski & Raviart 2013), the unsteady one-dimensional Euler equations possess325

two acoustic characteristic fields corresponding to left-facing and right-facing waves326

(propagating with speed u∓c, respectively), with a linearly degenerate field corresponding327

to contact discontinuities (propagating with speed u) in between. In both two-dimensional328

steady supersonic flows and one-dimensional unsteady flows, the acoustic fields have a329

similar structure thanks to the following facts. Smooth wave patterns occur, in both cases,330

in the form of centred fans of acoustic waves. The nonlinearity factor of the acoustic fields,331

in both cases, are proportional to Γ , which means that the breakdown of simple waves332

coincides with the condition Γ = 0 both in two-dimensional steady supersonic flows and333

in one-dimensional unsteady flows (in turn, this implies that the mechanism of formation334

of composite waves is the same). Moreover, oblique shocks in two dimensions satisfy the335

one-dimensional Rankine-Hugoniot relations in the direction normal to the shock front.336

Thus, steady Prandtl-Meyer fans and oblique shocks are the counterparts of unsteady337

wave fans and normal shocks, respectively. The correspondence between the elementary338

wave patterns makes it possible to extend many of the concepts developed for the one-339

dimensional unsteady case to the steady two-dimensional one. On the other hand, two340

differences between these frameworks are as follows. In two-dimensional steady flows,341

self-similar waves can separate hyperbolic and elliptic regions of the flow fields. This342

change can possibly occur across strong oblique shocks, which drive the Mach number343

below unity. Secondly, in two-dimensional steady flows, there exists a maximum pressure344

jump across shock waves, due to the fact that the total enthalpy is constant (cf. 2.13 and345

2.19) along streamlines. In contrast, in one-dimensional unsteady flows, any value of the346

pressure jump can be attained depending on the shock speed.347

To formalise the similarity between one-dimensional unsteady flows and two-348

dimensional steady flows, we introduce here the idea of wave curve for steady two-349

dimensional flows. In the one-dimensional unsteady flows, the wave curve represents the350

set of states connected to a given initial state by a self-similar wave of the left-facing351

or right-facing field (Menikoff & Plohr 1989). In two-dimensional steady flows, the wave352

curve consists of all the states connected to a given supersonic state by means of a steady353

self-similar planar wave of the left-running or right-running field. Thus, the wave curve354

is made of branches corresponding to centred simple waves, shock waves and composite355

waves. In the context of the supersonic ramp problem, the wave curve computed from356

the state associated with the uniform supersonic stream embeds all the self-similar waves357

that can possibly deliver the deflection imposed by the ramp (in the above sense).358

Similarly to the one-dimensional case, the construction of wave curves can be simplified359

by first considering the projection onto the thermodynamic variables; the kinematic360

quantities are retrieved afterwards. This two-step procedure is the topic of the next361

sections. Three important observations set the ground for the following treatment:362

(i) the projection of a Prandtl-Meyer fan connected to an upstream state A, onto the363

thermodynamic variables, is a branch of the isentrope passing through the upstream ther-364

modynamic state (cf. the Riemann invariants 2.13). Given, e.g., the downstream pressure365

PB, all the thermodynamic quantities downstream of the fan are readily determined. The366

kinematic quantities (e.g. uB and ϑB) are computed by imposing the conservation of the367

total enthalpy ht and of the Riemann invariant θ ∓ ν of opposite sign;368

(ii) shock waves connected to state A project, in the thermodynamic plane, onto369

a branch of the Hugoniot locus passing through the upstream thermodynamic state370

(cf. equation 2.21). Given, e.g., the downstream pressure, the downstream density is371

computed from (2.21) and, from those, each downstream thermodynamic quantity and372
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the mass flux m = (−[P ]/[v])1/2. The shock angle βs and flow deflection angle ϑB373

(with respect to the upstream flow direction) are computed from m = ρAuA sinβs and374

