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Abstract  12 

Advanced sensor and communication technologies can make natural gas supply systems 13 

smarter than ever before, in both system management and operation. This paper presents the 14 

development of a novel data-driven Demand Side Management, whose framework includes demand 15 

forecasting, customer response analysis, prediction of dynamic condition of the gas network, quick 16 

supply reliability evaluation, multi-objective optimization and decision-making. The aims of this 17 

DSM method are to smooth load profiles, improve company profit and enhance system reliability, 18 

by means of a dynamic pricing strategy. To verify the effectiveness of the developed framework, a 19 
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case study is considered, concerning the management of a relatively complex gas supply system, 20 

wherein four different pricing periods are introduced for comprehensively testing. The results in the 21 

case study show that the DSM framework is able to effectively achieve the targets of peak shaving 22 

and valley filling. Besides, it can significantly and stably improve the system efficiency and 23 

reliability, for different pricing periods. Finally, pricing period determination is discussed in relation 24 

to the features of performance.   25 
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Multi-objective optimization 27 

Nomenclature  

CPP Critical Peak Pricing RR risk reduction 

DR Demand Response SR risk of natural gas shortage 

DSM 
Demand Side 

Management 

Supply 

Capacitytotal,max 

the maximal total supply 

capacity 

LNG liquified natural gas Uc 

customer utility for 

consequence quantification of 

risk 

LSTM 
Long Short Term 

Memory 
Us profit of supplier 

MAE Mean Absolute Error Ui  utility of the Customer i 

MRE Mean Relative Error c speed of sound 

RTP Real-Time Pricing cs silhouette width 

RNN recurrent neural network cost 
total cost of gas production and 

transportation 

RMSE Root Mean Squared Error d forecasted demand  

TOU Time Of Use l customer consumption 

UGS underground gas storage pr natural gas price at time  

  pi delivery pressure at node i 

A cross-section area pi,prediction 
predicted delivery pressure at 

customer i 

ACFR 
aggregate consumption 

fluctuation reduction 
q squash factor 

ACS 
aggregate customers’ 

satisfaction 
rc cluster radius 

CS cluster silhouette s customer satisfaction 

E demand elasticity of price t time t 



s

optimalF  
representative solution in 

family s 
vi,t, ki,t positive constant factor 

G objective value  
cumulative standard Gaussian 

distribution  

K 
the number of clustered 

families 
ψaccept,ψreject accept ratio and reject ratio 

L gas consumptiom βdemand 
reliability coefficient of 

customer 

LF load fluctuation   
mean value and variances of 

relevant parameters 

Ltotal 

total natural gas 

consumption 
τM  

PI profit improvement Δt 

average duration of time that 

the consumption of the line-

pack capacity  

PR peak reduction Δxi,j 
length of the part of Pipeline j 

connection customer i 

P(Gnorm(i)) potential of Gnorm(i)  gas density 

Plim,i 

the customer contracted 

minimum delivery 

pressure 

γ vector of objective values 

Qi,j 

gas flow into delivery 

node i from the 

connecting pipeline j 
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1. Introduction  29 

Natural gas is an important energy resource because of its natural benefit including relatively 30 

reduced capital cost, high energy containing value, low greenhouse gas emission and so on. Besides, 31 

that, its stability of production and supply makes it more competitive than other clean energy 32 

resources, like wind power and solar energy, in an integrated energy system [1]. According to the 33 

estimation of the International Energy Agency, by 2030, 25% of the world energy consumption will 34 

be covered by natural gas [2]. Hence, it is an essential issue to maintain a supply-demand balance 35 

of natural gas.  36 

Natural gas always needs to travel very long distances (hundreds, even thousands of kilometers) 37 



to different customers, e.g., large local distribution networks, gas-fired power plants, large industries, 38 

etc. Such natural gas supply networks are now always closely integrated into the integrated energy 39 

systems, as an important component for flexibility improvement, peak-shaving and coping with the 40 

uncertainties of some renewable energy sources. Considering these issues, supply reliability and 41 

operation efficiency of the natural gas transmission pipeline networks becomes even more 42 

