Evaluation of size effect on strain-controlled fatigue behavior of a quench and tempered rotor steel: Experimental and numerical study

Shun-Peng Zhua,b,*, Stefano Folettib, Stefano Berettaa,b

a School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
b Department of Mechanical Engineering, Politecnico di Milano, Via La Masa 1, 20156 Milan, Italy

Combining the weakest-link theory with fatigue crack growth modeling, this study presents a mechanical-probabilistic modeling of specimen size effect for 30NiCrMoV12 steel in a low cycle fatigue (LCF) regime. Particularly, the influence of specimen size on fatigue life is quantified by experiments in strain-controlled fatigue and crack propagation. Experimental results from replica tests with three geometrical specimens indicate that nearly all of its fatigue life consists of multiple surface cracking with mutual interactions and coalescences. A probabilistic procedure for multiple surface fracture simulation is then established by incorporating random processes of crack formation, propagation and coalescence between dispersed surface cracks. Moreover, an evaluation of surface damage evolution is elaborated based on statistical physics for different structural sizes/volumes, which showed good agreement between analytical life distributions and test results.

Keywords: Fatigue
Size effect
Weakest-link theory
Crack coalescence
Life prediction

1. Introduction

Fatigue and fracture tests are normally conducted on small test specimens of structural materials used for aircraft engines, nuclear power plants, and high-speed trains. More specifically, to satisfy safety demands, accurate assessment of fatigue life is required in structural integrity design and assessment. However, due to various factors, including specimen size, heat treatment, microstructure, and load conditions (temperature and frequency), a comprehensive understanding of fatigue and fracture behavior has not yet been attained [1]. In practice engineering, combinations of these factors usually contribute to a significant scatter in the fatigue life data or performance, which is one of the most critical factors for designing structures [2–4]. For the 30NiCrMoV12 as-quenched and tempered steel of research interest, which was developed for aerospace application and then adopted as high performance solution for railway axles due to its excellent mechanical properties, its heat treatment process has been optimized for the required strength and toughness through appropriate micro-structure (martensite packets, blocks and laths) and carbide pre-cipitates. Specifically, Zheng et al. [5] investigated the influence of austenitizing temperature and martensitic microstructure on carbide precipitates and mechanical properties during tempering in as-quench-ched and tempered 30NiCrMoV12 alloy steel. In addition, quantification of the size effect, i.e. how to extrapolate from test specimens to real components with different volumes, is critically important for ensuring structural integrity when designing structural/mechanical components.

In predicting the fatigue life of full scale components or structures, such as engine hot section components and high-speed train railway axles [6,7], the specimen size effect is critical when utilizing the laboratory testing of small standard specimens as the reference basis. In other words, fatigue testing on large specimens for those structures is not always possible due to financial/technical considerations (availability of testing equipment, test costs and time). Therefore, characterizing the influence of specimen size on fatigue life is needed and corresponding methods are lacking, especially a robust probabilistic method for quantifying the specimen size effect.

Until now, most conventional methods treated the effect of specimen size on fatigue life as a negative one, namely this effect reduces fatigue strength/life for an increase of specimen size [8–11]. From the viewpoint of defect-induced fatigue, the size of the most dangerous defect generally increases with the size/scale of engineering structure/component [12]. However, few guidelines, recommendations or mandatory regulations have launched well on the strength assessment of structures with different sizes/volumes under different loadings. Among them, the treatment of size effect by the German FKM guideline is purely empirical, which is determined from empirical design curves/formulas [10,13,14]. The application of the specimen size effect to other cross-sectional shapes/volumes and stress distribution conditions

* Corresponding author at: School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
E-mail address: zspeng2007@uestc.edu.cn (S.-P. Zhu).

©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at: https://doi.org/10.1016/j.msea.2018.08.073
is often not explained as well as the robustness of the low cycle fatigue (LCF) resistance against specimen size [15]. One of the commonly-used way to characterize the size effect by means of the weakest-link theory and the statistics of extremes. Recently, by combining the theory of critical distance with the volumetric approaches, Wang et al. [16] explored statistical size effect of TA19 titanium alloy for different scales of test sections with central circular holes, and pointed out that both the geometrical and statistical size effect should be taken into account for analyzing the combined effect of size and notch in practice. By interpreting the Coffin-Manson parameters as geometry-independent parameters, Schmitz et al. [17] developed a probabilistic fatigue model to consider the effects of specimen size and inhomogeneous strain fields of polycrystalline metals. Later, they [18,19] calibrated the geometry-independent model parameters from the hazard density approach and the surface integration over the FEA stress, then elaborated a probabilistic procedure to predict the fatigue crack initiation life distribution of arbitrarily shaped parts by considering the combined size and notch support effect. Blasón et al. [20] investigated the transferability of fatigue properties of 42CrMo54 steel alloy with different sizes, and quantified the twofold scale effects for the statistical interpretation of crack growth. However, a probabilistic interpretation between the propagation crack growth rate and the fatigue failure lifetime is lacking. Therefore, to explain the specimen size effect toward increasing reliability of fatigue critical components, metallurgical and mechanical details must be considered in fatigue modeling and life assessment.