ρA tanβs = ρB tan(βs − ϑB), respectively.375

(iii) Prandtl-Meyer fans cannot be continued at states of linear degeneracy Γ = 0,376

because there the characteristic lines fold. If a further pressure variation is imposed, this377

is accomplished by means of a composite wave in which the fan terminates in a pre-sonic378

oblique shock (Menikoff & Plohr 1989). The shock-wave branch of the wave curve cannot379

be continued at entropy extrema, whereby the Rayleigh line is tangent to the shock380

adiabat, because a further variation in the post-shock pressure would lead to violation381

of the speed ordering relation (2.23). The wave curve beyond an entropy extremum in382

the Hugoniot locus is continued as a composite shock/fan wave. By collecting the states383

downstream of the composite wave, a composite locus is obtained (see also Kluwick 2001).384

4. Wave curves in the thermodynamic plane385

Let us consider the structure of the wave curve projection onto the thermodynamic386

variables, say the P–v plane. Remarks (i) and (ii) in the previous section imply that387

for a given upstream state, the projected wave curve is a subset of the one-dimensional388

unsteady counterpart. The kinematic state of the upstream flow, through the value of the389

total enthalpy which remains constant throughout the flow field and limits the maximum390

pressure jump across oblique shocks, determines endpoints of the wave curve. This391

suggests that one can use the well-established results for the one-dimensional unsteady392

case (replacing, of course, unsteady wave fans with Prandtl-Meyer waves and unsteady393

normal shocks with steady oblique shocks) to determine the underlying structure of the394

wave curve in the thermodynamic plane, namely the extended (i.e. drawn up to vacuum395

and infinite pressure) wave curves. The upstream kinematic is then taken into account396

(in the following section) to determine endpoints of the waves curves.397

In order to illustrate the different types of wave curves in a typical BZT fluid,398

the polytropic van der Waals model (namely with constant isochoric specific heat) of399

a molecularly complex fluid is considered. Several previous studies have proved the400

soundness of the adoption of this simple model for qualitative analysis, owing to the401

fact that the negative-Γ region is well captured (Thompson & Lambrakis 1973; Kluwick402

2001; Guardone et al. 2004; Guardone & Argrow 2005). The fluid selected for this purpose403

is siloxane MDM (octamethyltrisiloxane, C8H2402Si3) with cv/R = 57.69, where cv is the404

isochoric heat capacity and R is the gas constant.405

Five thermodynamic states are chosen along the same isentrope sA crossing the406

negative-Γ region while remaining in the single-phase, as shown in figure 1a. The407

corresponding extended wave curves in the P–v plane are shown in figure 1b-f. These are408

now detailed.409

Case 1 – figure 1b. Thermodynamic state A1 is located on the right-hand side of the410

negative-Γ region. Thus, the rarefaction branch of the extended wave curve through A1 is411

the isentrope containing A1, associated with elementary Prandtl-Meyer waves connected412

to A1. On the other hand, the compressive branch of the wave curve coincides with the413

shock adiabat centred on A1, associated with oblique shock waves. Note that, despite the414

shock adiabat crosses the negative-Γ region and it is non-convex, no entropy extrema415

occur. Graphically, this means the Rayleigh line (straight line connecting the pre-shock416

and post-shock states) is never tangent to the shock adiabat at the post-shock state.417

The same wave curve configuration (compression shock and rarefaction fan branches) is418

observed whenever the isentrope passing through the upstream state is convex (see, e.g.,419

Kluwick 2001).420
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Figure 1. Extended wave curves in the pressure–specific volume diagram (subscript c indicates
critical-point quantities) computed from the polytropic van der Waals model of fluid MDM. (a)
The selected upstream states, chosen along an isentrope crossing the negative-Γ region (shaded
area). (b)-(f) Extended wave curve for each upstream state. Wave configurations: shock,

shock/fan, shock/fan/shock, fan, fan/shock, fan/shock/fan. Point S+:
downstream state of post-sonic oblique shock; point S−: downstream state of pre-sonic oblique
shock; point S: downstream state of double-sonic oblique shock; point I: intersection between
the local isentrope and Γ = 0 locus. Attached to each branch is a qualitative sketch of the
(left-running) wave configuration in the physical plane, where thick lines denote oblique shocks
and shaded areas denote wave fans.
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Case 2 – figure 1c. Similarly to case 1, thermodynamic state A2 is on the right-hand421

side of the negative-Γ region. The rarefaction branch of the wave curve, therefore, is as in422

the previous case. On the contrary, the compression branch is significantly different. The423

wave curve is still, for moderate pressure rises, the locus of the oblique shocks connected to424

