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Abstract. We address the problem of finding examples of non-bireversible transducers defining free

groups, we show examples of transducers with sink accessible from every state which generate free

groups, and, in general, we link this problem to the non-existence of certain words with interesting

combinatorial and geometrical properties that we call fragile words. By using this notion, we exhibit

a series of transducers constructed from Cayley graphs of finite groups whose defined semigroups are

free, and thus having exponential growth.

1. Introduction

Automaton groups became very popular in the last decades because they provide examples of

groups with special and exotic properties. In 1980 R. I. Grigorchuk, for example, described the

first example of a group of intermediate (i.e. faster than polynomial and slower than exponential)

growth giving a positive answer to the so called Milnor’s problem. It later appeared that the most

natural way to describe this group is by looking at its generating automaton (Mealy machine or

transducer). Grigorchuk and his collaborators developped a very exiting research in connection with

various mathematical topics. It is worth mentioning here, the deep connections with the theory

of profinite groups and with complex dynamics. In particular, many groups of this type satisfy a

property of self-similarity, reflected on fractalness of some limit objects associated with them [1,2,12].
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Although the many surprising and interesting results for this class of groups, very little is know from

the algebraic, algorithmic and dynamical point of view. Therefore a series of open questions naturally

appear in this setting [3, 7, 9, 10, 16]. One of the most intriguing question is what kind of groups may

be generated by these Mealy machines. Among these an interesting family is constituted by finitely

presented groups such as free groups and free products of finite groups.

In this paper we first tackle the problem of finding free groups generated by automata with a sink

state. Indeed, one common feature of all the aforementioned examples of free automata groups, is

the fact that they are all defined by transducers which are bireversible [15, 17, 18]. This leads to the

question whether it is possible to generate a free group by means of transducers with a sink state.

This case represents, in some sense, the opposite of bireversible transducers. This problem has been

already adressed in [6] in connection with the dynamics on the boundary. However, in this paper

a more combinatorial approach is used. We answer positively to this question by showing how to

build an infinite series of Mealy machines with a sink state reachable from every state defining free

groups. We show that this reachability condition is equivalent to the existence of g-regular elements

on the boundary for every element g in the generated group. In this case the resulting free groups do

not act transitively on the corresponding tree, so it leaves open the question of finding a free group

generated by a non-bireversible automaton and acting transitively on the sets of words of the same

length in the alphabet. In this framework, we propose a combinatorial approach to deal with non-free

groups defined by transducers whose sink state is accessible from every state, using certain words

which we call fragile. Roughly speaking these are words representing minimal relations such that a

small transformation brings them to reduced words. The second part of the paper is devoted to some

examples of groups obtained by suitable colorings of the Cayley machines. In particular, we prove

that the relations for such groups can be detected by using purely combinatorial properties of the

dual automaton. Such observation enables us to study a special class of such machines generating free

semigroups, and therefore groups with exponential growth.

2. Preliminaries

In this paper A will denote a finite set, called alphabet. A word w over A is a string w = w1 · · ·wn.

The set A+ (A∗) of all finite non-empty words (words) over A has a structure of free semigroup

(monoid) on A with respect to the usual operation of concatenation of words (and with identity

the empty word 1). By Aω we denote the set of words over A infinite to the right. We use the

vector notation, and for an element u = u1u2 · · ·ui · · · ∈ Aω the prefix of length k > 0 is denoted

by u[k] = u1u2 · · ·uk, while the factor ui · · ·uj is denoted by u[i, j]. By Ã = A ∪ A−1 we denote the

involutive alphabet where A−1 is the set of formal inverses of elements A. For each u ∈ Ã∗, we denote

by u the (unique) reduced word equivalent to u. We say that u is reduced whenever u = u. With a

slight abuse in the notation we often identify the elements of the free group on |A| symbols FA with
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their reduced representatives. A finite state Mealy automaton, shortly a transducer (or a machine), is

a 4-tuple A = (Q,A, ·, ◦) where:

• Q is a finite set, called set of states;

• A is a finite alphabet;

• · : Q×A→ Q is the transition (possibly partial) map or restriction;

• ◦ : Q×A→ A is the output (possibly partial) map or action.