Note from [21,22] that fatigue life of ductile steels is generally dominated by crack propagation life rather than crack initiation life, which also agrees well with the experimental observations of current study (see Section 2). Namely, the influence of specimen size on the fatigue crack propagation rate, particularly on the scatter in small fatigue crack growth, has been viewed as the main factor influencing the fatigue life. Specifically, the influence of specimen size on mechanical properties varies from the type and local features of the component/structure, while the effect of inclusion can be neglected [21]. The challenge will be to use not only the governing factors, such as local microstructure, local stress/strain, surface conditions and damage physics, but also statistical approaches to understand the size effect in a LCF regime. Among them, surface microcracks, which describe the fatigue damage from the viewpoint of random damage events, have been studied recently to fully understand the fatigue failure mechanism [23–31], which is essential for fatigue life prediction and inspection routines for the development of cracks or defects. These cracks usually initiate at the specimen surface during the initial stage of fatigue tests and then extend to failure with accelerated crack growth rates through coalescence under high crack density. For life assessment of engineering designs with different sizes, lifting procedures based on Monte Carlo simulation have shown advantages on accounting for the statistical scatter of experimental life of materials with different microstructures [29,32].

In this regard, this paper attempts to quantify the influence of specimen size on fatigue life of 30NiCrMoV12 steel from the viewpoint of mechanical-probabilistic modeling and numerical simulation of surface cracking behavior. In particular, an alternative procedure for practical fatigue design by considering size effect will be critically investigated. This paper contains the following parts. In Section 2, strain-controlled fatigue experiments are carried out on three geometries of specimens to investigate the specimen size effect. Moreover, its cyclic response and surface cracking behavior are explored. Section 3 elaborates a mechanical-probabilistic prediction of specimen size effect on total fatigue life through combining the weakest-link theory and crack propagation modeling in a LCF regime, which quantifies the specimen size effect by summing the effect of statistical defects and that of crack propagation. Combining analytical with experimental studies, Section 4 presents and validates a numerical procedure for multiple fracture evaluation by considering the effects of crack initiation, crack propagation and crack coalescence under different specimen geometries. Section 5 compares the present work with other studies and elaborates consequences for fatigue design with and/or without defects. Section 6 summarizes the theoretical and experimental results of the current work.

2. Experimental program

2.1. Material

Low cycle fatigue tests have been conducted on specimens with three different geometries of similar shape, which are designed ac-cording to ASTM standard E606 [33], E739 [34] and prepared by electro-chemical polishing [35]. Fig. 1 shows the geometry of standard specimen used in the strain-controlled fatigue tests. Three different specimen geometries have been manufactured to study statistical size effects. The diameter (D0) and the gauge length (L0) of the three specimens as well as the number of tested specimens are listed in Table 1. Particularly, the minimum number of specimens required in S − N testing was determined according to the ASTM standard E739, in which the replication index is calculated as 86.67%. The specimens were made of 30NiCrMoV12 steel grade (according to UNI 6787 [36]). This alloyed steel grade comes from a very selected scrap that is melted in an Electric Arc Furnace (EAF) then refined in a Ladle Heating Furnace (LHF), and finally vacuum degassed and poured into ingots. Its heat treatment includes normalization at 900°C for structure levelling and grain size
refinement, then a quench treatment at 870°C and cooling in polymer (aquaquench), finally a tempering process taking at 630°C for 12 h in order to increase toughness. Chemical composition and monotonic mechanical properties of 30NiCrMoV12 are reported in Tables 2, 3, respectively.

The heat treatment temperature has significant effect on the size of the prior austenite grain (PAG); the higher is the austenitizing temperature in a range 850–1080 °C, the larger is PAG size [5]. The 30 μm grains size appears at 870 °C austenitising temperature and it helps to increase the material strength, with a resulting good balance between strength and toughness.

2.2. Testing

In the present study, three types of strain-controlled fatigue tests were performed, including typical LCF tests and replica tests on smooth/notched specimens. Specifically, two servo-hydraulic fatigue testing machines, one with a maximum load of 100 kN was used for tension-compression testing of standard and small specimens, and another one with a maximum load of 250 kN for large specimens; three extensometers were used for axial displacement measurement of the three specimens. For tests with standard specimens, previous test results of 30NiCrMoV12 with the same heat treatment in [37] are considered together with the strain-controlled fatigue tests conducted in this analysis. All tests were conducted at strain amplitude levels between 0.35% and 0.8% at load ratio \(R = -1 \). Fatigue lifetime of the specimen is defined according to the load drop criterion, generally 1% of the load applied in the stabilized cycle is adopted.

In this analysis, replica tests were conducted to observe the crack length for crack growth/evolution modeling on the specimen surface, particularly, some tension-compression tests were interrupted at fixed cycles and plastic replicas of the specimen surfaces were made. The crack length is measured by the projection distance of the tip-to-tip length of the crack, which is normal to the applied loading direction. The quantitative crack lengths and numbers were determined by optical microscopy. All replica tests were performed on smooth and notched standard specimens at strain amplitude \(\varepsilon_0 = 0.5\% \). Replicas were taken during three tests on the standard specimens, three tests on the big specimen and six interrupted tests for the small specimens.

Moreover, two notched standard specimens were tested with replicas to evaluate its fatigue crack growth behavior. For the notched standard specimen, two micro-holes of 100 μm diameter were drilled with an angular distance of 120° and 1.5 millimeter far from the center line of the specimen (see Fig. 2). During testing, replicas of the notch are performed per 300 cycles and the crack lengths are measured. In this study, the surface cracks with length longer than 20 μm were measured including their sizes and locations to obtain the statistical distribution functions, also the crack growth behavior of specific cracks which resulted into the specimen final fracture, the surface crack den-sity variation, and the statistical crack length distribution. These data will be used as inputs for statistical simulation of multiple surface fracture (see Section 4).