A2. In contrast to case 1, however, there there exist a downstream pressure (point S+) for425

which the entropy along the shock adiabat reaches a local maximum (i.e. the Rayleigh line426

is tangent to the shock adiabat at S+); shock A2-S+ is indeed a post-sonic compression427

shock. As mentioned in §3, the wave curve is continued along the isentrope passing428

through S+, for a composite oblique shock/Prandtl-Meyer fan combination. The fan in429

the composite wave cannot be continued beyond point I, where the isentrope through S+
430

intersect the Γ = 0 locus, for the characteristic lines would fold. Beyond point S+, the431

wave curve is continued by inserting a pre-sonic oblique shock adjacent to the fan. Thus,432

the corresponding wave configuration is a composite of the type oblique shock/Prandtl-433

Meyer fan/oblique shock. With increasing downstream pressure, the terminating shock434

becomes stronger and the wave fan weaker. Ultimately, at point S− the fan disappears;435

shock A2-S− can be seen as the composition of the post-sonic shock A2-S+ and the pre-436

sonic shock S+-S−. For downstream pressures larger than the value at point S−, a single437

oblique shock configuration is recovered.438

Case 3 – figure 1d. If the upstream thermodynamic state is selected in the negative-Γ439

region, such as point A3, the rarefaction branch of the wave curve is the shock adiabat440

centred on the initial state (rarefaction oblique shock waves), up to the point S+ where a441

post-sonic rarefaction shock occurs. Beyond this point, the wave curve is continued along442

the isentrope through S+, for a composite oblique shock/Prandtl-Meyer fan combination.443

On the other hand, the compression branch of the wave curve is initially the isentrope444

through A3 (compression Prandtl-Meyer waves), up to the point I where this isentrope445

intersects the Γ = 0 locus. The wave curve is continued by inserting a pre-sonic shock446

adjacent to the fan, for a Prandt-Meyer fan/oblique shock composite configuration in447

the physical plane. With increasing downstream pressure, the terminating oblique shock448

becomes stronger and the wave fan weaker; downstream pressures beyond point S−, at449

which a pre-sonic compression shock occurs, are accomplished by a single oblique shock450

configuration.451

Case 4 – figure 1e. State A4 lies on the left-hand side of the negative-Γ region. There-452

fore, the compression branch of the wave curve through state A4 is the shock adiabat453

centred on A4. The rarefaction branch is initially the isentrope through state P4, up to the454

point where the Γ = 0 locus is encountered. The wave curve is continued by inserting a455

pre-sonic shock adjacent to the fan. For the downstream pressure corresponding to point456

S− (pre-sonic rarefaction shock A4-S−), the Prandtl-Meyer fan disappears and a single457

oblique shock occurs. By decreasing the downstream pressure, the post-shock normal458

Mach number decreases and at point S+ it is equal to unity (post-sonic oblique shock459

A4-S+). Smaller downstream pressures are achieved by means of a composite oblique460

shock/Prandtl-Meyer fan combination, for the wave curve beyond point S+ is indeed the461

isentrope through S+.462

Case 5 – figure 1f. The wave curve configuration is the same as in case 4, except that for463

the downstream pressure corresponding to point S, a composite fan/double-sonic shock464

configuration is observed (see also Zamfirescu et al. 2008). The wave curve of point A5465

is continued, beyond point S, along the isentrope through S. The associated wave in the466

physical plane is the composite fan/shock/fan configuration.467
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5. Polar representation of the wave curves468

Moving from the identification of the different types of extended wave curves in the469

space of thermodynamic variables, in this section we describe the wave curves in the470

common pressure–deflection diagram, where the downstream pressure PB is plotted471

against the downstream deflection angle ϑB that the wave generates. The representation472

of the wave curve in these variables is necessary connected with the kinematic quantities473

along the wave curves. Here it is possible to evaluate the effect of the kinematic state474

of the upstream flow, in particular how this determines the endpoints of the wave curve475