When a state q ∈ Q is fixed, we denote by q· : A → Q, q◦ : A → A the associated (partial) maps. In

this paper we assume both q· : A→ Q and q◦ : Q→ A maps. The transducer A is said to be invertible

if, for all q ∈ Q, the transformation q◦ is a permutation of A. Sometimes, it is easier to represent a

Mealy automaton using a graph theoretic approach. Indeed, we may visualize the transducer A as

an A × A-labelled digraph with vertex set Q and edges of the form q
a|b−−→q′ whenever q · a = q′ and

q ◦ a = b. The maps q· and q◦ may be extended to A∗ inductively by

q · (a1 . . . an) = (q · a1) · (a2 · · · an)

and

q ◦ (a1 · · · an) = q ◦ a1 ((q · a1) ◦ (a2 · · · an))

Analogously one can naturally extend these maps to Q∗. From the algebraic point of view the action

Q∗ over A∗ gives rise to a finitely generated semigroup S(A ) generated by the graph endomorphisms

Aq, q ∈ Q, of the rooted tree identified with A∗ defined by Aq(u) = q ◦ u, u ∈ A∗. For q1, . . . , qm ∈ Q

we may use the shorter notation Aqm···q1 = Aqm · · ·Aq1 . An important role in group theory is played

by groups defined by invertible transducers, for more details we refer the reader to [12]. In the case of

invertible transducers all the maps Aq, q ∈ Q, are automorphisms of the rooted regular tree identified

with A∗, and the group generated by these automorphisms is denoted by G(A ) (with identity 1).

Henceforth a generator Aq of G(A ) (or S(A )) is identified with the element q ∈ Q, and its inverse

with the formal inverse q−1 ∈ Q−1 = {q−1 : q ∈ Q}. Note that the actions of the inverses Q−1 are

given by the inverse (transducer) A −1 having Q−1 as the set of vertices, and by swapping input with

output: q−1 a|b−−→p−1 in A −1 if and only if q
b|a−−→p is an edge in A . The action of G(A ) on A∗, in the

case when A is invertible (or S(A ) in the more general case), can be naturally extended to the action

on the boundary Aω of the tree. Two important classes of transducers that we consider throughout

the paper are the reversible and bireversible machines. A transducer A is called reversible whenever

q · a = p · a implies q = p,

and it is bireversible if it is reversible in the input and the output, that is

q · a = p · b and q ◦ a = p ◦ b, implies q = p.
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The dual of a transducer A = (Q,A, ·, ◦) is the automaton ∂A = (A,Q, ◦, ·). It is simply obtained

by exchanging the role of the set of states and the alphabet. The dual of an invertible transducer is

in general non-invertible but it is reversible [5].

3. Transducers with sink-state

We consider the rather broad class Sa of invertible transducers A = (Q,A, ·, ◦) having a sink-state

(shortly sink), i.e., a state e with transitions e
x|x−−→e, x ∈ A. We also make the extra assumption that

the sink e ∈ Q is accessible from every state (“a” of Sa stands for accessible).

Automata with sink were considered by Sidki [14], who defined a notion of complexity measured by

the number of directed paths avoiding the sink-state in the automaton. This led him to the notion of

polynomial automata, for which he managed to prove that they do not contain any nonabelian free

group. We address the more general question whether or not a nonabelian free group may be generated

by a transducer containing a sink-state. We show that this problem has a simple solution, but for

the transitive case it appears more difficult. Moreover, there is an interesting connection between

non-freeness of such automata groups and the existence of certain words, that we name fragile. These

words possess some interesting combinatorial features that deserve to be studied.

We now characterize the class Sa in terms of regular elements (see, for instance [13]). Let g ∈ G(A ).

We recall that an element w ∈ Aω is g-regular, if there exists a prefix w[n] of w such that g ·w[n] = e

. If for every n ≥ 1, gw[n] ̸= e then w is said to be g-singular. Given an automaton A = (Q,A, ·, ◦),
we may define its reduction automaton R(A ) = (R(Q), A, ·̂, ◦̂) as the smallest automaton where we

identify all the maximal strongly connected components that induce the trivial transformation and

glue them into one single sink-state e. It is straightforward to check that G(A ) ≃ G(R(A )). With

the notion of g-regular (g-singular) elements the class Sa has the following property.

Proposition 1. If A ∈ Sa with A = (Q,A, ·, ◦), then every element g ∈ G(A ) has a g-regular

element in Aω. Conversely if the action of every element g ∈ G(A ) has a g-regular element in Aω

then R(A ) ∈ Sa.