2.3. Results

2.3.1. Cyclic response under strain-controlled fatigue

During LCF analysis, a so-called strain-life approach, like the Coffin-Manson equation, is often utilized for describing the relationship between strain and fatigue failure lifetime under uniaxial loadings, which relates the local elastic-plastic behavior of the material,

\[
\frac{\Delta \varepsilon}{2} = \frac{\Delta \varepsilon_\text{e}}{2} + \frac{\Delta \varepsilon_\text{p}}{2} = \frac{\sigma_y^T}{E} (2N)^p + \varepsilon_y^T (2N)^s
\]

where \(\Delta \varepsilon_\text{e} \), \(\Delta \varepsilon_\text{p} \) and \(\Delta \varepsilon \) are the total strain range, elastic strain range
and plastic strain range, respectively; N_f is the number of cycles to failure under cyclic loadings; σ_f' and b are the fatigue strength coefficient and exponent, respectively; ε_f' and c are the fatigue ductility coefficient and exponent.

Through fitting the elastic and the plastic parts of Eq. (1) from fatigue life separately, the four coefficients $\{\sigma_f', \varepsilon_f', b, c\}$ of Coffin-Manson equation can be obtained for each specimen size. When using Eq. (1) for fatigue analysis, the Ramberg-Osgood equation described the stress-strain behavior of the material by

$$\frac{\Delta \sigma}{2} = \frac{\Delta \varepsilon_e}{2} + \frac{\Delta \sigma}{2E} + \left(\frac{\Delta \sigma}{2K'}\right)^{\frac{1}{n'}}$$

(2)

where $\Delta \sigma$ is the applied stress range; K' and n' are the cyclic strength coefficient and the cyclic strain hardening exponent, respectively.

Through correlating both of the elastic and plastic parts in Eqs. (1) and (2), the dependence of the six parameters can be expressed as

$$\begin{cases} \sigma_f' = K' (\varepsilon_f')^n' \\ n' = \frac{b}{c} \end{cases}$$

(3)

Using Eq. (1) to Eq. (3), cyclic response and fatigue behavior of the three specimen sizes can be plotted as shown in Fig. 3, and cyclic parameters of both Coffin-Manson and Ramberg-Osgood curves are fitted as listed in Table 4. Moreover, fracture surfaces of all failed specimens have been examined by a scanning electron microscope (SEM), note that multiple cracks initiated on the specimen surface and propagated with mutual interactions and coalescences. Particularly, several specimens with much shorter lives marked in Fig. 3(a) are due to the strong interactions and coalescences of multiple surface cracks,

Table 4

<table>
<thead>
<tr>
<th>specimen size</th>
<th>σ_f'/MPa</th>
<th>ε_f'</th>
<th>b</th>
<th>c</th>
<th>n'</th>
<th>K'/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>1052.4</td>
<td>0.8252</td>
<td>0.0534</td>
<td>0.6825</td>
<td>0.0783</td>
<td>1068.3</td>
</tr>
<tr>
<td>S</td>
<td>1212.6</td>
<td>1.6042</td>
<td>0.0749</td>
<td>0.7833</td>
<td>0.0956</td>
<td>1159.0</td>
</tr>
</tbody>
</table>

Fig. 3. Strain-controlled fatigue tests of three different specimens of 30NiCrMoV12.

Fig. 4. Multiple surface cracks of (a) small, (b) standard and (c) large specimen.
Note from fracture morphology inspection of fracture surfaces in Fig. 4 that multiple cracks initiated and propagated at the surface of the specimen. For the 30NiCrMoV12 steel, its fatigue life is obviously dominated by the crack propagation life rather than the crack initiation life. In order to quantify the specimen size/volume effect on fatigue life, crack growth in the presence of a marked plastic strain range within the LCF regime can be well described by using the Tomkins model [39], which has been included in the British R6 procedure as the fundamentals of short crack growth modeling. Through assuming the amount of crack growth per cycle under tension-compression loadings to be the amount of irreversible shear decohesion occurs at the crack tip, Tomkins [39] links the crack growth to the plastic strain amplitude by an exponential law

\[
\begin{align*}
\frac{da}{dN} &= a_1 e^{k_1 \epsilon_p^m} \\
\frac{d\gamma}{dN} &= k_2 \epsilon_p^q
\end{align*}
\]

(4)

fracture morphology examples of these specimens are shown in Fig. 4. As it can be seen from Fig. 3, similar to the reduced activation ferritic/martensitic steels [38], it’s worth noting that for 30NiCrMoV12 steel, no significant specimen size effect was observed form the cyclic response curves of small, standard and large specimens, namely, the hypothesis of the size effect based on the statistical distribution of defects is not valid for this material. It should be pointed out that the four specimens (S3, S13, S14 and S22) due to original defects are not included for curve fittings in Fig. 3. From the viewpoint of tested life scatter for the three geometrical specimens, experimental lives are well described by a log-normal distribution at different loading stress levels, as shown in Table 5.

2.3.2. Crack growth rate

Note from fracture morphology inspection of fracture surfaces in

<table>
<thead>
<tr>
<th>N ~ LN(μ, σ²)</th>
<th>0.3%</th>
<th>0.4%</th>
<th>0.5%</th>
<th>0.8%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small spec.</td>
<td>(4.1640, 0.0541²)</td>
<td>(3.7245, 0.1264²)</td>
<td>(3.4434, 0.2164²)</td>
<td>(2.9829, 0.1101²)</td>
</tr>
<tr>
<td>Standard spec.</td>
<td>(4.4336, 0.1417²)</td>
<td>—</td>
<td>(3.6806, 0.1557²)</td>
<td>(3.0142, 0.1111²)</td>
</tr>
<tr>
<td>Large spec.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>(3.7624, 0.0914²)</td>
</tr>
</tbody>
</table>

Fig. 5. Crack growth measurement near the micro-hole of M1.R specimen.