fundamental than before, for energy supply security and its efficiency. 43 

The reliability of natural gas supply systems is threatened by a number of problems, such as 44 

uncertain operation conditions, complex environments, rapidly increasing natural gas market 45 

demands and significant demand fluctuations from the customers. In particular, short-term demand 46 

fluctuation is a difficult problem, which decreases gas supply reliability, system efficiency and 47 

production profit. The main reason for these short-term fluctuations is that the gas price is kept as 48 

fixed on relatively long time horizons (several seasons or years) and the customers, unaffected by 49 

the strains on the gas supply systems, use gas just as their habits, which can cause high peaks during 50 

the day and low valleys in the night.  51 

To deal with this problem, smart grids and smart energy systems are developing advanced 52 

Demand Side Management (DSM) strategies to reduce the peaks and fill the valleys by influencing 53 

customers’ consumption patterns, via economic methods [3]–[5]. These DSM strategies can be 54 

classified into different groups according to different principles. In this paper, the DSMs are mainly 55 

categorized as energy efficiency methods and Demand Response (DR) methods [6], according to 56 

the timing and impact of the DSM methods on the customers. Energy efficiency methods include 57 

all the permanent efficiency improvement methods [7], for example, equipment replacement and 58 

system update. DR methods can control the patterns of the customers’ load [8]–[10]. Furtherly, 59 



according to the way to influence the customers, the DR methods can be classified as Incentive-60 

based DR and Time-based DR. The Incentive-based DR are triggered by specific situations [6], [11]: 61 

for example, special contracts for some specific customers with limited sheds, voluntary behaviors 62 

to emergency signals [12], customers bidding for curtailing at reasonable prices, etc. The Time-63 

based DR methods are mainly performed by changing the price of gas in time to desired demand. 64 

According to the rules to adjust the price, the Time-based DR methods can be grouped by Time-of-65 

Use (TOU) method [13], Critical Peak Pricing (CPP) method [14] and Real-Time Pricing (RTP) 66 

method [15]. From the literature review, it emerges that the Time-based DR methods are the most 67 

effective DSM strategies, because their inherent characteristics are more suitable to the real-world 68 

unsteady and fluctuating energy consumptions. This paper focuses on developing a DSM strategy 69 

from the Time-based perspective. Properties of the three types of Time-based methods and survey 70 

results are presented in Table 1.  71 

Table 1 Survey about the different kinds of Time-based DR methods 72 

 Main 

characteristics 

Applications 

Time-of-Use 
Static price 

schedule 

Divide year, season or day into specific time blocks [7], 

and specify tariffs according to different methods, such as 

security-constrained unit commitment [16], Stochastic 

Optimization Approach [17], [18], Monte Carlo simulation 

[19], nonlinear economic modeling [20] and multi-

objective optimization [21]. 

Critical Peak 

Pricing 

Less 

predetermined 

variant, between 

TOU and RTP 

Focus on end users and analyze responses of different 

kinds of customers during peak periods in order to make a 

suitable schedule, by means of statistic methods [22], [23], 

agent-based modeling [24], regression modeling [25] and 

mathematical optimization [26] 

Real-Time 

Pricing 

Market prices 

timely act on 

customers 

The most effective strategy, change customer’s profiles of 

consumption by real-time wholesale price. The methods 

include reinforcement learning [3], agent-based modeling 

[27], network analysis [28] and so on.  

 73 



Considering the similarity of the natural gas supply systems and the electric power grids, there 74 

is a huge potential capacity to use these DSM methods to improve the reliability and efficiency of 75 

natural gas supply systems subject to consumption fluctuation. And more so, the recent significant 76 

progress on big data analytics and smart technology for application to natural gas supply systems 77 

can provide support to develop effective DSM strategies in natural gas supply systems [29], [30].  78 

Unfortunately, the DSM strategies of smart electric power grids cannot be directly transferred 79 

to the natural gas supply systems, because [31], [32]: (1) natural gas is a compressible fluid, 80 

presenting transient behaviors in the pipeline transportation process; (2) because of the 81 

compressibility, natural gas can be stored in pipelines and create a “buffer area”, which is quite 82 

different from power grids. Limited by these issues, the adjustments of system operation and 83 

resources allocation are often carried out based on off-line simulations, even though the current 84 

pipeline network systems already have good abilities to perform on-line monitoring and control [33]. 85 