Proof. The proof is by induction on the length m of an element q1 · · · qm ∈ Q̃∗, representing some

element g ∈ G(A ) via the canonical map Q̃∗ → G(A ). We consider the two following cases.

• If qm ∈ Q, then since A ∈ Sa there is a u ∈ A∗ such that qm ·u = e. Hence we get q1 · · · qm ·u =

q′1 · · · q′m−1e. By the induction hypothesis there is a w ∈ A∗ such that q′1 · · · q′m−1 · w = em−1,

whence q1 · · · qm · uw = em, and so uwAω = {uwη : η ∈ Aω} is a set of g-regular elements.

• If qm ∈ Q−1, then there is a u ∈ A∗ such that q−1
m · u = e. Since A is invertible consider

u′ = q−1
m ◦ u. Thus, qm · u′ = e and the rest of the proof proceeds like in the previous case.

Conversely, let us show that if R(A ) ̸∈ Sa, then there exists g ∈ G(A ) that does not admit any

g-regular sequence. The first condition implies that either R(A ) has a unique sink, but the sink is
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not accesible from every state, or R(A ) = A has no sink-state. The latter case gives that for every

state q ∈ Q, q has no q-regular elements. The former case implies that there exists a state q ∈ R(Q)

with the property that q ·̂ w ̸= e for every w ∈ A∗. In particular q does not admit any q-regular

sequence. □

For every q ∈ Q, define the erasing homomorphism ϵq : Q̃
∗ → Q̃∗ as the homomorphism that sends

q, q−1 to the empty word 1, and does not affect other letters. In this context, a word w ∈ Q̃∗ is called

trivial if ϵe(w) = 1. The support of w ∈ Q̃∗ is the smallest subset Q′ ⊆ Q such that w ∈ Q̃′∗; we say

that w has m occurrences if the cardinality of the support of w is m.

Definition 1 (Fragile and fully fragile words). Let A = (Q,A, ·, ◦) be an invertible transducer in Sa

with sink-state e. A non-trivial word w ∈ Q̃∗ is called fragile if there is a ∈ A such that w · a is trivial.

If w · a = 1 for all a ∈ A, we call w fully fragile.

The following proposition shows the crucial role that fragile words play in non-free automata groups

defined by transducers with a sink-state.

Proposition 2. Let A ∈ Sa. If G(A ) is not free, then there is a shortest non-trivial relation w ∈ Q̃∗

that is a fragile word. On the other hand, if w ∈ Q̃∗ is a fully fragile word, then w is a relation of

G(A ).

Proof. Take any shortest non-trivial relation w ∈ Q̃∗, and assume w = qfkk · · · qf11 , for some fi ∈ {1,−1}.
Since q1 (q−1

1 in A −1) is connected to the sink-state e (e−1) by some suitable word u1 · · ·uℓ = u ∈ A∗,

we get w · u = zk · · · z2ef1 . Therefore, since zk · · · z2ef1 is still a relation by Theorem 2 of [5] and

|ϵe(w · u)| < k, by minimality, we get that zk · · · z2ef1 is necessarily trivial. Hence, there is a j ∈
{1, . . . , ℓ− 1} such that w · (u1 · · ·uj) is fragile. The last statement is a consequence of the definition

of strongly fragile word. □

3.1. A particular series of automata with sink-state and their fully fragile words. In this

subsection we present a series of automata with sink such that, combined with already known trans-

ducers generating free groups give rise to transducers with a sink-state defining free groups. Although,

these automata are the simplest cases of transducers with sink, the characterization of their fragile

words (called strongly fragile) is purely combinatorial, and their description appears as a non-trivial

problem.

Definition 2. Given two transducers A = (Q,A, ·, ◦),B on the same set of states Q, we say that B

dually embeds into A , in symbols B ↪→d A , if ∂B is a proper sub-automaton of ∂A .

Note that with the above condition if B is the alphabet of B, then the actions of B are simply the

actions of A restricted to the alphabet B. For this reason, without loss of generality, we may write

B = (Q,B, ·, ◦).
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Lemma 1. Given two invertible transducers A = (Q,A, ·, ◦), B = (Q,B, ·, ◦) such that B ↪→d A

there is an epimorphism ψ : G(A ) ↠ G(B).

