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1. Introduction

Condition-based and predictive maintenance approaches can increase safety, minimize downtimes, and ensure 
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abstract

The identification of the current degradation state of an industrial component and the prediction of its future evolution is a 
fundamental step for the development of condition-based and predictive maintenance approaches. The objective of the present 
work is to propose a general method for extracting a health indicator to measure the amount of component degradation from a set 
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completion and efficient production [45,9,15,71,5]. To enable this, it is necessary to estimate the current degradation state of
the components and systems of interest, and predict the future evolution.

In recent years, diagnostic approaches for the identification of equipment degradation using signal measurements have
been proposed and successful industrial applications have been performed [59,58,82]. Furthermore, prognostic approaches
have been developed for the prediction of equipment remaining useful life (RUL), i.e. the amount of time that the equipment
will continue to perform its function according to specifications [60–62,66,52,71].

Health Indicators (HIs) are introduced in fault diagnostic and prognostic approaches, to measure the amount of equip-
ment degradation. Depending on the equipment and its degradation mechanism, the HI can be a signal directly measured
or not.
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Examples of directly measurable degradation indicators are the length of a crack in a structure [44,8,55,40], the light out-
put from fluorescent light bulbs or the thickness of a car tyre tread [15]. Measurement noise can affect the raw data obtained 
from the sensors, possibly obscuring the signal trend; for this reason, filtering techniques are applied to smooth the HI. For 
example, many approaches rely on Bayesian methods, e.g. Kalman and particle filters, to infer equipment degradation using 
signal measurements and a physics-based model of the degradation process.

Examples in which a direct measure of the equipment degradation is not available are bearing wear [81,82] and various 
other mechanisms such as stiction, wear, contamination and degradation of dielectrics in Micro-Electro Mechanical Systems 
(MEMS) [53]. In these cases, it is necessary to extract a HI from the available measurements, which are not directly related to 
the component degradation state. Although several HIs have been developed for fault diagnostics and prognostics of differ-
ent types of industrial components, the solutions already proposed are typically not general, but tailored to the component 
and the characteristics of the monitored signals.

Typically, HI extraction is performed by (i) pre-processing the raw data to reduce the measurement and process noises 
and (ii) extracting degradation trends using statistical indicators in the time domain, such as mean and standard deviation, 
and other indicators in the frequency or time-frequency domains [46,33,4,10].

In [38], Empirical Mode Decomposition (EMD) is used to extract information about the evolution of degradation over time. 
The main idea is that a time-dependent signal can be described as fast oscillating components superimposed to slow 
oscillating ones. The residual of this approximation is the trend of the signal, whose variations can show the degradation 
evolution over time. In [13], an approach based on the use of the Auto-Associative Kernel Regression (AAKR) has been used 
for the extraction of health indicators. The AAKR empirical model receives in input the current signal value and reproduces in 
output the value that the signal is expected to have in healthy conditions, before the beginning of the degradation (signal 
reconstruction). The residual, i.e. the difference between the signal measured value and the AAKR reconstruction, defines the 
HI.

Once a set of features has been extracted from the raw measurements, it can be useful to combine them into a single 
degradation indicator, since individual features may contain only partial (and different) information about the equipment 
degradation state. In [13], a HI is defined as a linear combination of AAKR residuals of different signals. The coefficients of the 
linear combination are obtained by a genetic algorithm optimization whose objectives are the three metrics of Monotonicity, 
Trendability and Prognosability, which assess the capability of a HI of properly quantifying the equipment degradation. In [67], 
an approach based on Principal Component Analysis (PCA) and Hidden Markov Models (HMM) is pro-posed for the definition 
of a HI for prognostics.

The objective of the present work is to propose a systematic and general method for the construction of a HI. Since the 
approach should be applicable to signals obtained from industrial components of different nature, we consider various signal 
extraction techniques, including statistical indicators, EMD, wavelet and Fourier transforms.

The proposed method differs from previous literature approaches in the technique used for combining the extracted fea-
tures. Differently from [13], which linearly combines multiple residuals obtained from several AAKR models, each one recon-
structing a single measured signal, we define the HI as the residual of an AAKR model which reconstructs in a single step a 
group of features. The idea behind this approach is that features that individually do not have the characteristics of health 
indicators may provide useful information when considered jointly with other features. For example, a feature related to the 
component operating conditions can drive the computation of the residuals of features related to the component degrada-
tion and also influenced from the operating conditions.

A large number of features can be extracted from the measured signals and several different combinations (subsets) of 
them can be selected: then, the definition of a HI can be seen as the problem of selecting the best combination of features to 
be used. The approach that we explore in this work to address this problem is based on a multi-objective optimization that 
considers as objectives the metrics of Monotonicity, Trendability and Prognosability. The multi-objective optimization pro-
vides a number of Pareto-optimal solutions, which are non-dominated with respect to the considered objectives [10].

We resort to a Binary Differential Evolution (BDE) algorithm for the multi-objective optimization. The choice of BDE is due 
to the fact that it explores the decision space more efficiently than other multi-objective evolutionary algorithms [57], 
including Non-dominated Sorting Genetic Algorithm II (NSGA-II) [16], Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[72] and Indicator Based Evolutionary Algorithm (IBEA) [74].

The main novelties of the proposed approach are:

� the use of EMD as a feature extraction method and not for directly building a HI, as in [38];
� the use of an AAKR model to combine different features into a HI;
� the BDE multi-objective search for the selection of the optimal HI.

An application is considered, concerning the prediction of the RUL of a fleet of turbofan engines working under variable 
operating conditions. Data describing the evolution of 21 signals during the engine run-to-failure trajectories have been 
taken from the NASA Ames Prognostic Data Repository [50]. The obtained results have been compared to those obtained 
by (1) directly considering one of the measured features as HI, (2) applying the method in [38], where the EMD features 
are directly used as HIs.



In Section 2, we state the problem and introduce the three metrics of Monotonicity, Trendability and Prognosability used to 
assess the goodness of the HI. In Section 3, we illustrate the method to extract a HI. Section 4 presents the application of the 
proposed method on simulated data of aeroplane turbofan engines, while Section 5 concludes the paper.

2. Problem statement

The objective of the present work is the development of a general and systematic method for the definition of a health 
indicator (HI) that quantifies the degradation of industrial equipment.

We assume to have available the measurements of S signals taken during N run-to-failure trajectories collected from a 
population of similar equipment. The S signals can be directly or indirectly related to the equipment operating conditions, 
its internal operational and degradation states.