(which are associated with the maximum pressure jump across oblique shocks). The476

upstream kinematic state is accounted for in terms of upstream Mach number MA. In477

order to analyse the possible configurations of the wave curves along with the influence478

of MA, we select the same upstream thermodynamic states considered in the previous479

section and we draw the wave curve projection in the PB–ϑB diagram for different values480

of MA, as shown in figure 2. Without loss of generality, only left-running wave curves are481

considered, as the right-running wave is just the reflection, through the ϑB = 0 axis, of482

the left-running counterpart.483

Case 1 – figure 2b. On a qualitative basis, this is the classical case. The rarefaction484

branch (Prandtl-Meyer waves) extends to vacuum conditions (eventually the saturated485

phase boundary is crossed), where the deflection angle attains a finite limit value. The486

pressure rise along the compression branch is limited by the normal shock wave (βs =487

90◦, ϑB = 0) from the upstream state. By increasing the upstream Mach number, and488

therefore the total enthalpy of the stream, the maximum pressure jump increases. As489

is well-known (Thompson 1988, see, e.g.,), for a given ϑB > 0 two oblique shocks can490

possibly occur, which are named the weak and the strong (based on the pressure jump)491

solutions.492

Case 2 – figure 2c. While the rarefaction branch is qualitatively similar to case 1, there493

exists a limit value of the upstream Mach number, M tr
A , marking the transition between494

two qualitatively different compression-branch configurations. If 1 < MA < M tr
A , the495

ordinary shock polar, similar to case 1, occurs. For MA > M tr
A , along the compressive496

branch of the wave curve the following sequence is encountered, in the direction of497

increasing downstream pressure: oblique shock, oblique shock/Prandtl-Meyer fan, oblique498

shock/Prandtl-Meyer fan/oblique shock, oblique shock. The transitional wave curve is499

distinguished because the normal shock delimiting the first shock branch exhibits the500

sonic downstream state MnB = MB = 1, namely the post-shock thermodynamic state501

coincides with point S+ in figure 1c. By enforcing the Rankine-Hugoniot relations for a502

normal shock wave, the transitional Mach number is therefore computed as503

M tr
A =

1

ρAcA

√
PS+ − PA

vA − vS+

, (5.1)

where PS+ and vS+ are the pressure and specific volume, respectively, at point S+. For504

upstream Mach numbers slightly larger than the transitional value, ϑB exhibits three505

stationary points along the wave curve (two local maxima with a minimum in between).506

Thus, up to four different wave configurations can provide the same flow deflection.507

Case 3 – figure 2d. A single qualitative configuration is observed for the compres-508

sion side of the wave curve, which is composed by three branches: Prandtl-Meyer fan,509

Prandtl-Meyer fan/oblique shock, oblique shock (increasing downstream pressure). Two510

qualitatively different configurations are possible for the rarefaction branch, based on the511

value of the upstream Mach number. As in the previous case, a threshold Mach number512

M tr
A exists, such that the ordinary shock polar (though for rarefaction shocks) occurs513
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Figure 2. Left-running wave curves in the pressure–deflection diagram computed from the
polytropic van der Waals model of fluid MDM. (a) The selected thermodynamic upstream
states, chosen along an isentrope crossing the negative-Γ region (shaded area). (b)-(f) Wave
curve for each upstream thermodynamic state and different upstream Mach numbers. For each
case, the downstream pressure PB is scaled using the corresponding upstream pressure PA. Wave
configurations: shock, shock/fan, shock/fan/shock, fan, fan/shock,
fan/shock/fan. Symbol • denotes downstream sonic points (MB = 1).

if MA < M tr
A . Note that, for MA < M tr

A , the largest pressure drop is attained across514

the normal rarefaction shock from the upstream state, i.e. the rarefaction branch does515

not extend to vacuum. The transitional curve is again determined by the occurrence516
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of a post-sonic normal shock wave (downstream thermodynamic state S+ in figure 1d).517

Therefore, formula (5.1) applies for the computation of M tr
A .518

Case 4 – figure 2e. The compression branch is the classical polar of oblique shocks.519