Fig. 6. Crack growth rate: (a) Experimental crack growth rate vs. crack length and (b) Model calibration.

Fig. 7. Weibull distributions of surface crack length: (a) 2000 cycle and (b) 3000 cycle.

Table 5

Experimental mean and scatter of lifecycles of three geometrical specimens.
where α and a_i are the crack length and initial crack length, respectively; ϵ_{pa} is the plastic strain amplitude, k_p and r are material parameters that establish the short cracks growth in a material.

Then, crack growth rate is derived as

$$ \frac{da}{dN} = k_p \epsilon_{pa}^r \alpha $$

Through merging all the coefficients in the right term of Eq. (5), a simplified propagation model is expressed as

$$ dN = \frac{k_d \epsilon_p}{k} $$

Using Eq. (6), two notched fatigue tests as mentioned in Section 2.2, were conducted with replicas to evaluate the fatigue crack growth behavior of 30NiCrMoV12 steel at $\epsilon_p = 0.5\%$. Crack lengths are measured from the micro-holes of notched specimens and the gauge surface of smooth specimens. Fig. 5 shows an example crack evolution near the micro-hole of M1.R specimen. Combining with surface crack evolutions of smooth and notched specimens at different life cycles, the experimental crack growth rate can be calculated and plotted as shown in Fig. 6(a), which provides a data base for fatigue crack growth model calibration (see Section 3.2). Parameters of Tomkinc model are calibrated from abovementioned experiments, as shown in Fig. 6(b), which reported the interpolated experimental data and the ones fitted by Eq. (6). Particularly, crack growth parameter $\log_{10}(k_d)$ in Eq. (6) is fitted by a normal distribution from the measured surface cracking behavior, namely, $\log_{10}(k_d) \sim N(-3.45888, 0.248095)$.

2.3.3. Surface crack density and distribution

During the replica tests, a large number of surface cracks were generated and noticed by replicas of the smooth specimen, even after a low number of loading cycles. Specifically, the specimens were tested to a given number of loading cycles, such as 2000 and 3000 loading cycles, then surface cracks were observed in a given area of 6 mm² at the central part of the specimen by optical micrographs. The size distribution, density and angle of these cracks were examined by the micrographs, which have shown a two-dimensional random distribution. Note from [26,39-41] that Weibull distribution can fit well the surface crack distribution. Accordingly, a three-parameter Weibull distribution is introduced in this analysis based on a threshold of minimum crack length measure, namely $a = 20\mu m$. Based on the measured crack data, Weibull coefficients and its probability plot can be obtained by

$$ P(a) = 1 - \exp \left(-\frac{a - a_0}{\alpha} \right)^\beta $$

where β and α are the Weibull shape parameter and scale parameter, and a_0 is the resolution of crack identification.

Using Eq. (7), Fig. 7 plots the Weibull distributions of surface cracks measured from 10 specimens at 2000 and 3000 loading cycles, respectively. Note that these distributions shift to the right x-axis with crack propagation.

Moreover, crack density, $\lambda (No. /mm^2)$, is evaluated by the ratio between the number of cracks (crack length $a \geq 20\mu m$) and the surface

Table 6

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S5</th>
<th>S12</th>
<th>S15</th>
<th>S16</th>
<th>S21</th>
<th>M3</th>
<th>M8</th>
<th>L6</th>
<th>L7</th>
<th>L11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>0.842</td>
<td>–</td>
<td>0.839</td>
<td>–</td>
<td>–</td>
<td>0.889</td>
<td>–</td>
<td>0.872</td>
<td>1.020</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>24.3</td>
<td>–</td>
<td>13.6</td>
<td>–</td>
<td>–</td>
<td>22.3</td>
<td>–</td>
<td>11.1</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>–</td>
<td>1.074</td>
<td>–</td>
<td>1.073</td>
<td>1.119</td>
<td>0.971</td>
<td>0.984</td>
<td>1.115</td>
<td>1.052</td>
</tr>
<tr>
<td></td>
<td>λ</td>
<td>–</td>
<td>35.6</td>
<td>–</td>
<td>35.6</td>
<td>49.7</td>
<td>38.5</td>
<td>23.17</td>
<td>13.9</td>
<td>39.2</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th></th>
<th>Experimental /log$_a$(Cycle)</th>
<th>Extracted /log$_a$(Cycle)</th>
<th>μ% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard spec. Mean</td>
<td>3.6807</td>
<td>3.6382</td>
<td>1.15%</td>
</tr>
<tr>
<td></td>
<td>Std. 0.1557</td>
<td>0.1759</td>
<td></td>
</tr>
<tr>
<td>Large spec. Mean</td>
<td>3.6742</td>
<td>3.7441</td>
<td>1.90%</td>
</tr>
<tr>
<td></td>
<td>Std. 0.0914</td>
<td>0.1620</td>
<td></td>
</tr>
</tbody>
</table>

$$ \frac{da}{dN} = k_d \alpha $$

Fig. 8. Crack density varies with load life ratio.

Fig. 9. Expected life based only on size effect due to statistic of extremes.