According to [13,14,23], a HI should have three key properties: monotonicity, trendability and prognosability. Monotonic-
ity is required, assuming that the equipment does not undergo self-healing, which would results in HI non-monotonic 
trends. Trendability indicates the degree to which the evolution of the health indicator during the degradation of a popula-
tion of similar components has the same shape and, thus, can be described by the same functional form. Finally, prognos-
ability measures the variance of the HI values at failure time in a population of similar components: one would like that 
failures occur at the same value of the HI, for all components of the population.
Different metrics have been considered for measuring the degree to which the three properties of monotonicity, trend-ability 

and prognosability are satisfied by a given HI [13,35,56]. In this work, we consider the metrics provided by [14],
whose values range in ½0; 1�, where 1 indicates the most satisfactory and 0 the less satisfactory level of the specific HI 
property.

Monotonicity is defined as:
Monotonicity ¼ 1
N

XN
i¼1

Mi

�����
����� ð1Þ
where Mi is the monotonicity of a single run-to-failure trajectory given by:
Mi ¼ nþ
i

ni � 1
� n�

i

ni � 1
; i ¼ 1; . . . ;N ð2Þ
with ni indicating the total number of observations in the i-th run-to-failure trajectory, and ni
þ (ni

�) the number of observa-
tions characterized by a positive (negative) first derivative. Notice that, according to [14], it is important to properly smooth 
the noisy raw data to give more accurate estimates of the derivatives. In practice, the HI is typically linearly interpolated 
considering time windows formed from 5 to 10 observations before computing the derivatives.

As above said, the metric of Trendability measures whether the HI trends are modelled by the same underlying functional 
form in a population of run-to-failure trajectories. In [13], a Trendability index based on the comparison of the fractions of 
positive first and second derivatives in the run-to-failure trajectories has been proposed. Since, however, the proposed index 
has been shown to be highly susceptible to noise, we define Trendability as the minimum of the linear correlation coefficients 
[15]:
Trendability ¼ minðjcorrcoefijjÞ; i; j ¼ 1; . .  .  ; N ð3Þ where corrcoefij indicates the linear correlation coefficient between 

the ith and the jth run-to-failure trajectory, and the min-imum is taken over all the possible pairs of trajectories. Notice that 
the computation of the correlation coefficient between two vectors requires that they are formed by the same number of 
patterns. Thus, Eq. (3) cannot be directly applied to two run-to failure trajectories, formed by a different number of patterns 
due to the different component failure times. This prob-lem is overtaken by defining new HI vectors formed by the same 
number, LHI , of patterns. In practice, the HI signals are inter-polated and the k-th value of the new HI vector, k = 1, . .  .  , LHI is 
the interpolated signal value at the fraction k=LHI of the component lifetime.

Finally, Prognosability is defined as the standard deviation of the HI value at failure for the available run-to-failure trajec-
tories divided by the average variation of the HI values between the beginning and the end of the trajectories. The obtained 
value is exponentially weighted to give a metric in the desired 0 to 1 scale:
Prognosability ¼ exp �stdðHIfailÞ=meanjHIstart � HIfailj
� � ð4Þ
where HIstart and HIfail are the HI values at the beginning and end of the run-to-failure trajectories, respectively.
The characteristics of a HI will be represented by the vector:
F ¼ ½F1; F2; F3� ¼ ½Monotonicity; Trendability; Prognosability� ð5Þ

The goal is to find the HI characterized by maximum values of the three elements of F. For this multi-objective optimization,
we consider Pareto-optimal solutions: a solution z� 2 F is said to be Pareto-optimal if it is non-dominated with respect to F ,
i.e. it does not exist another solution z0 2 F such that Fðz0Þ dominates Fðz�Þ,



8a 2 f1;2;3g; Faðz0Þ 6 Faðz�Þ; and 9~a 2 f1;2;3g; such that F~aðz0Þ < F~aðz�Þ ð6Þ
3. Health indicator selection

The method for the selection of the HI from monitored signals is based on three steps of feature extraction, selection and 
fusion.
In the feature extraction step, the measured raw signals xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .  ; xSðtÞ� are pre-processed in order to reduce the 

measurement and process noises, and extract degradation trends. In practice, from each measured signal, xiðtÞ,
i ¼ 1; . . . ; S, we extract M different features f imðtÞ, m ¼ 1; . . . ; M. The choice of the features to be considered is driven by 
the characteristics of the monitored component and the measured signals. Feature extraction techniques include the com-
putation of statistical indicators in signal time-windows (e.g., means, standard deviations, etc.) and analytics (e.g., deriva-
tives, elongations, etc.), signal transformation in the frequency domain (e.g., Fourier Transform, Laplace Transform) and in 
the time-frequency domain (e.g., Short Time Fourier Transforms (STFT) [30], Wigner-Ville Distribution (WVD), Wavelet 
Transform (WT) [75], and Empirical Mode Decomposition (EMD) [25]). With respect to fault prognostics in mechanical sys-
tems, the use of the EMD-based features suggested in [38] and reported in Appendix A.1 has been shown to provide indica-
tors characterized by satisfactory performance with respect to the Monotonicity, Trendability and Prognosability metrics 
considered in this paper.

The overall number of available features, S � M, can be very large: several signals are measured and hundreds of features 
can be, in principle, extracted. Since several features can be non-informative with respect to the component degradation or
contain redundant information, a second step of feature selection is necessar

S M
y to identify the best subset of the S � M avail-

able features from which the HI will be extracted. In practice, among the 2 � � 1 possible combinations of feature subsets 
which can be considered, the objective is to select the one which allows defining the most satisfactory HI in terms of the
maximum values of F1, F2 and F3 (5).

The third step of feature fusion is performed to fuse the information content of the selected features into a single HI. The 
idea behind the fusion step is that features that individually do not have the characteristics of health indicators may provide 
useful information when considered jointly with other features. Notice that the second and the third steps are strictly cor-
related, since the selection of the best feature subset to be used for the extraction of the HI depends on the method used for 
the fusion of the selected features.

In Section 3.1, we describe the feature fusion method, whereas, in Section 3.2, the identification of the best feature subset 
from which the HI should be extracted is presented.