Proof. Let G(A ) = FQ/N , G(B) = FQ/M , and

N ⊆
∩
a∈A

L
(
(∂A )−, a

)
, M ⊆

∩
b∈B

L
(
(∂B)−, b

)
be the sets as in Theorem 2 of [5]. More precisely N and M represent the set of words in Q̃∗

corresponding to relations. Such words label cycles (at each state) of the enriched dual automata

(∂A )− and (∂B)−, respectively. And so they are contained int the languages recognised by the

corresponding automaton.

The fact that ∂B is a proper sub-automaton of ∂A implies that N ⊆ M. Hence, N ≤ M from

which the statement follows. □

Note that an analogous lemma for semigroup automata holds. Furthermore, the previous result is

a particular case of a more general statement. Indeed, given an invertible automaton B and the

invertible automaton A obtained from B by extending the alphabet and defining the transitions

and output functions for the extra letters arbitrarily (keeping the invertibility), there is an natural

epimorphism from G(A ) to G(B).

The sink transducer on an alphabet A is E = ({e}, A, ·, ◦) with e · a = e, e ◦ a = a, for all a ∈ A.

Given a transducer A = (Q,A, ·, ◦) such that e /∈ Q, we denote by A e = A ⊔ E . Note that adding

a sink-state does not change the group, i.e., G(A e) ≃ G(A ). We now introduce a class of auxiliary

automata with some interesting features. We present them via their duals. Let Q be a finite set, then

∂SQ = (Q,Q ∪ {e}, ◦, ·), where the actions (see Fig. 1) are defined by:

q ◦ x = q, q · x =

e, if x = q

x, otherwise

for all q ∈ Q. Note that with these actions ∂SQ is reversible and so the action of SQ is invertible

..q1. q2. · · ·. qk.

q1|e

.

{y|y : y ̸= q1}

.

q2|e

.

{y|y : y ̸= q2}

.

qk|e

.

{y|y : y ̸= qk}

Figure 1. The transducer ∂SQ with Q = {q1, . . . , qk}.

with a sink e. We have also the following easy fact.
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Proposition 3. Let B = (Q,B, ·, ◦) be an invertible transducer. Put ∂AQ = ∂Be ⊔ ∂SQ. Then,

AQ ∈ Sa is an automaton with sink and G(B) is a quotient of G(AQ). In particular, for any invertible

transducer B defining a free group Fm, the transducer AQ defines a free group Fm.

Proof. It follows from Lemma 1 and the definitions. □

In particular taking any transducer in [15] one is able to explicitly exhibit such machines. In general, if

SQ dually embeds into any other transducer, then its minimal defining relations are all fragile words.

Instead, minimal defining relations of SQ are fully fragile words that may be described in a purely

combinatorial way. Indeed, we say that a word w ∈ Q̃′∗, with support Q′ ⊆ Q, is called strongly fragile

on the set Q′ if

ϵq(w) = 1, ∀q ∈ Q′

Although these words have this simple description, it seems that they are difficult to characterize. We

present here a method to construct some of them using commutators. If we order arbitrarily the set

Q′ = {q1, . . . , qm}, where m ≥ 2, we may define the set C(Q′) of commutator words over Q′ given by

the following properties. Let C1 be the set of words of type

[qei , q
e′
j ] := qei q

e′
j q

−e
i q−e′

j ∀i ̸= j, e, e′ ∈ Z \ {0}

and, inductively, let Ci be the set of words [qei , v
e′ ] := qei v

e′q−e
i v−e′ , e, e′ ∈ Z \ {0}, where qi is not

an occurrence of v and v ∈ Ci−1. We put C(Q′) := Cm−1. This construction generates some strongly

fragile words as the following proposition shows.

Proposition 4. The following facts hold:

i) The set C(Q′) is a subset of the set of strongly fragile words over Q′ ⊆ Q.

ii) If |Q′| = m, the shortest strongly fragile words over Q′ which are in the set C(Q′) have length

3(2m−1)− 2.