Fig. 10. Comparison between extracted distribution and experimental ones.
area A. Based on this, experimental crack growth rate and density are measured during testing as shown in Table 6. Fig. 8 shows an increase of surface crack density λ with the increase of loading cycles, which is in a percentage with observations of surface cracks. According to [26], this relationship can be specifically simplified by a power law function of the load life ratio σ / σ_0

$$\lambda = C_1 \exp \left(\frac{C_2 n}{N_f} \right) = f(n)$$ \hspace{1cm} (8)

where C_1 and C_2 are fitted coefficients related to the loading conditions. Generally, the initiation density of surface cracks is affected by various factors, such as loading conditions, the number of loading cycles, material properties and so on. For the current tests, the crack density can be expressed by $\lambda = f(n)$. The surface crack density and distribution obtained in this section will be used as inputs for crack growth modeling and multiple surface fracture simulation in Section 4.

3. Mechanical-probabilistic modeling of size effect on total fatigue life

3.1. Prediction of specimen size effect based on the weakest-link theory

The weakest-link theory was originally presented to describe the tensile fracture of brittle materials by introducing a Weibull probability distribution of failure. Specifically, due to the randomly distributed material defects (non-homogeneities, inclusions, precipitates) in a material per volume unit, the theory states that fatigue crack initiates where the most dangerous defect or the weakest link exists [15,42,43]. Fatigue cracks propagate independently in different areas. Thus, a statistical distribution of random defects within structures/components often gives rise to the scatter in the fatigue behavior of the material. Similar to Eq. (7), through relating the effect of load and cross-sectional area or volume with the fatigue life, a classic form of the Weibull distribution for the failure probability can be expressed as

$$P_f(\sigma, \Omega) = 1 - \exp \left[-\frac{1}{\Omega_0} \int_{\Omega} f(\sigma) d\Omega \right]$$ \hspace{1cm} (9)

where Ω_0 is the reference volume or surface; $f(\sigma)$ is a function of the risk of rupture with three parameters

$$f(\sigma) = \left(\frac{\sigma - \sigma_0}{\sigma_0} \right)^m$$ \hspace{1cm} (10)

where m and σ_0 are the shape parameter and scale parameter of the Weibull distribution, respectively; σ_0 is the threshold stress, and Eq. (9) describes a two-parameter Weibull distribution when $\sigma_0 = 0$.

For a given stress level, the fatigue life has shown a certain scatter in a lognormal life scale, its cumulative distribution function (CDF) of failure probability can be expressed by a function of fatigue failure life N

$$P_f(N) = 1 - \exp \left[\frac{\log N}{\log N_0} \right]^m$$ \hspace{1cm} (11)

where N_0 is the reference fatigue life under the given stress level.

For a metal solid consists of n elements, its survival probability can be estimated from the product of survival probabilities of each volume/surface element within the solids. Assuming that each element has volume/surface Ω_0, then $\eta \Omega / \Omega_0$. Combining Weibull power law with Eq. (10) yields the following two-parameter Weibull distribution

$$P_f(N) = 1 - \left[\exp \left(-\frac{\sigma}{\sigma_0} \right)^m \right]^n$$ \hspace{1cm} (12)

By using Eq. (9) for describing the life (as done by Wormsen et al. [43]), the distribution of experimental results can be derived for specimens with different geometries (such as cross-sectional areas). As aforementioned, fatigue cracks initiate from the material defects. In general, an increasing of specimen/component volume or surface increases its probability of failure due to the higher probability to find a critical defect. Based on Eq. (11), a relation can be obtained for two different specimen sizes under a similar failure probability

$$\frac{N_i}{N_f} = \left(\frac{A_i}{A_f} \right)^{1/m}$$ \hspace{1cm} (13)

where N_i is the fatigue life for a specimen with the known surface or cross-sectional area A_i, N_f is the estimated fatigue life for the specimen with determined surface or cross-sectional area A_f. In the current study, since the gauge section of the fatigue specimens yields the main and
\[P_{f,\text{large}} = 1 - [1 - P_{f,\text{small}}]^{\eta_{\text{large}}} \]

where the two coefficients \(\eta_{\text{standard}} \) and \(\eta_{\text{large}} \) are the ratio between the gauge surfaces of the standard/large specimens and the small ones, respectively.

Under a log-normal life distribution of different sizes of specimens, Fig. 9 plots life distributions of the standard and large specimens according to Eqs. (12) and (13). Comparing with experimental mean and scatter of the life cycles at \(\varepsilon_{f} = 0.5\% \), a consequence of the distribution of defects based on statistic of extremes cannot explain well the tested life distributions as shown in Fig. 9, which coincides with the challenge raised by Todorinov \[43-45\].

3.2. Prediction of specimen size effect based on crack propagation modeling

As aforementioned, the fracture morphology inspections of fracture surfaces have shown multiple cracks initiated and propagated at the surface of the specimen. For the specimen size effect, it normally shows a negative effect on fatigue life from the viewpoint of defects, however, a positive effect from the aspect of crack growth. Particularly, the criti-ical crack length for fatigue fracture increases with the larger specimen size/ volume, especially for crack propagation process dominated ma-terials. Considering both these negative and positive effects can lead to a robust evaluation of strain-controlled fatigue behavior against spe-cimen size. Thus, the influence of specimen geometrical size on fatigue crack propagation life is critical essential for a theoretical under-standing of fatigue lives.