3.1. Feature fusion for the construction of a health indicator

In this work, the feature fusion step is performed by an AAKR-based approach. AAKR is a multi-dimensional reconstruc-
tion method applied with success in several fault detection applications [24,3,17]. Typically, AAKR reconstructs the values of 
the features expected during operation of a healthy industrial component as a weighted sum of training patterns taken from 
historical feature values collected when the component was healthy. Fault detection is, then, based on the quantification of 
the similarity between the features obtained from the current signal measurements and the reconstructions. Considering a
feature subset f ¼ ½f 1; f 2; . . .  ; f K � � ½f imji ¼ 1; . . .  ; S; m ¼ 1; . . . ; M� with K 6 S � M, the similarity is quantified by the residual,

i.e. the Euclidean distance between the vectors of the AAKR reconstructed features, f̂ ðtÞ ¼ ½f̂ 1ðtÞ; . . . ; f̂ KðtÞ�, and the features
obtained from the currently observed signals, f ðtÞ ¼ ½f 1ðtÞ; . . . ; f KðtÞ�:
rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k¼1
ðf̂ kðtÞ � f kðtÞÞ

2
r

ð7Þ
When the residual, rðtÞ; is close to zero, the equipment is healthy, whereas it drifts from zero when the component starts 
degrading.

Since the final objective of prognostics is the prediction of the component failure time, and not of the onset of the degra-
dation process, in this work the AAKR reconstruction model is used to quantify the similarity between the features obtained
from the current signal measurements and those expected from a component close to failure. Thus, the AAKR model uses a
training set formed by historical feature values collected from components close to failure, i.e. in the last sf time instants
before the failure of their degradation trajectories. Thus, the residual rðtÞ, which tends to decrease as the component degra-
dation increases and to be close to zero at failure, constitutes a potential HI. A more detailed description of the AAKR algo-
rithm can be found in Appendix A.2.

3.2. Selection of the feature subset

In this subsection, we address the problem of selecting among all the possible 2S�M � 1 feature subsets, which can poten-
tially be obtained from the available S �M features, the one to be used for the definition of the HI. The performance of a fea-
ture subset is evaluated by developing the corresponding feature fusion AAKR-based model and, then, by computing the



three metrics of Monotonicity, Trendability and Prognosability described in Section 2. Thus, the selection of the feature subset 
to be used for the construction of a HI is treated as a multi-objective optimization problem.

The exhaustive search of all possible combinations of features is in practice not feasible for its computational burden, 
since for each possible feature subset we have to develop the corresponding AAKR model and evaluate the three metrics 
F1, F2 and F3. For this reason, we use the heuristic Binary Differential Evolution (BDE) algorithm.

3.2.1. BDE
Optimization amounts to finding the values of given parameters (decision variables) that minimize (maximize) one or 

more objective functions. For complex combinatorial problems, various heuristic optimization algorithms have been devel-
oped, such as Ant Colony [1], Genetic Algorithm [54], Binary Particle Swarm optimization [19], Binary Genetic Algorithms 
[69] and Binary Differential Evolution [22,31]. In this paper, we resort to Binary Differential Evolution (BDE), which has been 
shown capable of exploring the decision variables space more efficiently than other multi-objective evolutionary algorithms 
[57].

In BDE, a population of candidate solutions (chromosomes) evolves through three steps: Mutation, Recombination (also 
called Crossover) and Selection (Fig. 1) [22,31,82].

The decision variables are encoded in the chromosome as binary values of 0 and 1. Thus, each candidate solution zp;G, 
called target vector, of the Gth population is encoded by a binary sequence (chromosome) of bits (genes). Each gene,
zp;k;G, p ¼ 1 : NP; k ¼ 1 : 2 � n of each chromosome of the G-th population is conveniently mapped into a continuous variable 
~zp;k;G. In practice, the interval ½0; 1� is partitioned into two equal subintervals ½0; 0:5Þ and ½0:5; 1�, such that if the gene zp;k;G ¼ 0,
~zp;k;G belongs to the first sub-interval, whereas if zp;k;G ¼ 1, ~zp;k;G belongs to the second interval. The mapping operator is
defined by:
~zp;k;G ¼ 0:5 � rand if zp;k;G ¼ 0
0:5þ 0:5 � rand if zp;k;G ¼ 1

�
ð8Þ
where rand is a random number sampled from a uniform distribution in [0,1).
In the Mutation phase, for each vector zp;G of the population, a noisy vector ms is generated by randomly choosing three

mutually different vector indices r1; r2; r3 2 f1; . . .  ; NPg with fr1; r2; r3g – p:
ð9Þmp ¼ zr1 ;G þ SFðzr2 ;G � zr3;GÞ

where SF is called scaling factor and SF 2 ð0; 2� [31].

Then, a sigmoid function is applied to vp;k;G to ensure that the result generated by the mutation operator falls into the
interval [0,1]:
1
1þ e�vp;k;G

ð10Þ
An inverse operator is, then, used:
vp;k;G ¼ 0 if vp;k;G 2 0;0:5Þ½
1 if vp;k;G 2 0:5;1½ �

�
ð11Þ
In the Recombination phase, crossover can be introduced in order to increase diversity of the perturbed parameter vec-
tors. To this aim, the trial vector up;G ¼ ðup;1;G; . . . ;up;k;G; . . . ;up;2�n;GÞ is defined by:
up;k;G ¼ zp;k;G if Uð0;1� 6 CR or k ¼ irand ðNPÞ
vp;k;G if Uð0;1� > CR and k– irand ðNPÞ

�
ð12Þ
where Uð0;1� is a uniform continuous random value in [0,1], whereas irand(NP) is a discrete random number in the set
f1;2; . . . ;NPg. The crossover parameter CR 2 ½0;1� influences the probability that the noisy vector’s variables be selected for
the mutation process [63].

The purpose of the Selection phase is to avoid stagnation of population in local minima due to the impoverishment of the
population. Selection strategies have been deeply investigated in literature [37,48]. According to the MODE-III selection tech-
nique [63], each trial vector generated at each iteration by mutation and crossover operations, up;G, is compared only with its
Fig. 1. BDE search engine scheme.



target vector zp;G from which it inherits some variables: if up;G dominates zp;G, it takes its place in the population for the next 
generation, otherwise zp;G, survives [63]. Notice, however, that this approach suffers of a low level of elitism since each trial 
vector is compared only with its own target vector.

In the present work, we have applied a different technique, called Non-Dominated Sorting Binary Differential Evolution 
(NSDBE), which combines the robust and effective BDE strategy with the fast non-dominated sorting and ranking selection 
scheme of NSGA-II [16]. In practice, at the Gth generation the combined population of size 2NP comprising all up;G and zp;G is 
ranked using a fast non-dominated sorting algorithm that identifies the ranked non-dominated solutions of the Pareto opti-
mal set. Then, the first NP candidate solutions are selected according to the crowding distance [16].