Two qualitatively different configurations of the rarefaction branch can possibly occur,520

again depending on MA. If MA < M tr
A , the configurations are, in the direction of521

decreasing downstream pressure: Prandtl-Meyer fan, Prandtl-Meyer fan/oblique shock,522

oblique shock. If MA > M tr
A , the wave curve extends to vacuum via an additional oblique523

shock/Prandtl-Meyer fan configuration. Similarly to cases 2 and 3, the transitional wave524

curve is distinguished by the occurrence of a post-sonic normal shock wave (downstream525

thermodynamic state S+ in figure 1e), so that M tr
A is again computed from relation (5.1).526

Case 5 – figure 2f. For case 5 a single wave curve configuration is possible. The compres-527

sion branch comprises the ordinary shock polar. For decreasing downstream pressures,528

the rarefaction branch consists of: Prandtl-Meyer fan, Prandtl-Meyer fan/oblique shock,529

Prandtl-Meyer fan/oblique shock/Prandtl-Meyer fan.530

All the above shock solutions satisfy the stability conditions specified in §2.2. However,531

it was shown by Kontorovich (1958) that in the range532

1−M2
n+ − (v−/v+)M2

n+

1− ([v]/v+)M2
n+

< − [P ]

[v]

(
dP

dv

∣∣∣∣
+

)−1
6 1 + 2Mn+ (5.2)

the shock front is only neutrally stable against transverse perturbations and can spon-533

taneously emit acoustic waves (see also Fowles 1981). Acoustic emission is predicted to534

occur in molecularly complex fluids, for shock waves originating in the thermodynamic535

region close to the saturation curve and critical point (Alferez & Touber 2017). We note536

that inequalities (5.2) are satisfied if the sonic point in the pressure–deflection polar is537

at larger pressures than the maximum turning angle (Menikoff & Plohr 1989). One such538

case is the oblique shock polar marked by MA = 1.5 in figure 2b.539

6. Upstream-state map of the wave-curve types540

Having described the different configurations for the compression and rarefaction541

branches of the waves curves for steady, two-dimensional and supersonic (possibly mixed542

supersonic/subsonic across strong oblique shocks) flows, we can now investigate the543

necessary conditions that the upstream state must satisfy in order to produce a specific544

wave-curve configuration. Ultimately, the purpose of this section is to determine a map of545

the upstream states leading to the different types of wave curve identified in the previous546

section.547

For future convenience, the wave curve types are classified according to their qualitative548

structure, as shown in table 1. Seven different wave-curve configurations are singled out,549

which include the classical configuration C and six different non-classical configurations550

Ni, i = 1, . . . , 6. The classical wave curve C is the one depicted in figure 2b and in figure551

2c for MA < M tr
A ; N1 is found in 2c if MA > M tr

A ; N2 and N3 occur in figure 2d for552

MA < M tr
A and MA > M tr

A , respectively; N4 and N5 in figure 2e for MA < M tr
A and553

MA > M tr
A , respectively; finally N6 is the configuration shown in figure 2f.554

In order to reduce the complexity associated with the dependence of the wave curves on555

three upstream quantities (two thermodynamic quantities, e.g. PA, vA and a kinematic or556

mixed one, e.g. MA), we first consider upstream thermodynamic states along exemplary557

isentropes, as shown in figure 3, and we analyse the conditions that determine the558

transition between different wave curve configurations.559

Isentrope a in figure 3 is representative of the scenario observed for convex isentropes.560
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Wave-curve type Compression branch Rarefaction branch
C S F
N1 S–SF–SFS–S F
N2 F–FS–S S
N3 F–FS–S S–SF
N4 S F–FS–S
N5 S F–FS–S–SF
N6 S F–FS–FSF

Table 1. Classification of the wave curves. S: oblique shock; F: Prandtl-Meyer fan; SF: composite
oblique shock/Prandtl-Meyer fan; SFS: composite oblique shock/Prandtl-Meyer fan/oblique
shock; FS: composite Prandtl-Meyer fan/oblique shock; FSF: composite Prandtl-Meyer
fan/oblique shock/Prandtl-Meyer fan. In the compression branch, the configurations
encountered are listed in the order of increasing downstream pressure, while in the rarefaction
branch they are in the order of decreasing downstream pressure.