Proof. i). Let us prove the statement by induction on |Q′| = m ≥ 2. For m = 2, we have that C(Q′) is

the set of commutator words in q1 and q2. It is straightforward to check that, for every w ∈ C(Q′) one

has ϵq1(w) = ϵq2(w) = 1. Suppose now that i) is true for |Q′| = m− 1. Let w be a commutator word

on m occurrences, w ∈ C(Q′) := Cm−1. By definition w = [qei , v
e′ ], for some v ∈ Cm−2 that does not

contain qi as occurrence. Notice that v is a commutator word on Q′ \ {qi}. Then ϵqi(w) = ve′v−e′ = 1

and for j ̸= i, one gets ϵqj (w) = qei q
−e
i = 1, since ϵqj (v

e′) = ϵqj (v
−e′) = 1.

ii). Clearly the shortest words are obtained when the exponents e’s belong to {−1,+1}. For m = 2

we get 4 = 3(22−1)− 2. By induction we have

|w| = 4 + 2|v| = 2 + 2(3(2m−2)− 2) = 3(2m−1)− 2

□
http://dx.doi.org/10.22108/ijgt.2017.100358.1398
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In what follows, we show that the commutator words are not the only strongly fragile words over Q′.

It would be interesting to find upper and lower bounds for the shortest strongly fragile words on a set

Q. This may be interesting when one considers the problem of determining upper bounds that ensure

the existence of relations, and the problem of finding the length of the shortest non-trivial relation.

..

b

.

b

.
b

.a . c.

a

.

c

.

c

.

a

.
r

Figure 2. The rooted 2-simplicial complex (Q, r).

We now describe a geometric way to build some examples, however we do not know a characteriza-

tion of all the strongly fragile words, especially the shortest ones, and this seems a non-trivial problem.

For simplicity of exposition we restrict ourself to the alphabet A = {a, b, c}, but the following con-

struction may be generalized to larger alphabets. Consider the rooted 2-simplicial complex (Q, r) such
that the geometrical realization of the 2-simplicial complex Q is the unit cube in R3 with orthonomal

bases {ix, x ∈ A}, and let us fix a root (base-point) r among the 0-faces of Q0. Let us label the 1-faces

Q1 in such a way that the 1-faces parallel ix are labelled by x, x ∈ A (see Fig. 2). Consider now

the set Γr of closed paths in the 1-simplicial complex Q1 starting from r; an element p ∈ Γr may be

represented as

r = v0
e1−−→v1

e2−−→· · · ei−−→vi
ei+1−−→vi+1 · · ·

em−1−−→vm−1
em−−→vm = r

where vi ∈ Q0, and ei ∈ Q1 such that vi, vi+1 are the 0-faces of ei+1; in case the only repeated vertex is

v0 we speak of a cycle. We may define a labelling map µ : Γr → Ã∗ defined by µ(p) = µ(e1) · · ·µ(em)

where µ(ei) = x if vi+1 = vi + ix, and µ(ei) = x−1 if vi = vi+1 + ix for x ∈ A. For each face σ ∈ Q2

contained in an affine plane perpendicular to ic, and for a cycle v0
u−→v0 in σ1 we have that either

u is a cyclic shift of aba−1b−1 or bab−1a−1; with respect to the orientation ic, this corresponds to a

clockwise, or a counter-clockwise travel in σ1 around ic. Hence, we may define a map ϕ from the set

Λr of closed paths p ∈ Γr of the form

p = r
s−→v0

u−→v0
s−1

−→r

for some some s ∈ Ã∗ and any cycle v0
u−→v0 in σ1, for some σ ∈ Q2, into R3 sending p to either ix or

−ix whether or not v0
u−→v0 is a cycle that is traveling clockwise around the normal ix to the face σ.

The set Λr may be extended to a submonoid Λ∗
r of Γr by concatenation of closed paths. Consequently,

the map ϕ may be naturally extended via ϕ(p1p2) = ϕ(p1) + ϕ(p2). The following proposition shows

another way to generate strongly fragile words.
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Proposition 5. Every non-reduced word µ(p) ∈ Ã∗ such that p ∈ Λ∗
r satisfies ϕ(p) = 0 is strongly

fragile.

Proof. We just give a sketch of the proof and we leave the details to the reader. Take any µ(p) ∈ Ã∗

with p ∈ Λ∗
r as in the statement. Note that, for any p1 ∈ Λr such that ϕ(p1) ∈ {ix,−ix}, x ∈ A, we

get ϵy(p1) = 1 for all y ∈ A \ {x}. Hence, for any x ∈ A, it is not difficult to check that

ϵx(µ(p)) = µ (ϵx (q1 · · · qk))

for some q1, . . . , qk ∈ Λr with ϕ(qi) ∈ {ix,−ix}, i = 1, . . . , k, and
∑k

i=1 ϕ(qi) = 0. Now, it is not difficult

to check that if qi, qj ∈ Λr have the property that ϕ(qi) = −ϕ(qj), then ϵx (µ(q1)) = ϵx (µ(q2))
−1

.