3.2.2. BDE for the selection of HI
A candidate solution is a binary sequence (chromosome) of S � M bits (genes), where each bit indicates whether the cor-

responding feature is present (value set to 1) or discarded (value set to 0) in the feature subset (cf. Fig. 2). The computation of
the fitness functions of a candidate solution requires: (1) the development of the AAKR-based feature fusion model, where 
the model inputs are the features with corresponding value in the chromosome equal to 1 and the model output is the health 
indicator, (2) the evaluation of the three metrics of Monotonicity, Trendability and Prognosability for the obtained health 
indicator.

BDE drives the search, generation after generation of candidate features, toward the Pareto-optimal solutions according to 
the scheme of Fig. 3. Once BDE reaches convergence, the choice of the Pareto front solution for the HI selection is based on 
the TOPSIS method (Technique for Order Preference by Similarity to an Ideal Solution) [43,4], which is a multiple criteria 
decision making method whose basic idea is that the chosen solution should have the shortest distance from the ideal solu-
tion and the farthest distance from the negative ideal solution. More details on TOPSIS can be found in Appendix A.3.
4. Case study

This section presents the results of the application of the proposed method to a case study concerning the prediction of
the RUL of a fleet of turbofan engines working under continuously varying operating conditions. The data used in this work
have been taken from the NASA Ames Prognostic Data Repository [50] and consist of N ¼ 260 run-to-failure trajectories.
Each trajectory is a 24 -dimensional time series of different length, formed by S ¼ 21 signals measured by sensors and 3 sig-
nals referring to the turbofan engines operating conditions (Altitude, Mach Number and Throttle Resolver Angle). These lat-
ter signals indicate C ¼ 6 different operating conditions influencing the values of the other S measured signals.

4.1. Signal pre-processing

A three steps data pre-processing has been applied to (i) reduce the influence of the operating conditions on the signals
behavior, (ii) reduce the signal noise, and (iii) detect the elbow point.

With respect to (i), signal values have been normalized taking into account their ranges in the different operating condi-
tions. Considering N run-to-failure trajectories, S signals and C different operating conditions varying during the whole life of
the component, data are normalized by applying the following equation:
xnorms ðtÞ ¼ xcsðtÞ � lc
s

rc
s

ð13Þ
where xnorms ðtÞ represents the sth normalized signal at the time instant t, xcsðtÞ represents the collected sth signal operating in
c cthe cth operating condition at the time instant t, ls and rs represent the mean value and the standard deviation of the sth

signal operating in the cth operating condition.
With respect to (ii), noise has been reduced by applying an exponential filter.
With respect to (iii), since the life of an industrial component is typically divided into healthy and degrading phases, prog-

nostics is typically preceded by the detection of the onset of the degradation process, i.e. the time instant at which the com-
ponent starts to significantly degrade [47]. In this work, the onset of the degradation process is indicated by the detection of 
an elbow point in the signals, i.e. a time instant at which the degradation speed drifts from its initial condition, leading to an 
acceleration of the degradation process. In the remaining part of the paper, every time we refer to a specific trajectory, we 
will consider only the data subsequent to the elbow point and prognostics will be applied only after the identification of the 
elbow point.
Fig. 2. Example of a chromosome and of the corresponding feature subset.



Fig. 3. BDE procedure.
In this case study, according to the analysis in [38], we have considered the feature extraction techniques based on the 
computation of EMD transform according to which the features to be considered are the EMD trend mean and variance, and 
the slope and intercept of its linear approximation (see Appendix A.1). These four features are considered together with the
raw

The
signal,

obtained
for a 

set
total

of S
of M

M 
¼ 5

105
features

features
for

has
each

been
of the

reduced
S ¼ 21

in order
signals.

t� ¼ o diminish the computational burden of the BDE anal-
ysis for the identification of the best feature subset. To this purpose, we have computed the three metrics of Monotonicity,
Trendability and Prognosability of the individual features, and we have selected 25 features belonging or close to the Pareto 
frontier. This subset of the most promising features, which is formed by 9 raw signals, 6 slopes of the EMD residual linear 
interpolation and 10 EMD residual variances, has been completed with 3 raw signals measuring the component operating 
conditions.
Fig. 4. Monotonicity, Trendability and Prognosability of the 105 extracted features (dots) and of the 25 most promising ones (asterisks).



Fig. 4 shows Monotonicity, Trendability and Prognosability of the 105 extracted features (dots) and of the reduced set of the
25 most promising features (asterisks). These features together with the 3 signals relative to the operating conditions are the 
28 features which will be considered for the remaining part of the analysis. Considering that the 28 selected features gen-

erate ð228 � 1Þ ffi 2:7 � 108 possible feature subsets and the construction of a single HI through the application of the AAKR-
based procedure of Section 3.1 and the evaluation of the three metrics of monotonicity, trendability and prognosability
requires, on average, 3 s on a quad core computer with 2.80 GHz CPUs and 16.0 GB of RAM, an exhaustive search among
all the possible solutions of the best performing HI is not feasible.
4.2. BDE application

The N ¼ 260 run-to-failure trajectories are divided into three groups:

(1) a training set made by 100 trajectories, which will be used to train the AAKR reconstruction model;
(2) a test set made by 100 trajectories, which will be used by the BDE to assess the HI performance;
(3) a validation set made by 60 trajectories, which will be used to compare the performance of the proposed approach

with that of other methods.

Within the BDE search, the evaluation of the fitness of a chromosome, which represents a possible feature subset for the
construction of a HI, is performed by developing the corresponding AAKR reconstruction model trained considering the last
sf ¼ 5 measurements for each one of the 100 training trajectories as historical data representing the component behavior 
close to failure. Section 4.5 discusses the dependence of the methodology performance from the sf parameter.

The BDE crossover parameter, CR, the scale factor parameter, SF, and the number of chromosomes in the population, NP, 
have been set to 0.60, 0.95 and 200, respectively. The choices of CR and SF allow a gradual and successful exploration of a
complex search space and maintain diversity in the population. A large population formed by NP ¼ 200 chromosomes has 
been used to allow a deep exploration of the multidimensional search space [36].