Through using the Tomkins model for crack growth modeling, the number of cycles to failure \(N_{f} \) can be estimated by integrating Eq. (6) from an initial crack length \(a_{i} \) to the final one \(a_{f} \).

\[\int_{a_{i}}^{a_{f}} \frac{da}{\Delta N} = \int_{0}^{N_{f}} k_{g} dN \Rightarrow \Delta N = \frac{1}{k_{g}} \log \left(\frac{\log_{10}(a_{f})}{\log_{10}(a_{i})} \right) \]

Based on the calibrated Tomkins model in Eq. (16), two scale factors can be defined to shift the distribution found with the statics of ex- tremes for the standard and large specimens from the reference small one

\[\eta_{\text{standard}} = \frac{\Delta N_{\text{standard}}}{\Delta N_{\text{small}}} = \frac{\log_{10}(a_{f, \text{standard}})}{\Delta N_{\text{small}}} \]

and

\[\eta_{\text{large}} = \frac{\Delta N_{\text{large}}}{\Delta N_{\text{small}}} = \frac{\log_{10}(a_{f, \text{large}})}{\Delta N_{\text{small}}} \]

Combining Eq. (14) to Eq. (18), the life scale factors at \(\varepsilon_{f} = 0.5\% \) due to the propagation size effect can be calculated from \(a_{i} = 100\mu m \) to \(a_{f} = 5\Delta a \) (according to the fracture surfaces measurement, the final crack length for all the specimens is taken half of the cross-sectional perimeter of the specimen), namely, \(\eta_{\text{standard}} = 1.18048 \) and \(\eta_{\text{large}} = 1.27523 \).

As pointed out by Koyama et al. \[21\], the specimen size effect can be quantified by the sum of the effect of statistical distribution of the defects and the effect of crack propagation. From a crack growth point of view, a larger size of specimen would lead to a longer life, which shift the dotted/dash lines in Fig. 9 to the right-hand of the x-axis. According to this comparison between the curves of experimental distribution of the life and the one due to the effects of statistical defects and crack propagation can be made by using Eqs. (17) and (18), as shown in Fig. 10. Moreover, a quantitative analysis is conducted and results are listed in Table 7. As it can be seen, the influence of specimen size on fatigue life of 30NiCrMoV12 steel can be fairly predicted by summing the effects of statistical distribution of defects (negative factor) and crack propagation (positive factor).
4. Numerical modeling of multiple surface fracture

As aforementioned, the weakest-link theory assumed that the critical defects are sparsely distributed without interactions with each other, which only works with a low density of large metallurgical defects. However, note from Section 2.3.3 that, high density of fatigue short microcracks is observed at the gauge section surface of the specimen. The abovementioned assumption is therefore likely to be less
appropriate, especially when such surface microcracks are leading to the fatigue failure of the specimen. In this regard, further simulations with known surface crack distributions are conducted to provide a better understanding of specimen size effect.

As noticed from Fig. 4, the presence of multiple (dispersed or multisite) surface cracks scattered over the gauge section is the main manifestation of damages in 30NiCrMoV12 steel under cyclic loadings. In particular, its fracture was induced by the mutual processes of crack formation, growth, and coalescence. Since surface crack sizes and locations are randomly distributed in the gauge section of the specimen, the progressive process of crack interaction and coalescence will be analyzed by combining a Monte Carlo simulation and statistical analysis of cracks. Generally, multiple surface fracture is of stochastic nature due to the random process of crack formation, as well as dis-perssed crack lengths and their growth rates with potential coalescences [46–48]. According to the interaction and coalescence of short cracks, the dimension of main cracks exhibits a jump-like increase way. Specifically, an unexpected formation of a critical crack may be generated under high density of short cracks. Combining with the replica tests as mentioned in Section 2 and considering the effect of crack initiation, crack propagation and coalescence, a numerical Monte Carlo simulation is performed for multiple fracture evaluation and to compare experimental data on crack length distribution evolution, as well as the experimental life of specimens with different sizes/volumes, with the simulated ones.

4.1. Surface crack modeling and simulation algorithm

The simulation conducted in this analysis includes the mutual processes of random crack formation, propagation, and coalescence of surface microcracks in the gauge section of three geometrical specimens. The available experimental data make it possible to model and simulate the multiple fracture behavior, which attempts to describe the damage evolution by characterizing the appearance of a crack from initiation to propagation under crack coalescence. According to the measured experimental data from replica tests under cyclic loadings in Section 2.3, the initial prerequisites and assumptions are taken as follows:

1. Uniform material properties of the material are assumed over the entire damaged gauge surface, namely, the simulation surface area;
2. Uniaxial stress state is loaded and time-independent during the crack evolution;
3. All cracks over the gauge surface are oriented normally to the loading stress direction, like the x-axis in this analysis;
4. A constant increment of the load cycles is assigned as the count number of iterations;
5. The positions of all cracks on the surface are randomly distributed according to Poisson’s law. Particularly, the probability that \(n\) cracks are located on the area \(A\) with the crack density \(\lambda\)

\[
P(n) = \frac{(\lambda A)^n}{n!} \exp(-\lambda A)
\]

(19)

6. The initial length \(a\) of the crack is assigned by a three-parameter Weibull distribution (see Section 2.3.3);
7. In crack propagation, the crack length increment of each crack during a given number of iterations is prescribed. In particular, the stochastic nature of fatigue crack growth rate is assigned by a normal distribution measured from replica tests (see Section 2.3.3); At the initial state, such as the specimen at 2000 cycles in the current analysis, all cracks with randomly extracted positions, crack lengths, and crack growth rates are created. After this, no crack initiation, just crack propagation and coalescence will be addressed;
8. In crack coalescence, quasi-collinear surface cracks in close proximity interact based on the influence zones at its both tips, and their propagation paths change once these influence zones of two crack tips overlap [49]. Assuming that, a direct connection is soon accomplished when the crack interaction occurs. This procedure
progresses until no crack satisfies the interaction condition. The influence zone is defined by a circle of diameter \(r_s \) according to the size of local plastic deformation zone around the crack tip [50]

\[
 r_s = \frac{\Delta L_{eff}}{2\pi \sigma_0^2} \left(\frac{E'}{E} \right)
\]