Hence, besides the classical abilities of DSM, a feasible DSM strategy for natural gas supply 86 

systems also requires (1) accurate on-line prediction module of dynamic conditions of the complex 87 

gas pipeline networks; (2) evaluation of the short-term supply reliability with due consideration of 88 

the compressibility of the natural gas.  89 

Considering the specific issues of natural gas supply systems, in this paper we develop a novel 90 

data-driven Real-Time Pricing method which can be used in the future smart gas supply systems to 91 

smooth customers’ consumption fluctuation, improve supply reliability, increase the profits of the 92 

supply side and the satisfaction of the customers side. The developed DSM method mainly includes 93 

six parts: the hourly natural gas demand forecasting part, the system dynamic condition prediction 94 

part for complex gas pipeline networks, the supply reliability evaluation part, the customer behavior 95 



analysis part, the multi-objective optimization part and a final decision-making part. The main 96 

contributions of this work are summarized as follows: 97 

(1) A novel systematic data-driven DSM method is developed for complex smart natural gas 98 

supply systems. Besides the classical properties of the DSM methods for electric power smart grids, 99 

the unique issues in natural gas supply systems, i.e., transient behaviors in the pipeline transportation 100 

process and line-pack storage, are considered in the development of DSM framework. As the best 101 

knowledge of the authors, this is the first time that the properties of natural gas pipeline network is 102 

considered in the research on DSM, which can provide new theoretical support for DSM in 103 

Integrated Energy Systems. 104 

(2) A data-driven framework for natural gas supply system management is proposed. 105 

Advancing the classical management methods based on off-line simulation, the proposed 106 

framework overcomes the limitation of the strict requirements of accuracy of system description, 107 

boundary condition and initial condition, which enable the real-time management in complex 108 

natural gas pipeline networks, based on online data. This can provide interesting perspectives for 109 

the introduction of smart technologies into natural gas supply systems.  110 

2. Methodology  111 

2.1 DSM framework for smart natural gas supply systems  112 

The general framework of DSM method can be sketched as in Fig. 1. Firstly, a prediction model, 113 

a recurrent neural network, RNN [34], in this paper, is used to forecast the demand of customers in 114 

future hours, based on the real-time data collected via smart metering at the demand side. Then, the 115 

forecast results are input to the customer response analysis model to predict the change of gas 116 

consumption in a specific time horizon, under a given price of gas. The results of the customer 117 



response prediction are combined with the real-time data of the pipeline network running conditions 118 

collected by the sensors, as input to the prediction model of the dynamic behavior of the complex 119 

pipeline network system. These corresponding prediction results, including delivery pressure at the 120 

demand sides and the outputs of the suppliers, are used to evaluate the supply reliability (based on 121 

the developed assessment method) and the profits of suppliers. Finally, the objectives of gas 122 

consumption fluctuation minimization, supplier profits maximization, supply reliability 123 

maximization and customer satisfaction maximization are integrated as a multi-objective 124 

optimization problem, here solved by the NSGA-II algorithm [35], [36]. Considering the complexity 125 

of the solution structure, decision-making rules are finally developed to find an optimal dynamic 126 

price.  127 

 128 

Fig. 1 DSM framework for smart natural gas supply systems 129 

2.2 The natural gas demand forecasting model  130 

Accurate gas demand forecasting is essential to the effectiveness of the DSM strategy. The 131 

researches of energy demand forecasting have explored different kinds of methods, including time 132 



series model [5], [37], regression model [38], [39] and artificial neural network [40]–[43]. Recently, 133 

some hybrid forecasting methods, integrating different models to overcome the relevant problems 134 

of the different, individual perspectives, have been proposed, giving better performance in terms of 135 

flexibility, computing efficiency, robustness, than the individual forecasting methods [30], [44], [45]. 136 