With respect to the BDE search termination criterion, in this work, the decision on when to stop the search is taken by 
observing the evolution of the Lebesgue-measure of the hyper-volume under the Pareto-optimal set with respect to a lower
reference bound usually the ideal worst values of each objective function) [73]. In practice, when two Pareto fronts are com-
pared, higher is the value of such indicator, better is the performance in terms of objective function evaluation and wider is
the exploration of the search space. In our case, we set the lower reference point to ð0; 0; 0Þ, which are the worst possible 
value of our objective functions.
Fig. 5 shows the evolution with the number of performed iterations of the value of the Lebesgue integral of the hyper-volume 

under the Pareto-optimal set. Notice that the most significant increase of the hyper-volume is obtained in the first
Fig. 5. Evolution of the hyper-volume under the Pareto-optimal frontier with the number of generations.



40 generations, followed by a slower increasing monotonic trend. The search is stopped at the 300th generation, when the 
hyper-volume reaches a stable value. The total computation time on a quad core computer with 2.80 GHz CPUs and 16.0 GB 
of RAM has been of 46 h.
4.3. Results

Fig. 6 shows the Pareto-optimal frontier identified by the proposed method at the last generation (circles) and that already 
reported in Fig. 4, which refers to the 105 single features directly obtained from the 21 measured signals before the feature 
fusion step (asterisks).

Notice that the HIs found by the proposed method are characterized by large values of Prognosability and the Pareto fron-
tier tends to dominate that of the features directly extracted from the raw signals, with the exception of our solutions at the 
bottom right corner characterized by very large Monotonicity and small Prognosability.

Fig. 7 shows the evolution of the HIs on trajectories of the validation set corresponding to solutions of the Pareto frontier 
characterized by the largest Monotonicity (z�mono), the largest Trendability (z�trend), the largest Prognosability (z�progno), obtained by 
applying the TOPSIS method (z�topsis), and two features directly extracted from the raw signals: one obtained by applying the
TOPSIS method to the set of features directly extracted from the signals (z11, since it is the 11th raw signal) and one of those 
characterized by large Monotonicity and small Prognosability (zemd, since is one of the EMD-derived features). Notice that this 
latter HI is not satisfactory for prognostic applications given the very different end-of-life HI values.

As expected, the solution characterized by the largest Monotonicity tends to be very smooth and noiseless, but the HI val-
ues at the end of the trajectories have a very spread distribution. On the contrary, the solution with the largest Prognosability 
has an extremely narrow distribution of end of life HI values, but it is characterized by a noisy behavior of the HI. The TOPSIS 
solution provides a trade-off between the previous two solutions, since it is smoother than the solution with the largest 
Prognosability and its final values are more narrow-distributed than those of the solution with the largest Monotonicity. The 
HI corresponding to the solution with the largest Trendability is more noisy than that of the TOPSIS solution, whereas that 
corresponding to the feature directly extracted from the raw signal is characterized by a more spread distribution of the end-
of-life HI values.

Table 1 shows the features forming the subset of the selected solutions, i.e. the signals used for the extraction of the 
corresponding HI. Raw signals tend to provide HIs with a more satisfactory performance in terms of Prognosability
Fig. 6. Pareto frontier of the proposed method (dots) and of features directly extracted from the raw signals (asterisks). The features z�mono is indicated by
‘‘mon”, z�trend by ‘‘tre”, z�progno by ‘‘pro” and z�topsis by ‘‘top”.



Fig. 7. HIs associated to the selected solutions for some of the trajectories of the validation set.

Table 1
Subsets of features associated to the selected solutions.

z�topsis z�mono z�trend z�progno z11

Raw signals sig:2 U U

sig:3 U

sig:4 U U U

sig:11 U U

sig:15 U

sig:17 U

Operating conditions cnd:oper:2 U

cnd:oper:3 U

EMD-derived features slope sig: 2 U

slope sig: 3 U

slope sig: 11 U

slope sig: 15 U

variance sig: 2 U

variance sig: 3 U

variance sig: 4 U U U

variance sig: 7 U

variance sig: 15 U

variance sig: 20 U
(z�topsis, z
�
trend, z

�
progno and z11), whereas EMD-derived features tend to drive toward more monotonic HIs thanks to their capa-

bility of smoothing the signals (z�mono and zemd). Finally, the presence of the operating conditions in the feature subset seems
to contribute to the Trendability of the HI.

The TOPSIS solution, which is characterized by a satisfactory compromise in terms of Monotonicity and Prognosability, is
extracted from a feature subset formed by raw signals and EMD-derived features. The presence in the Pareto frontier of solu-
tions formed by different numbers of features ranging from 1 (z�mono) to 13 confirms that the BDE algorithm has been able to
explore thoroughly the search space.



4.4. Analysis of the performance of the prognostic model built with the TOPSIS HI solution

In this section, we verify the performance of a prognostic data-driven model built using as input signal the HI extracted 
from the features of the TOPSIS solution. The results of the model are compared with those obtained by a similar model 
whose input is the measured signal with the most satisfactory trade-off among the metrics of Monotonicity, Trendability 
and Prognosability, i.e. raw signal 11.

The prognostic model is based on the use of Extreme Learning Machine (ELM), which is a single hidden layer feed-forward 
neural network (SLFN) [28] whose input-hidden layer parameters are randomly sampled. Thus, the only parameters to be 
optimized are the hidden-output layer parameters which are set by solving a linear system. Therefore, compared to a tradi-
tional feed-forward neural network, an ELM is faster to train and it has been shown to provide similar performances 
[78,26,27,79]. The ELM inputs are the values of the HI at present time and at the previous W consecutive time steps
HIðtÞ; HIðt � 1Þ; . .  .  ; HIðt � WÞ, whereas the ELM output is the predicted RUL. With respect to the setting of the time-
window length W, larger is W, more information are provided to the ELM model on the dynamic evolution of the HI and more
accurate are expected to be the predictions. On the other side, too large time-windows can result in ELM models with many 
input signals, whose training requires a very large number of patterns (curse of dimensionality). Furthermore, larger is the 
time-window length, larger is the time at which the first RUL prediction can be provided by the ELM model, which requires W 
measurements after the onset of the degradation process. In this work, a trade-off value of W equal to 11 is used, while 
Section 4.6 discusses the dependence of the ELM model performance from the time-window length W.

Number of neurons in the hidden layer and type of activation function of the TOPSIS solution have been chosen by adopt-
ing a trial-and-error procedure considering as objective the minimization of the Relative ErrorðREÞ on the test set [51]. Dif-
ferent ELMs with different combination of number of neurons in the hidden layer and type of activation function have been
trained and their performances have been evaluated. The best performances have been obtained by an ELM characterized by
a hidden layer of 200 nodes and a sigmoid activation function.