From this fact and
∑k

i=1 ϕ(qi) = 0 we obtain ϵx(µ(p)) = µ (ϵx (q1 · · · qk)) = 1, and this concludes the

proof. □

For instance, we can immediately compute the following strongly fragile word:

w = (ab−1cbc−1a−1)(ab−1a−1b)(cb−1aba−1c−1)(cb−1c−1b) =

= ab−1cbc−1b−1a−1bcb−1aba−1b−1c−1b

We leave open the problem of characterizing strongly fragile words. Maybe, generalizing the previous

geometric construction it would be possible to find a way to characterize them, and/or to give bounds

on the length of the shortest one.

3.2. Cayley type transducers. In this subsection we introduce a series of automata in the class

Sa. We introduce them as duals of suitable “colorings” of Cayley type of transducers. The idea

is to “color” a Cayley automaton in such a way that one obtains a reversible transducer which is

interpreted as the dual transducer of an invertible one generating a group. This coloring approach

may be found also in [4]. The coloring that we present here is in some way the “easiest”, since besides

the transitions entering and exiting from the state corresponding to the identity element, the others

act like the identity. Using the notion of fragile words, we show that the semigroups generated by

these automaton are free.

Since both the states and the alphabet are elements of a group we need to carefully fix the notation.

Let G be a finite group with neutral element e. For any g ∈ G we denote by g- the unique inverse of g

in G. As usual, the product of n elements g1, . . . , gn in G is g1g2n. When we are interested in strings of

elements in G, without invoking the composition law of the group G, we “parenthesize” the elements

of G and we put (G) = {(g) : g ∈ G}, hence an element of (G)∗ is of the form (g1)(g2) · · · (gn), where
gi ∈ G.
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Figure 3. On the left the transducer C (Z3), on the right its dual ∂C (Z3).

The 0-transition Cayley machine C (G) = (G, (G), ◦, ·) is the transducer defined on the alphabet

G = {g : g ∈ G} whose transitions are of the form

• g
(x)|(x)−−−→gx for all g, x ∈ G such that g ̸= x-;

• g
(x)|(e)−−−→e for all g, x ∈ G such that g = x-.

Recall that C (G)− denotes the enriched transducer of C (G), that acts on the rooted tree (̃G)
∗
where

the set of formal inverses of (G) is given by (G)−1 = {(g)−1 : (g) ∈ (G)}. With this notation, the

inverse transitions of g
(x)|(x)−−→gx, g

(x)|(e)−−→e are gx
(x)−1|(x)−1

−−−−→ g, e
(x)−1|(e)−1

−−−−−→g, respectively.

Similarly, we define the bi-0-transition Cayley machine C̃ (G) = (G, (G), ◦, ·) with transitions given

by:

• g
(x)|(x)−−−→gx for all g, x ∈ G such that g ̸= x- and g ̸= e;

• g
(x)|(e)−−−→e for all g, x ∈ G such that g = x- and g ̸= e;

• e
(x)|(e)−−−→x for all x ∈ G.

Notice that all transitions except those passing through the state corresponding to the identity do not

change the input letter.

We stress once again the fact that g represents an element of the finite group G and (g) an element

of the alphabet (G) of the Cayley machine.

Lemma 2. Let h be a state of C (G) = (G, (G), ◦, ·) or C̃ (G) = (G, (G), ◦, ·). Then h◦(g1) · · · (gk) = h

if and only if g1 · · · gk = e.
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Proof. It is enough to observe that a closed path in C (G) = (G, (G), ◦, ·) (or C̃ (G) = (G, (G), ◦, ·))
corresponds to a closed path in the Cayley graph of G with respect to the generating set G. This

implies that any closed path is a relation of G. □

Lemma 3. Let u = (u1)
e1(u2)

e2 · · · (un)en, ei ∈ {1,−1}, be a relation of minimal length in G(∂C (G))

(or G(∂C̃ (G))). Then, u is fragile, i.e., there exists h ∈ G such that v := ϵ(e)(h · u) = 1.