As such, only classical wave curves can originate from upstream thermodynamic states561

along these curves and any given upstream Mach number MA > 1.562

Isentrope b is the same used for the parametric studies of the previous sections. It is563

representative of the scenario arising from isentropes that cross the negative-Γ region564

while remaining in the single-phase. At sufficiently low upstream pressure, only the565

classical configuration shown in figure 1b and 2b can occur. By increasing the pressure566

along the selected isentrope, point PSmax is encountered at which the wave curve first567

includes a post-sonic compression shock. It can be shown (Menikoff & Plohr 1989)568

that the post-sonic compression shock arising from PSmax exhibits ΓB = 0. Also, it569

is the post-sonic compression shock of largest intensity (e.g., pressure or entropy jump)570

among those originating from the selected isentrope. For pressures included between571

PSmax and I′b (low-density intersection with the Γ = 0 locus), the extended wave curve572

in the thermodynamic plane is qualitatively similar to that of figure 1c. As shown in573

§5, two different types of wave curve (C and N1) can occur based on the value of the574

upstream Mach number. The threshold Mach number between these two configurations,575

as computed from relation (5.1), is graphically highlighted in figure 3 using the colormap.576

For upstream states exhibiting ΓA < 0, wave curves of type N2 or N3 can be observed.577

The same transitional criterion based on MA applies and is again represented on the578

isentrope itself in figure 3. The branch of isentrope b on the left-hand side of point I′′b579

(high-density intersection with the Γ = 0 locus), is two sections by point DS, which580

denotes the occurrence of a double-sonic shock (Zamfirescu et al. 2008). Between I′′b and581

DS, double-sonic shocks from upstream states along the chosen isentrope are not possible.582

Therefore, configurations N2 or N3 can occur based on MA. Beyond point DS, the wave583

curve is of type N6 only.584

In the present discussion, we also consider the single-phase portions of isentropes585

crossing the saturation curve. The case of isentropes crossing both the negative-Γ region586

and the saturation curve is the one labelled c in figure 3. Non-classical configurations587

can possibly exist only in the neighbourhood of point I′c. The branch C/N1, in this case,588

is bounded below by point PSsat, where the post-sonic shock required for the existence589

of N1 configurations features post-shock saturated conditions (namely, the post-shock590

thermodynamic state lies on the vapour-liquid equilibrium curve). Finally, for isentropes591

such as case d in figure 3, which cross the phase boundary but do not cross the negative-Γ592

region, only the classical wave curve configuration is predicted to occur.593

By applying the above procedure to each possible isentrope, a map, in terms of594
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Figure 3. Wave curve configurations for upstream thermodynamic states along selected
isentropes, as computed from the polytropic van der Waals model of fluid MDM. The colormap
indicates the transitional upstream Mach number (cf. relation 5.1) for the branches where two
different configurations are possible.

thermodynamic quantities and Mach number, of the upstream states leading to each595

wave curve configuration is obtained, see figure 4. In the P–v plane, the thermodynamic596

region associated with non-classical wave curves is bounded above by the isentrope sτ597

tangent to the Γ = 0 locus and by the curve PSLmax. The latter is obtained by collecting598

all the upstream states PSmax leading to post-sonic shocks of maximal intensity along599

a given pre-shock isentrope (as defined above). In a similar fashion, the curve PSLsat is600

computed as the locus of thermodynamic states PSsat, for each isentrope crossing both601

the negative-Γ region and the saturation curve. The PSLsat bounds from below the region602

for non-classical wave curves, along with the saturation curve itself and the isentrope svle603

tangent to the latter. The locus Γ = 0 marks the transition between the regions C/N1604

and N2/N3 and between the regions N2/N3 and N4/N5. The DSL, which separates the605

regions N4/N5 and N6, is obtained by collecting the pre-shock states of double sonic606

shocks (DS). The DSL shown in figure figure 4 is indeed a portion of the Double-Sonic607

Locus defined by Zamfirescu et al. (2008). Outside the above-described bounds, only608

classical wave curves can take place.609

We assert that the present findings do not depend on the specific choice of the610

thermodynamic model, insofar as they result from the existence of a finite negative-611

Γ region in the vapour phase. To support this claim, the upstream-state map of the wave612

curves for fluid MD4M (tetradecamethylhexasiloxane, C14H4205Si6), as computed from613

the state-of-the-art multi-parameter equation of state of (König & Thol 2018) available614

via the REFPROP library (Lemmon et al. 2013), is reported in figure 5 and shows615

excellent qualitative agreement with the picture given by the simple van der Waals model.616
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Figure 4. Upstream-state map of the wave curves in the P–v plane, as computed from the
polytropic van der Waals model of fluid MDM. Superposed is the value of transitional upstream
Mach number (cf. relation 5.1) for the regions where two different configurations are possible.