In order to evaluate the performance of the obtained prognostic model, we consider the prognostic metrics of
Cumulative Relative Error ðCREÞ [51], Average a � k Accuracy ðAALÞ [51] and Average Steadiness Index ðASIÞ [42].

Considering the generic ith run-to-failure trajectory of the validation set, Relative Error;REiðtÞ; at time t is defined by:
REiðtÞ ¼ RULiðtÞ � dRULiðtÞ
RULiðtÞ

�����
����� ð14Þ
where RULiðtÞ and dRULiðtÞ are the ground truth for RUL and the ELM RUL prediction at time instant t, respectively. CRE is the

average of REiðtÞ over all the time instants at which the RUL is predicted and over all the Nval validation trajectories:
CRE ¼ 1

Nval

XNval
i¼1

1
EOLi � t0

XEOLi
t¼t0

REiðtÞ
 !

ð15Þ
where EOLi is the time index of the actual end of life of the ith trajectory, while t0 is the first time instant at which the RUL is
predicted. Small values of CRE indicate more accurate prediction.

The AAL quantifies prediction quality by determining whether the prediction falls within specified limits at particular
times with respect to the ground truth for RUL. The a� k Accuracy ðALÞ is a binary metric that evaluates whether the RUL
prediction at specific time instants tk falls within specified a -bounds from the ground truth for RUL. The time instants tk
are fractions of time between the time instant of the first prediction and the end of life, while the a-bounds are expressed
as percentage of the ground truth for RUL at each tk.

In this work, since we want a point-wise evaluation of the prognostic performance, we do not set the value of the k
parameter, but we calculate AL for each time instant of each trajectory:
ALiðtÞ ¼ 1; if ð1� aÞ � RULiðtÞ 6 dRULðtÞ 6 ð1þ aÞ � RULiðtÞ
0; otherwise

(
ð16Þ
A scalar metric is, then, obtained by computing the average AL over all the time instants and all the trajectories:
AAL ¼ 1

Nval

XNval
i¼1

1
EOLi � t0

XEOLi
t¼t0

ALiðtÞ
!

ð17Þ
The larger is the AAL value, the more accurate is the model, since more predictions fall within the corresponding a -bounds.
The third metric is the ASI, which quantifies the stability of the failure time predictions. The standard deviation of the

difference between the predicted RUL and the ground truth for RUL over a sliding time-window of tw ¼ 10 time instants
is computed and averaged along the trajectory lengths:
SIi ¼ 1
EOLi � t0 � twþ 1

XEOLi�twþ1

t¼t0

stdð½dðtÞ;dðt þ 1Þ; . . . ;dðt þ tw� 1Þ�Þ ð18Þ



where dðtÞ ¼ RULiðtÞ � dRULiðtÞ.
Finally, the obtained SIi values are averaged over all the validation set trajectories:
R
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L

Fig. 8.
ASI ¼ 1

Nval

XNval
i¼1

SIi ð19Þ
The smaller is the ASI value, the more stable is the RUL prediction.
Fig. 8 shows the obtained RUL predictions on two representative trajectories of the validation set. Although the RUL pre-

dictions provided by the two models tend to have the same behavior, the TOPSIS HI-based model is more accurate and stable. 
Table 2 reports the prognostic metrics obtained by the two ELM models, whose input signals are the HI extracted from the 
feature subset corresponding to the TOPSIS solution and that obtained by directly using signal 11, respectively.

Notice that the TOPSIS HI-based model outperforms the signal 11 HI-based model when the AAL and the ASI metrics are 
considered, whereas it has a less satisfactory value of the CRE metric.

Fig. 9 shows the average value of the prediction errors as a function of the fraction of component life over all the valida-
tion set trajectories. Notice that the predictions provided by the TOPSIS HI-based model are on average more accurate than 
that of the signal 11 HI-based model, except that for the last few time instants of the run-to-failure trajectory. Notice that, 
since this last part of the run-to-failure trajectories remarkably influences the CRE metric, being the denominator in Eq. (14) 
very small, the average CRE of the signal 11 HI-based model is smaller even if in all the other parts of trajectories the TOPSIS 
HI-based model is more accurate.

A possible cause of the unsatisfactory performance of the TOPSIS HI solution in the last parts of the run-to-failure trajec-
tories is that the residual obtained from the AAKR fusion approach is computed with respect to a training set made by the
last sf ¼ 5 signal measurements taken before failure from the training trajectories. Therefore, the HI, i.e. the AAKR residual
quantifying the similarity between the measurements and the training set, tends to 0 some instants before the component 
failure, leading to slightly anticipated predictions of the failure times. Section 4.5 discusses the influence of parameter sf on 
the ELM model performance.
4.5. Analysis of the influence of sf on the model performance

The number sf of measurements that are extracted from the last part of the run-to failure-degradation trajectories and 
included in the training set is a parameter that needs to be set. One difficulty is that tuning of sf by trial-and- error is unfea-
sible from a computational point of view, since the identification of the optimal health indicator would require the execution 
of a dedicated time-consuming BDE search for each considered sf (Section 4.2).

For guidelines, it is expected that sf > 5 would allow obtaining more patterns for training the AAKR and, thus, more com-
plete representations of the failure state and more robust health indicators. On the other side of the coin, increasing sf has 
the undesired effect of including in the AAKR training set patterns collected sf time units before the component failure and, 
thus, of causing systematic underestimation of its RUL.
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Table 2
Metrics for the evaluation of prognostic performance.

feature subset CRE AAL ASI

z�topsis 0.598 0.389 6.169

z11 0.582 0.297 7.508
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Fig. 9. Average value of the RUL prediction error at different percentages of the component life. The dotted line refers to the TOPSIS HI-based model, the
solid line to the signal 11 HI-based model.
To investigate the effect of small sf on the overall ELM model performance in this case study, the HI indicator has been
developed considering sf ¼ 1 and the corresponding ELM has been built. Table 3 reports that the reduction of sf causes a
remarkable reduction of the overall performances of the ELM model due to the reduction of the AAKR training set, and, thus,
the incomplete representation of the component failure state.

In the end, setting sf requires a trade-off between the two desiderata of:

� providing a complete representation of the failure state conditions, which would require training the AAKR model using a
large number of patterns (large sf );

� predicting with precision the failure time, which would require including only the last measurements in the AAKR train-
ing set (small sf ).