Proof. It follows from Proposition 2. □

Now we give the self-similar presentation of the elements of G(∂C (G)) and G(∂C̃ (G)). Since the

group G is supposed to be finite we may order its elements as G = {g0 = e, g1, . . . , g|G|}. The group

G(∂C (G)) acts on the set G∗ ⊔ Gω and is generated by (G). In a natural way, any (gi) induces a

permutation σi ∈ Sym(|G|) on the set G defined by σi(h) = h ◦ (gi). Let i- be the index such that

gigi- = e. With this notation, we get the self-similar representation

(gi) = ((gi), . . . , (gi), (e)︸︷︷︸
i-

, (gi), . . . , (gi))σi.

For the group G(∂C̃ (G)), we have

(gi) = ((e), . . . , (gi), (e)︸︷︷︸
i-

, (gi), . . . , (gi))σi.

Proposition 6. For any non trivial finite group G, the semigroup S(∂C (G)) is free.

Proof. Suppose contrary to our claim that S(∂C (G)) is not free. Hence there are u = (u1) · · · (un) and
v = (v1) · · · (vk), such that u = v and (ui), (vi) ∈ (G) and n ≥ 1, n ≥ k. Since the semigroup S(∂C (G))

is cancellative, the last statement is equivalent to saying that uv−1 is a relation in G(∂C (G)). We may

suppose that among the relations of this form, uv−1 is minimal with respect to the length. Since (G)

and (G)−1 are invariant under the action of ∂C (G), we have from minimality that, for any g ∈ G either

g ·uv−1 = uv−1 or ϵ(e)(g · uv−1) = 1. Otherwise ϵ(e)(g ·uv−1) would be a strictly shorter relation of the

same form. First observe that u1 · · ·unv−1
k · · · v−1

1 = e (in G) and for every i = 1, . . . , n, j = 1, . . . , k

there exist elements gi,hj such that gi ◦ (u1) · · · (ui) = e and hj ◦ (u1) · · · (un)(vk)−1 · · · (vi)−1 = e.

Let us consider the element gn−1 and apply it in order to get a new word ϵ(e)(gn−1 · uv−1) with

|ϵ(e)(gn−1 · uv−1)| < |uv−1|, whence ϵ(e)(gn−1 · uv−1) = 1 because of the minimality of |uv−1|. On the

other hand, by direct computation we have

(gn−1 ◦ (u1) · · · (un−1)) · (un) = (un)

and

(gn−1 ◦ (u1) · · · (un)) · (vk)−1 = (vk)
−1

This means that there is no cancelation of occurrences (x)(x)−1 but this is absurd. We have only to

treat the case when n = 1 (resp. k = 1), in this case we may get a relation g ·uv−1 with no occurrences
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in (G) (resp. (G)−1). By using a minimality argument similar to the one seen before one gets the

assertion. □

The previous result immediately gives a statement on the growth of the generated group [8].

Corollary 1. The group G(∂C (G)) has exponential growth, for any non trivial group G.

We stress once more the fact that the elements (g) and (g-) of G(∂C (G)) are not inverses to each

other. On the other hand we have the following result.

Proposition 7. For any non trivial group G, G(∂C̃ (G)) is not free. In particular, for all g ∈ G, one

has (g)−1 = (g-).

Proof. Firstly let us order the elements of G in such a way that e is the first element, g the second

element and g- the third one, under the condition that g2 ̸= e. By using this convention, the self-similar

representation of the generators (g) and (g-) of G(∂C̃ (G)) is

(g) = ((e), (g), (e), (g), . . . , (g))σ

and

(g-) = ((e), (e), (g-), . . . , (g-))σ−1

for some permutation σ ∈ Sym(|G|). By using the fact that

g
(g-)|(e)−−→e and g-

(g)|(e)−−→e

we get

(g)(g-) = ((e), (g)(g-), (e), (g)(g-), . . . , (g)(g-))

and, similarly

(g-)(g) = ((e), (e), (g-)(g), . . . , (g-)(g))

It is an easy exercise to prove that (g)(g-) and (g-)(g) coincide with the trivial automorphism. If

g = g- the proof works in the same way by showing that (g)2 is trivial. □

We end this section with the following easy observation

Proposition 8. The (finite) group G is a quotient of G(∂C (G)) and G(∂C̃ (G)).