7. Concluding remarks617

The general properties of self-similar oblique waves (left-running or right-running with618

respect to the fluid particle velocity) in steady, inviscid, single-phase Bethe-Zel’dovich-619

Thompson vapours were studied. The developed theoretical framework concentrates620

on compressive and rarefactive ramps/wedges in both the classical and non-classical621

gasdynamic context, which are the building blocks of steady planar supersonic flows.622

Due to the possibly non-convex character of isentropes and shock adiabats in the623

pressure–specific volume diagram, several oblique-wave patterns are identified which624

are not admissible in the classical theory of gasdynamics: the composite shock/fan,625

fan/shock, shock/fan/shock and fan/shock/fan combinations. Moreover, the elementary626

oblique waves originating from thermodynamic states in the negative-Γ exhibit inverse627

gasdynamic behaviour, namely oblique shocks carry an expansion while Prandtl-Meyer628

fans are compressive.629

The two-dimensional ramp problem was described moving from the one-dimensional630

Riemann problem, thus allowing us to exploit most of the techniques developed for631

self-similar flow in one dimension. Accordingly, the concept of wave curve for steady632

two-dimensional flow, which is the counterpart the wave curve in the one-dimensional633

Riemann problem, was introduced. Within the present context, the wave curve consists634

of all the states (in terms of thermodynamic and kinematic quantities) that can possibly635

be connected to a given supersonic state by means of a steady, two-dimensional and636

self-similar wave. A two-step procedure was adopted to compute the wave curve: the637

projection onto the thermodynamic variables was first considered, since it represents a638
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Figure 5. Upstream-state map of the wave curves in the P–v plane, as computed from
the reference thermodynamic model of fluid MD4M (König & Thol 2018), available via the
REFPROP library (Lemmon et al. 2013). Superposed is the value of transitional upstream
Mach number (cf. relation 5.1) for the regions where two different configurations are possible.

subset of the unsteady one-dimensional counterpart, and afterwards all the kinematic639

quantities were retrieved.640

The different types of wave curves were illustrated my means of a parametric study in641

the space of the upstream thermodynamic quantities (e.g., pressure and specific volume)642

and Mach number, using the van der Waals gas model (with constant isochoric specific643

heat) of a molecularly complex fluid. Seven different wave curve configurations were644

singled out, which include the classical case (C) and six non-classical cases (N1, N2, N3,645

N4, N5, N6). The conditions leading to the transition between the different types of646

wave curve were analysed. This led to the definition of a map, in the parameter space of647

the thermodynamic quantities and Mach number, of the upstream states leading to each648

type of wave curve. Most important, it was shown that the domain of the thermodynamic649

states leading to wave curves of non-classical type is significantly larger than the negative-650

Γ region in which inverse gasdynamic behaviour is expected to occur. As the peculiar651

oblique-wave properties stem from the occurrence of a negative-Γ region in the vapour652

phase, we expect that the results obtained from the simple van der Waals model apply653

to diverse thermodynamic models of BZT fluids. The computation of the upstream-state654

map of the wave curves using the state-of-the-art thermodynamic model of fluid MD4M655

corroborates this statement.656

In contrast with the classical case, if the non-classical configuration N1 is generated,657

up to four different wave patterns corresponding to the same ramp angle can possibly658

occur. Moreover, for the non-classical configurations N2, N3, N4 and N5, the deviation659

angle does not vary monotonically with the downstream pressure along the expansion660
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branch, where up to three different wave patterns can possibly occurs which correspond661

to the same ramp angle. The question arises whether the solutions other than the strong662

shock are admissible. An important problem for further study is therefore the stability663

of composite waves.664

In closing, we note that the current theoretical framework can be conveniently applied665

to the study of shock reflections and shock interactions, which will be the topic of future666

studies.667
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Appendix A. Eigenvalue problem for the steady 2D Euler equations671