The optimal trade-off depends from various factors which are specific of the application under investigation, such as the 
number of run-to-failure trajectories available, the average lifetime of the component and the consequences of the fault. 
Future work will be devoted to the development of a systematic methodology for setting the value of sf and building the 
health indicator at the same time. To this aim, the use of coevolutionary search algorithms seems promising [64].

A drawback of the methodology proposed in this work is that unsatisfactory prognostic performances can result due to 
RUL underestimations in the last part of the component run-to-failure trajectories (Fig. 9). The magnitude of the associated 
prognostic error is expected to decrease in the case in which many run-to-failure trajectories are available, which would
Table 3
ELM prognostic performance as a function of the number sf of measurements extracted from the last part of
the run-to failure-degradation trajectories and included in the training set.

sf CRE AAL ASI

5 0.598 0.389 6.169
1 0.8273 0.2781 7.3903



allow obtaining a complete and satisfactory representation of the component failure state using only the last pattern of the
run-to-failure trajectories (sf ¼ 1). Notice that the prognostic errors are related to RUL underestimations, which are prefer-
able to RUL overestimations in several industrial applications, from both component availability and safety point of views.
4.6. Analysis of the influence of the ELM time-window length on the model performance

Fig. 10 shows the performance of the TOPSIS HI-based models as a function of the length of the ELM time-window. It is 
interesting to observe that the relative accuracy of the TOPSIS HI-based model, measured by the metric CRE; tends to reach 
the most satisfactory value for time-windows of length around 12. Time-windows longer than 12 are characterized by 
slightly more satisfactory performances from the point of view of the accuracy (AAL metric) and stability (ASI metrics). 
Increasing the number of ELM inputs has the effect of increasing the smoothness of the predictions and, thus, improving 
accuracy and stability, whereas it causes larger errors in the last parts of the run to failure trajectories, that negatively influ-
ence the CRE metric.
5. Conclusions

In this work, we have developed a general and systematic method for selecting a health indicator of the degradation state
of industrial equipment, from signals measured during its operation. The developed method is based on the three steps of
feature extraction, feature selection and feature fusion. In the first step, the measured raw signals are treated to reduce
the measurement and process noises, and extract degradation trends. Since hundreds of features are typically available, a
Multidimensional Binary Differential Evolution (BDE) algorithm has been used to select the feature subset to be used for
defining the HI, among the several possible combinations of the features. The objectives of the search have been the opti-
mization of statistical properties of HI monotonicity, trendability and prognosability.

The main originality of this work has been to frame the problem of selecting HIs as a feature selection problem. From the
methodological point of view, the novelties of the proposed method are:

� using an AAKR model to combine different features into a single HI;
� performing a BDE multi-objective search for the selection of the optimal HI.

The proposed method has been applied for the prediction of the Remaining Useful Life of a fleet of turbofan engines work-
ing under variable operating conditions. It has been shown able to provide more satisfactory HIs than those found in liter-
ature approaches based on the direct use of features directly extracted from the signals. Furthermore, the performance of an
ELM-based prognostic model based on the selected HI has been shown to be satisfactory, in spite of the slight underestima-
tion of the component RUL.
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Appendix A

A.1. Empirical Mode Decomposition (EMD)

In [38], Empirical Mode Decomposition (EMD) is used to extract information about the effective evolution of the degra-
dation over time of mechanical systems. The main idea of EMD is to locally describe a time dependant signal as the sum of 
fast oscillating components superimposed to slow oscillating ones. The residual of this approximation is the trend of the sig-
nal, whose variations has been shown to catch the degradation evolution over time.

The EMD decomposes each feature into all the possible Intrinsic Mode Functions (IMF) until the residual of the input time 
series is a monotonic or constant signal. IMF represents a simple oscillatory mode in which amplitude and frequency along 
the time axis can vary.

A time series is considered an IMF if it satisfies the following requirements:

� the number of local extrema of the time series and the number of its zero-crossings must be equal or differ at most by
one;

� at any time the mean value of the upper envelope determined by the local maxima and the lower envelope determined by
local minima is zero.

The EMD algorithm consists of the following steps [25]:

1. find all the local maxima and minima of the input signal and compute the corresponding upper and lower envelopes using 
cubic splines;

2. subtract the mean value of the upper and lower envelopes from the original signal;
3. repeat the previous steps until the signal remains nearly unchanged and an IMF is obtained;
4. remove from the signal the IMF obtained at step 3 and repeat the previous steps if the IMF is neither a constant nor a 

trend.
This procedure is visually explained in Fig. 11, where XðtÞ is the input signal.

The generated residual should be constant or monotonic, and it represents the general trend of the feature.

The trend of a feature can represent the severity of the degradation of the component or system; therefore variations in
the trend show the evolution of the degradation over time. In order to describe and summarize these variations, we use the
following quantifiers: slope and intercept of the linear approximation of the trend, mean and variance of the trend.

At each time instant tcurrent of each history, all the observations, starting from the initial time instant t0 to the current one
tcurrent , are processed to measure the proposed quantifiers.

To measure the slope and the intercept, the linear approximation of the trend is calculated, namely the best fitting first
degree polynomial of the form Y ¼ aX þ bwith respect to least squares, fromwhich we obtain the slope a and the intercept b.

The mean and the variance are calculated using their classical expressions:
mean ¼ 1
n

Xn
j¼1

xj; variance ¼ 1
n� 1

Xn
j¼1

ðxj �meanÞ2 ð20Þ
where xj is the input observation and n is the length of the trend.
Fig. 11. Signal decomposition in IMFs and residual.



 

 
 
 
 
 
 

 

A.2. Auto-Associative Kernel Regression (AAKR)

Different empirical modelling techniques have been applied to the problem of signal reconstruction, such as Auto-
Associative Kernel Regression (AAKR) [24,2], Principal Component Analysis (PCA) [18,21], Robust Principal Component Anal-
ysis [77], Fault-relevant PCA (FPCA) [68], Partial Least Squares (PLS) [39], Evolving Clustering Method (ECM) [70], Parzen
Estimation [32,11], fuzzy-logic based systems [34], AutoAssociative (AA) and Recurrent (R) Neural Networks (NN)
[7,20,41,49,65]. In this work, we consider AAKR which has been shown to provide more satisfactory performance than ECM
and PCA [12] and is less computationally demanding than AANN, RNN [6] and Parzen Estimation [29]. Furthermore, notice
that in many industrial applications of condition monitoring, such as those in energy production plants, it is common to
periodically retrain or update the reconstruction models in order to follow the gradual modifications of the signal behavior
due to slow degradation processes, maintenance interventions and minor plant reconfigurations. Thus, it is important to
develop reconstruction models, such as AAKR, that are easy to train and characterized by few parameters which can be set by
plant personnel.