In this paper, we can firstly decompose the problem of natural gas demand forecasting into several 137 

sub-problems and, then, select proper methods to overcome them, respectively. Usually, natural gas 138 

demand data is complicated time series data, which significantly increase the difficulty of 139 

forecasting. Besides that, the complex relationships inside the demand data also add difficulty. Here, 140 

we develop a RNN-based hybrid forecasting method, as shown in Fig. 2: 141 



 142 

Fig. 2 Natural gas forecasting hybrid method 143 

The Long Short Term Memory, Bi-LSTM and LSTM [46], models need to be pre-trained based 144 

on historical consumption data and should, then, be updated periodically. Real-time natural gas 145 

consumption data, selected by the autocorrelation method [47], is used as the input of the model. 146 

The wavelet transform [48], [49] used here can decompose the complicated original real-time gas 147 

demand data into relatively simpler sub-series, which can effectively reduce the difficulty for the 148 

deep RNN (deep Bi-LSTM) model to learn the features of data. The RNN model is used to capture 149 



the patterns in the data because of the proved good performance of prediction on sequential-150 

structured data [50]. However, the traditional RNN models with shallow structure have presented 151 

limited capacity on large-scale, complicated data [51]. Hence, in this work, we use a deep Bi-LSTM 152 

model (shown in Fig. 3) to comprehensively learn the relationships among the gas consumption data 153 

from bi-directions, i.e., considering that the gas consumptions are influenced by both customers’ 154 

habits and the regulation of the government. Then, a LSTM layer is put on the top of the deep Bi-155 

LSTM model as a regression layer, to predict the future sub-series values based on the learned data 156 

features. Finally, the forecasted sub-series are integrated together by the method of reverse Wavelet 157 

Transform [30], to give the forecasting results of the natural gas consumption.  158 

 159 

Fig. 3 Unfolded structure of a Bi-LSTM model 160 

The developed forecasting model can capture and learn the complex relationships among the 161 

natural gas demand data, but the learned relationship sometimes are just noises. This problem of 162 

overfitting would be a serious problem, which can significant degenerate the forecasting accuracy. 163 

For this, we adopt the dropout technique to address the potential overfitting problem. The dropout 164 

technique is able to effectively prevent overfitting via randomly dropping units [52].  165 

2.3 The customer response model for consumption analysis 166 

One of the critical points in DSM is that the customers will act differently to different prices, 167 



which can be described by the price elasticity of demand in Microeconomics [53]. Based on that, 168 

the regulation center can use dynamic natural gas prices to stimulate the customers to change their 169 

patterns of consumption, to realize the target of gas load smoothing.  170 

According to this concept, the basis of the dynamic price incentive on the customers is not only 171 

“consume more gas” or “save more money”, but “get more feeling of happiness” by using natural 172 

gas. In economic theory, this kind of feeling is usually quantified by the value of Utility [54], [55]. 173 

In this work, we simplify the problem by assuming that happiness is generated by both using gas 174 

and saving money. Hence, the Utility function can be derived in the form of Equation 1, adopted 175 

from the reference [56].  176 

 1 1 1 1t t t tUc s pr l+ + + += − −    (47) 177 

in which Uct+1 denotes the Utility of the customer at time t+1, which needs to be maximized; st+1 178 

denotes the satisfaction of the customer by using natural gas; prt+1 denotes the price of natural gas 179 

at time t+1; lt+1 represents the customer’s consumption of natural gas at time t+1. The satisfaction 180 

st+1 can be calculated by Equation 2: 181 
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in which dt+1 denotes the forecasted gas demand (Section 2.2) of the customer in the specific future 183 

hours;  and  are calculated by Equations 3-4: 184 
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where n represents the fixed price of natural gas, which can also be understood as the price without 187 

dynamic pricing strategy. Et+1 is the demand elasticity of price at time t+1, which distinguishes 188 

between different types of customers and changes along with time. According to the Equations, the 189 

customer has a worse feeling of happiness when s>0 (l<d) than the normal condition of s=0. Hence, 190 

in Eq. 1, the satisfaction is given a negative sign.   191 

To find out the response of the customers under a given real-time price pr and a potential 192 

demand of d (forecasted value), we consider the first order derivative of Uc at time t+1: 193 
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which can be transformed as: 195 
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Then, 197 
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According to the second order derivative of Equation 7 and the ranges of  and , the diagonal 199 

elements of the Hessian Matrix are all negative, and the values of the off-diagonal elements are all 200 

equal to zero. This means that 
*

1tl +  is the optimal response of the customer with the given real-time 201 

price prt+1 and the forecasted demand dt+1. According to the rationality hypothesis in 202 