The steady two-dimensional Euler equations (2.1) can be written in quasi-linear form672

as673

Ax(q)∂xq +Ay(q)∂yq = 0, (A 1)

in which Ax(q) = DqFx(q) and Ay(q) = DqFy(q) are the Jacobians of the fluxes, namely

Ax(q) =

(
∂Fxi
∂qj

(q)

)
16i,j64

, (A 2)

Ay(q) =

(
∂Fyi
∂qj

(q)

)
16i,j64

, (A 3)

where Fxi and Fyi denote the i-th element of Fx and Fy, respectively, and qj is the j-th674

element of q.675

The generalized eigenvalue problem676 (
Ay(q)− λk(q)Ax(q)

)
rk(q) = 0, (A 4)

where λk and rk indicate the k-th eigenvalue and right eigenvector, respectively, is677

associated with the hyperbolicity of (2.1) and with the notions of genuinely nonlinear or678

linearly degenerate characteristic fields through the derived quantity αk(q) = Dqλk(q) ·679

rk(q), known as the nonlinearity factor of the k-th field. Because the properties of the680

characteristic fields do not depend on the chosen conservative or nonconservative form681

of the nonlinear hyperbolic system, a suitable change of variables may be advantageous682

(Godlewski & Raviart 2013). Using the map683

(ρ, ρux, ρuy, ρe+ ρu2/2) 7→ (P, u, ϑ, s), (A 5)

where ϑ = tan−1(uy/ux) is the angle formed by the particle path with the x-axis, the
Jacobians in the mapped variables can be written as (the same notation is maintained
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for simplicity)

Ax(q) =


u cosϑ/c2 ρ cosϑ −ρu sinϑ u cosϑ

(
∂ρ
∂s

)
P

1/ρ u cos2 ϑ −u2 cosϑ sinϑ 0

0 u cosϑ sinϑ u2 cos2 ϑ 0

0 0 0 u cosϑ

 , (A 6)

Ay(q) =


u sinϑ/c2 ρ sinϑ ρu cosϑ u sinϑ

(
∂ρ
∂s

)
P

0 u cosϑ sinϑ −u2 sin2 ϑ 0

1/ρ u sin2 ϑ u2 cosϑ sinϑ 0

0 0 0 u sinϑ

 . (A 7)

For supersonic flows, namely if M > 1, the eigenvalue problem (A 4) gives the well-known684

eigenvalues685

λ1(q) = tan(ϑ− µ), λ2,3(q) = tanϑ, λ4(q) = tan(ϑ+ µ), (A 8)

and eigenvectors686

r1(q) =


−ρu2
u√

M2 − 1
0

 , r2(q) =


0
1
0
0

 , r3(q) =


0
0
0
1

 , r4(q) =


ρu2

−u√
M2 − 1

0

 ,

(A 9)
in which the angle µ = sin−1(1/M), is the Mach angle. In the mapped variables, the
partial derivatives of the eigenvalues read

Dqλ1(q) =
1 + tan2(ϑ− µ)√

M2 − 1

(
−Γ − 1

ρc2
,

1

u
,
√
M2 − 1,−1

c

(
∂c

∂s

)
P

)
, (A 10)

Dqλ2,3(q) =
(

0, 0, 1 + tan2 ϑ, 0
)
, (A 11)

Dqλ4(q) =
1 + tan2(ϑ+ µ)√

M2 − 1

(
Γ − 1

ρc2
,− 1

u
,
√
M2 − 1,

1

c

(
∂c

∂s

)
P

)
, (A 12)

so that to the above eigenpairs correspond the nonlinearity factors687

α1,4(q) = Γ, α2,3(q) = 0, (A 13)

where a proper rescaling of the eigenvectors is used to eliminate the multiplicative factor688

in (A 10) and (A 12). Relations (A 13) reflect the role of the fundamental derivative of689

gasdynamics in determining the nature of the 1–field and 4–field.690

691
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