The basic idea behind AAKR is to reconstruct at time t the values of the signals expected in normal conditions, x̂ncðtÞ, on
the basis of a comparison of the currently K observed signal measurements (also referred to as test pattern or test set),

xobsðtÞ ¼ ½xobs1 ðtÞ; xobs2 ðtÞ; . . . ; xobsK ðtÞ�, and of a set of historical signals measurements (also referred to as training set) collected
during normal conditions of operation. In practice, AAKR performs a mapping from the space of the measurements of the
signals xobsðtÞ to the space of the values of the signals expected in normal conditions, x̂ncðtÞ:
x̂ncðtÞ ¼ u xobsðtÞjXobs�nc
� �

: RK ! RK ð21Þ
where Xobs�nc denotes a L	 K matrix containing L historical observations of the K signals performed in normal conditions.
Since the mapping is independent from the current time t at which the signals observations are performed, the time t will
be omitted for brevity of notation. Thus, xobsk , k ¼ 1; . . . ;K , denotes the value of signal k at current time. The reconstruction of
the expected values of the signals in normal conditions, x̂nc ¼ ½x̂nc1 ; x̂nc2 ; . . . ; x̂ncK �, is performed as a weighted sum of the avail-
able historical observations: for the generic kth of x̂nc , we write:
x̂nck ¼
PL

l¼1wl � xobs�nc
lkPL

l¼1wl

ð22Þ
The weights wl measure the similarity between the test pattern xobs and the lth historical observation vector xobs�nc
k . They

are evaluated through a kernel Ker, i.e. a scalar function which can be written as a dot product [76,80]. From the mathemat-
ical point of view, a kernel is a function defined in this way:
Ker : RK 	 RK ! R s:t: 9/ : RK ! H;Kerðx; yÞ ¼ h/ðxÞ;/ðyÞi ð23Þ

where / is a map from the observation space RK in a (possible countable infinite dimensional) Euclidean space H; and h�; �i
denotes the dot product. Traditional AAKR adopts as Ker function the Gaussian Radial Basis Function (RBF) with bandwidth
parameter h:
wl ¼ Kerðxobs; xobs�nc
l Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2ph2
p e�

jjxobs�xobs�nc
l

jj2

2h2 ð24Þ
Notice that, according to Mercer’s theorem (Burges, 1998), the expression ofwl can be seen as a dot product in a countable
infinite dimensional Euclidean space:
e�
1
2jjxobs�xobs�nc

l
jj22 ¼

X1
i¼0

ðxobsTxobs�nc
l Þi

i!
e�

1
2jjxobs jj22e�

1
2jjxobs�nc

l
jj22 ð25Þ
In this work, in order to account for differences in the scale and variability of the different signals, a Mahalanobis distance

is used, defined by the covariance matrix S, such that:
jjxobs � xobs�nc
l jj2mahal ¼ ðxobs � xobs�nc

l ÞTS�1ðxobs � xobs�nc
l Þ ð26Þ
Assuming independence between the signals, S is given by:
S ¼
r2

1 � � � 0

..

. . .
. ..

.

0 � � � r2
K

2664
3775 ð27Þ
where r2
k denotes the estimated variance of the kth signal in the historical observations. Alternatively, instead of using the

covariance matrix S, one can obtain the same results by mapping the data into a normalized space:



yk ¼
xk � lk

rk
ð28Þ
where lk is the mean value of the kth signal of the historical dataset, and by applying a Gaussian kernel with Euclidean dis-
tance in the normalized space.

A novelty we have introduced in the application of AAKR in this work is that the data of the training set are collected in
the opposite way with respect to the classical idea of AAKR: we want to reconstruct the values of the signal in abnormal
conditions. The ratio behind this is that we want to be sure that the reconstruction of the observed signal is as accurate
as possible when it’s close to failure rather than when its working conditions are normal, because, obviously, it’s much more
important to identify a possible failure situation, which may lead to dangerous consequences, rather than a normal situation.

A.3. TOPSIS method for the selection of the best compromise solution

The basic principle of this technique is that the chosen alternative should have the shortest distance from the ideal solu-
tion and the farthest distance from the negative ideal solution. Before applying the TOPSIS method [43], we have to normal-
ize the values of the solutions of the Pareto frontier in a scale from 0 to 1, where 0 corresponds to the minimum value of the 
objective function in the Pareto frontier and 1 to the maximum value.

� P is the number of solutions in the Pareto-optimal set, while dim is the number of objective functions (in our case the
objective functions are Monotonicity, Trendability and Prognosability, thus dim ¼ 3).

� Compute for each solution zp ¼ ½zp;1; zp;2; zp;3� in the Pareto-optimal set the values ~zp;a:
~zp;a ¼ FaðzpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP
s¼1FaðzsÞ2

q ð29Þ
with p ¼ 1
 P and a ¼ 1
 dim.
� Calculate the weighted values vp;a:
vp;a ¼ ~zp;a �wa ð30Þ
with
Pdim

i¼1wi ¼ 1, p ¼ 1
 P and a ¼ 1
 dim.
Where wa denotes the relative importance of the ath objective function, and it’s taken equal to 1

3 for all the objectives.

� Determine the ideal solution and negative ideal solution:
A� ¼ fv�
1;v

�
2;v

�
3g ¼ max

p
ðvp;aja ¼ 1
 dimÞ ð31Þ

A� ¼ fv�
1 ; v

�
2 ;v

�
3 g ¼ min

p
ðvp;aja ¼ 1
 dimÞ ð32Þ
� Compute the separation measures, according to the Euclidean distance. The separation of each candidate solution from
the ideal one is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir
D�
p ¼

Xdim

a¼1
ðvp;a � v�

aÞ2 ð33Þ
Likewise, the separation from the negative ideal one is given by
D�
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXdim

a¼1
ðvp;a � v�

a Þ2
r

ð34Þ
with p ¼ 1
 P.
� Calculate the relative closeness to the ideal solution. For each candidate solution the relative closeness with respect to A�

is defined as
�

C�
p ¼

Dp

D�
p þ D�

p
ð35Þ
with p ¼ 1
 P.
� Rank the solutions in increasing order. The solution z�p whose value of C�

p is the highest is the best compromise solution for
the TOPSIS method.
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