(20)

where \(\Delta L_{eff} \) is the effective cyclic J-Integral, \(\sigma_0 \) is the flow stress and \(E' \) is the cyclic Young's Modulus under plane strain condition, with \(E' = E/(1-\nu^2) \) and \(\nu \) is the Poisson's ratio. The general formulation of the effective cyclic J-Integral \(\Delta L_{eff} \) can be obtained by

\[
 \Delta L_{eff} = \pi Y a \left[(1-\nu^2) \frac{\Delta \sigma_y}{E} + h(n)\Delta \sigma_{eff} \Delta \sigma_{eff} \right]
\]

(21)

where \(\Delta \sigma_{eff} \) and \(\Delta \sigma_{off} \) are the effective stress range and effective plastic strain range, respectively; \(Y \) is a geometric factor; \(n \) is the cyclic stress-strain curve exponent and \(h(n) \) is a function that accounts for crack geometry and material elastic-plastic behavior. The criterion of Murakami [51] on judging defects interaction/ coalescence is adopted, namely, coalescence of two cracks in close proximity happens once the local influence zones (marked as the grey area in circle) at their tips touch or intersect as shown in Fig. 11, in which plots the surface crack schematic with blue wave lines for main crack propagation to the critical length for failure \(a_c \), and red curves for crack formation on the specimen surface, by the distance between the tips \(d \) is less than the minimum of the two crack length

\[
d < \min(a_{crack1}, a_{crack2})
\]

(22)

(9) An unloaded material zone during crack propagation and coalescence is formed around each crack, of which the shape of the zone is defined by a circle on the crack with its diameter equal to the crack length \(a_c \), namely the blue dotted circle area as shown in Fig. 11. In these zones, the crack propagation is arrested when its tip comes into the unloading zone from the nearest crack.

Based on abovementioned starting prerequisites, a simulation flow chart is given in Fig. 12, the basic inputs obtained from experimental testing for multiple fracture simulation of different geometrical specimens include the following parameters, as listed in Table 6:

1. Crack density on the gauge surface;
2. Damaged surface size, namely the gauge surface \(A = \pi D_0 \times L_0 \);
3. Distribution of crack length and crack growth rate on the gauge surface;
4. Fracture and failure criterion. Fracture failure of a specimen occurs when the major crack length reaches the critical crack length \(a_c \) through the repeated processes of crack propagation and coalescence.

By using the abovementioned procedure and data, multiple surface fracture processes, in which randomly distributed cracks are initiating, coalescing and propagating to cause final fracture, can be simulated. Fig. 13 presents a comparison between the maximum crack length with and without considering coalescence of cracks, in which the process of crack coalescence has significantly shortened the lifetime during the later stage of crack propagation.

4.2. Simulation results and discussions

For this Monte Carlo-based simulation, the material damaging under cyclic loading can be characterized by crack initiation, propagation and coalescence. Note that surface cracks, a typical example of randomly distributed surface cracks of S12 at 3000 cycle, are dispersed over the surface with different lengths as shown in Fig. 14(a), corresponding simulation result is given in Fig. 14(b), in which circles mark the unloaded zones after the crack coalescence. The interaction and coalescence of surface cracks occurs when they are close enough to each other as described in Section 4.1. The probability of this tendency is much more frequent during the later stage of fatigue life as judged from qualitative observations. Thus, two mechanisms for crack propagation, including the crack length increment due to its own growth for those cracks without coalescence and sudden crack length increment due to the neighboring cracks coalescence through interacting by their tips, are introduced in this simulation. Accordingly, the largest crack exhibits stepwise increase due to merging with other cracks in the plastic radius. Through following the procedure in Section 4.1, an example probability plot of experimental and simulated lives according to small specimens is presented in Fig. 15(a), and fracture surfaces of S13 and S14 in Fig. 15(b). Moreover, using the surface crack data of small specimens as a reference, similar probability plots and life distributions for the big specimens can be derived as shown in Fig. 16, in which fracture surfaces of L5 with shorter life are given in Fig. 16(c). As seen in Fig. 15(a), the simulated life distribution covers well with the lives of small specimens except that of S13 and S14, in which their fracture surfaces have shown a worse condition on multiple surface crack interaction and propagation, like the peculiar cracks marked in Fig. 15(b).

Form small specimens to large specimens as shown in Figs. 15 and 16, the statistical aspect of surface fatigue damage and simulated lifetime is a combined result of randomly short crack initiation, propagation and interaction. As it can be seen, the simulated life by the proposed procedure corresponds reasonably well with experimental failure life. Moreover, the proposed algorithm well accounts for the experimental scatter on the fatigue lifetime of 30NiCrMoV12 steel.

5. Discussions

5.1. Comparison with other studies

It is observed from the test results of 30NiCrMoV12 specimens that the specimen size effect on fatigue life is not evident in a LCF regime. For the three different geometrical specimens, a strain-life curve in Fig. 3(a) can be utilized for further design/assessment. However, fatigue lives of these specimens have shown a certain degree of scatter under different loading stress levels.

Through evidences by [51,52] indicate that the decrease in fatigue strength of engineering components is due to the presence of inhomogeneities result from material or manufacturing process. Particularly, the component fatigue strength is controlled by the size of maximum defect present in the more stressed material volumes. This assumption only works under consideration of no interactions of the defects, or limited number of potential critical defects, otherwise the maximum size of defect clusters has to be considered [52]. In presence of defects, the influence of specimen size effect on fatigue strength/life is noticeable [7,53–55] and it can be modelled by Weibull statistics [3,19,56,57] or by the statistics of extreme defects [58,59]. As for Ni based superalloys, the size effects evidenced [17], the material inhomogeneities triggering the fatigue failures but the strain concentrations in adjacent grains due to orientation mis-match [60]: it has been shown by Musinski et al. [61] that these microstructural features can be analyzed with the statistical models developed for inclusions and defects.