Microeconomics [57], the 
*

1tl +  is assumed to be the customer’s consumption of natural gas, in the 203 

time horizon set. 204 

2.4 Prediction model for dynamic conditions in complex natural gas networks 205 



based on Deep Learning 206 

The responses of the customers will cause dynamic changes in natural gas pipeline networks, 207 

because of the transient behaviors. The unsteady changes in the pipeline network increase the 208 

difficulty of system control and dynamic pricing. The traditional way to overcome this problem is 209 

to simulate the system behavior by some off-line software, with the given initial and boundary 210 

conditions and very detailed system descriptions [58]–[60]. It is very difficult, even impossible, to 211 

use the off-line simulations to realize the real-time dynamic pricing, because of their strict 212 

requirements of boundary conditions and system description, and the noises in the data collected by 213 

sensors. Considering that, in this work, we use a hybrid real-time prediction model, which is 214 

developed based on Deep Learning [61]. The structure of the prediction model is sketched as Fig. 215 

4: 216 

 217 

Fig. 4 Structure of the deep learning model for on-line condition prediction for natural gas pipeline 218 

networks [62] 219 



Firstly, the collected data, including the current pressure at the nodes and the forecasted 220 

demands at the customers, are preprocessed by data washing and normalization, as the input data of 221 

prediction. Then, these input data are fed into the deep neural network, which is constructed by 222 

stacking several auto-encoder models. According to the recent researches, the stacked auto-encoder 223 

model has a significant ability to capture dynamic properties in complex systems, such as power 224 

grids [63] and traffic systems [64]. Hence, here, we use the stacked auto-encoder model to learn the 225 

complicated patterns of the collected real-time data in the natural gas pipeline network, to improve 226 

the performance of the system condition prediction. The so-called auto-encoder model is a neural 227 

network that attempts to reconstruct the input signal at its output layer, after passing through hidden 228 

layers [65]. A sample auto-encoder model, with one input layer, one hidden layer and one output 229 

layer, is shown in Fig. 5. In the stacked auto-encoder model, the outputs from the lower hidden layer 230 

are taken as the inputs into the upper layer. 231 

 232 

Fig. 5 A sample auto-encoder 233 

To use the stacked auto-encoder model to perform the supervised prediction, a standard 234 

predictor is put on the top of the stacked auto-encoder model. In this work, a logic regression layer 235 

[66] is used as the predictor. In the supervised prediction, the delivery pressure in the next time step 236 

at the customers is taken as the outputs, because the concern is on the supply reliability at the 237 



demand side which is closely related to the delivery pressure. In the next section, the predicted 238 

delivery pressure values are used as the critical parameters for the short-term supply reliability 239 

analysis. 240 

2.5 Supply reliability analysis method for natural gas pipeline systems 241 

The researches of DSM in electric power grids focus on the balance between supply and 242 

demand for analyzing the security of energy supply. However, the supply reliability in natural gas 243 

pipeline networks involves more than the balance: the compressibility of natural gas and the 244 

transient behaviors during transportation make the problem far more complex than balance. 245 

Therefore, in the DSM of natural gas supply systems, we need to consider such property of the gas 246 

pipeline systems in the compromise between reliability and efficiency for the DSM strategy.  247 

In the short-term perspective, the supply reliability can be converted to a problem about 248 

maintaining a delivery pressure higher than the minimum contracted pressure of the customers. 249 

Hence, when determining dynamic prices, we need to consider to retain a reasonable pressure buffer 250 

under the influences of customers’ responses, the dynamic properties of natural gas pipeline 251 

networks and their uncertainties.  252 

In this section, a limit state function [67] is developed to evaluate the supply reliability of 253 

natural gas. The basic of this limit state function is the Mass Conservation Equation (Equation 8 254 

below), because the hydraulic characteristic of natural gas pipeline systems is essential for this 255 

problem.  256 
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The Mass Conservation Equation is, here, used to describe the relationship between the 258 



demands and the connected delivery pressure. Considering this, Equation 8 is transformed into 259 