Proof. It is enough to observe that if u is a relation in G(∂C (G)) or G(∂C̃ (G)), then u is a loop in

the Cayley graph of G with set of generators G. This is equivalent to say that u is trivial in G (see

Lemma 2). □

As an example, consider the 0-transition Cayley machine C (Zn) = (Zn, (Zn), ◦, ·), with n ∈ N (see

Fig. 3). As usual, Zn = {0, 1, . . . , n− 1} with operation i+ j = i+ j mod n and for i ̸= 0 we denote

by −i the unique element n− i in Zn. In this case we export the additive notation to the automaton,

in order to get the following transitions
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• k
(i)|(i)−−−→k+ i for all k, i ∈ Zn such that k ̸= −i;

• k
(−k)|(0)−−−→0 for all k ∈ Zn.

In what follows we see which conditions should be satisfied by a minimal relation in this special

case. Given any word u ∈ (̃Zn)
∗
, this is given by a sequence u = (u1) · · · (um) where (ui) ∈ (̃Zn) or,

equivalently, by the word u = (v1)
e1 · · · (vm)em , where (vi) ∈ (Zn) and ei ∈ {−1,+1}. By Lemmata 2

and 3, u is a relation of minimal length if and only if

(1)
∑
eivi = 0 mod n

(2) for h ∈ Zn either h · u = u or ϵ(e)(h · u) = 1.

The first condition ensures that u is a relation in Zn, the second one takes into account the fact

that if we process u, and some letter (ui) is changed, then it is replaced by (e) (or by (e)−1). With

any u ∈ (̃Zn)
∗
one may associate a (finite) set S(u) of elements of Zn defined by S(u) := {si(u) : i =

1, . . . , |u|}, where sj(u) =
∑j

i=1 eivi mod n. Given u, we consider the map ϕu : {1, 2, . . . , |u|} → Zn,

such that ϕu(j) = sj(u). Let sj(u) = q ∈ Zn, and let p be the state of C (Zn) corresponding to the

element −q, then for every k ∈ ϕ−1
u (q) one gets one of the following four cases

• if ek = ek+1 = 1, then

(p ◦ (v1)e1 · · · (vk−1)
ek−1) · (vk) = (e)

(p ◦ (v1)e1 · · · (vk)) · (vk+1) = (vk+1)

• if ek = 1 and ek+1 = −1, then

(p ◦ (v1)e1 · · · (vk−1)
ek−1) · (vk) = (e)

(p ◦ (v1)e1 · · · (vk)) · (vk+1)
−1 = (e)

• if ek = −1 and ek+1 = 1, then

(p ◦ (v1)e1 · · · (vk−1)
ek−1) · (vk)−1 = (vk)

−1

(p ◦ (v1)e1 · · · (vk)−1) · (vk+1) = (vk+1)

• if ek = ek+1 = −1, then

(p ◦ (v1)e1 · · · (vk−1)
ek−1) · (vk)−1 = (vk)

−1

(p ◦ (v1)e1 · · · (vk)−1) · (vk+1)
−1 = (e)

If u is a relation of minimal length (so ϵ(e)(p · u) is trivial), the cancellation of occurrences (x)(x−1) is

performed around at least one index k ∈ ϕ−1
u (q), for some q ∈ S(u). The only possibility may occur

either for ek = 1, ek+1 = −1 or ek = −1, ek+1 = 1. Despite the easy combinatorial properties of the

relations of minimal length, it seems to be hard to get an explicit description and a simple geometrical

interpretation of such relations. From the computational point of view, by using the GAP package

AutomGrp developed by Y. Muntyan and D. Savchuk [11] we have not been able to find non-trivial
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relations for such examples of groups. This suggests that, if there are relations, they are very long

with respect to the size of the generating set.

4. Open Problems

We give a list of open problems.

Problem 1. Is there a characterization of strongly fragile words? Does the geometric argument

described in Section 3.1 extend to give a full description of strongly fragile words? Give a tight upper

and lower bound for the shortest strongly fragile word depending on the cardinality m of the alphabet

of the letters occurring in such word.

Problem 2. The groups generated by the dual of the 0-transition Cayley machines have exponential

growth (see Section 3.2). What can be said about the amenability of such groups? More generally, is it

possible to find a suitable output-coloring of such transducers in order to get free groups or free products

of groups? This question can be specialized for the example of Cayley machines, where G = Zn. Are

the groups generated by dual of 0-transition Cayley machine C (Zn) free? Are the groups generated

by dual of 0-transition Cayley machine C̃ (Zn) free products? In any case, does there exist a simple

combinatorial description of the relations?
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