However, for the case of the quench and tempered steel in this analysis, a high density of fatigue short microcracks is observed at the gauge section surface of the specimen, as noticed from Section 2.3.3. For the influence of quenching and tempering on microstructural development of this steel, the optimized quenching and tempering process decrease the size of the PAG grains [5].

Note from Fig. 9 that, the weakest-link assumption is not appropriate, since there is no difference in the crack distributions of the three
specimen series here tested. The absence of any effect due to ‘independent material volumes’ is then further emphasized by the fact that coalescence plays a significant role in determining the specimen failure. (So failure of a material volume depends on what happens in the elements next to it).

Another observation has to be made about the apparent contradiction between the present results and the ones by Blasön et al. [20]: the present three different geometrical specimens were made from the same steel bar, while perhaps the ‘batch-to-batch’ variability plays a role in the tests reported in [20].

5.2. Consequences for fatigue design

It is worth discussing the present results also in the light of consequences for design. Fatigue design curves according to the ASME Code Section III [62], can be obtained from the best-fit curves of experimental data by first mean stress correction and then reducing fatigue life at the design point through adjusting the curve by a factor of 2 on stran (or stress) or 20 on lifecycles, which often leads to a more conservative design. In particular, these two factors were introduced to take into account the data scatter (including material variability) and differences from surface condition and size effect between the test specimens and actual components [63]. Comments by Cooper [64] on the Section III fatigue design code indicated that the factor of 20 on life can be interpreted by the product of three factors, including 2 on scatter of data, 2.5 on size effect and 4 on surface condition. Among them, a factor of 2.5 on size effect was suggested to the small-specimen data for estimating life of larger-specimens or actual components.

However, this deviates from present experimental observations of 30NiCrMoV12 steel. In particular, according to Fig. 9, the ‘weakest-link’ life factors for small-to-standard and standard-to-large specimens are 2.1807 and 1.3996, respectively, but this effect is counteracted by the crack propagation as we discussed in Section 3. Therefore, the combination of the two effects looks to be the correct approach to mitigate the excessive conservatism of the weakest-link approach even in the presence of materials with defects.

The same effect can be better explained in probabilistic concepts. Let us suppose that for a notched component modelled with finite elements, the cyclic response for the ith element with a volume V_i is known (for the sake of simplicity we refer to the element centroid, for a more refined approach see [17–19]). The nucleation life, in terms of nucleation of crack life with the same size of a finite element, could be at a given number of cycles estimated by a suitable model (like the Fatemi-Socie parameter Y_{crit} [14]). Considering the resistance of the ith element (expressed in terms of life distribution F_{th} at a given Y_{crit} in it) lies within the bounds:

\[1 - (1 - F_{th}(Y_{crit}))^{1/e} \leq F_{th}(Y_{crit}) \leq F_{th}(Y_{crit})\]

(23)

where V_i is the element volume and V_0 is the reference material volume (onto which the tests were carried out). The left term corresponds to ‘independent material volumes’ (according to the weakest-link concept), while the right one corresponds to perfectly correlated material volumes.

As a consequence of Eq. (23), the failure probability P_f for the component is

\[1 - \left(1 - P_f\right) \leq P_f \leq \max P_i\]

(24)

According to the present findings, the right term of Eq. (24) is the correct approach when there are no defects (or microstructural inhomogeneities) in the material that could support the choice of the ‘weakest-link’ model (see Fig. 17). The fatigue life (or its distribution) could then be estimated by adding to the nucleation time (life to failure of the most stressed element) and the propagation lifetime. An alternative to crack propagation algorithms such as Darwin [65], would be to simply adopt a multiplication factor (based on a suitable propagation model) such as Eqs. (17) and (18).

6. Conclusions

In the present study, to explain the robustness against specimen size, normal strain-controlled fatigue and replica tests with three geometrical specimens are carried out for evaluating the influence of specimen size on fatigue life of 30NiCrMoV12 steel in a LCF regime. The main results are summarized as follows:

1. Experimental results and fractographic analyses show that its fatigue life is mainly dominated by the crack propagation life rather than the crack initiation life, which consists of multiple surface cracking with mutual interactions and coalescences.

2. No significant differences in the life of different material volumes were observed because of the absence of independent features (defects and/or microstructural inhomogeneities) that able to trigger the failure;

3. A probabilistic procedure for multiple surface fracture simulation is established by incorporating random processes of crack formation, propagation and coalescence between dispersed surface cracks, which elaborates an evaluation of statistical surface damage evolution for different structural sizes/volumes and supports the experimental findings;

4. The ‘weakest link’ (shorter lifetime for larger material volumes) effect is counteracted by the propagation lifetime (larger propagation time for larger volumes): an approach based on the two effects seems to be the most appropriate and even able to better describe the present findings.

Acknowledgments

Dr. S.P. Zhu acknowledges support for his period of study at Politecnico di Milano by the Polimi International Fellowship Grant scheme. The authors also acknowledge support by Lucchini RS (Italy) for supplying the heat treated steel. The authors also wish to thank Mr. Carlo Marzorati, who was a previous student of Politecnico di Milano, for taking care of fatigue and crack growth experiments.

References

C.M. M. M. F.

– on low stress (4).

– made of USA, Expo Conference in: vane combined size 21 (1998)