Equation 9 at the node of Demand i, connecting Pipeline j: 260 
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in Equation 9, Li represents the gas downloaded from (Li >0) or uploaded to (Li <0) the pipeline 262 

network. Qi,j represents the gas flow into delivery node i from the connecting pipeline j. When gas 263 

flows from the pipeline j to the delivery node i, Qi,j is negative; otherwise Qi,j is positive. 264 

To clearly present the relationship between the delivery pressure and the demand, Equation 9 265 

is transformed into Equation 10: 266 
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in which pi,prediction represents the predicted delivery pressure in Section 2.4 and pi,potential represents 268 

the delivery pressure after the time interval t  , with the line-pack consumption rate of 269 

,

1

k

i j i

j

Q L
=

 
− 

 
 . 270 

Generally, the variables in the pipelines should be calculated by the combination of the Mass 271 

Conservation Equation and the Momentum Conservation Equation, and the iteration process is very 272 

time-consuming. But according to the traditional concept of reliability [68], the supply reliability is 273 

closely related to uncertainties and it is unnecessary to solve the exact value of these variables in 274 

the analysis of reliability. For this reason, we hypothesize that the customer consumption L and the 275 

flow rate Q are stochastic variables and, then, develop a limit state function (Equation 10) to predict 276 

the potential risk of supply shortages. Here the uncertainties of the flow rates in the pipelines 277 



represent the uncertainties of the system supply capacity, due to the uncertain events in the pipeline 278 

systems, e.g., pipeline failures, maintenance behaviors or third-party damages.  279 

 ( ) ( ), lim, , lim,, , ,i ij i i t i ij ij i i prediction ig Q L P P Km a Q L t p P= −  + −  (47) 280 

where lim,iP  is the customer contracted minimum delivery pressure; gi<0 represents the supply 281 

shortage at Customer i; the factor K is calculated by Equation 12: 282 
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where ,i jx  is the length of the part of Pipeline j influenced by the gap between the delivered 284 

amount of gas and the demand of Customer i; t   is the average duration of time that the 285 

consumption of the line-pack capacity may continue. 286 

In many works, the limit state functions are solved by large repearted Monte-Carlo simulations, 287 

which is, to some extent, impossible for real-time DSM. Considering that, in this work, the limit 288 

state function is conveniently developed as a linear function of the stochastic variables, by which 289 

the probability of gas shortage can be directly calculated by Equations (13)-(14): 290 

  Pr 0 ( )i ig  =  −  (47) 291 
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where  and  denote the mean values and the variances of the stochastic variables.  293 

In some conditions, probabilities of shortage are not sufficient to represent the target of 294 

reliability. Referring to the concept of risk, the consequences of shortages are also a critical element 295 



[69]. Generally, such consequences are quantified based on economic loss, which may be not 296 

suitable for the risk assessment of supply in large natural gas transmission networks. For example, 297 

we cannot compare the severity of natural gas shortages between an industrial province and a 298 

country’s capital, only according to the amount of GDP. Considering that, we use the Utility concept 299 

[70] to quantify the loss of natural gas shortages for different customers, by introducing the quadratic 300 

utility function [71]: 301 

 ( ) , 2

,
2

i t

i i i t i i

k
U L v L L= −  (47) 302 

where vi,t and ki,t are positive parameters which can be set, for example, by experts’ opinion. Ui (Li) 303 

represents the utility of the Customer i for the demand of Li. The quadratic function is always used 304 

as utility function considering its non-decreasing property and the non-decreasing corresponding 305 

marginal benefits [70].  306 

Hence, the risk of natural gas shortage (SR) of Customer i, under the pressure pi,prediction, can be 307 

calculated by Equation 16 below: 308 

 ( ),i i demand iSR U =  −  (47) 309 

The risk of natural gas shortage of the overall system, under the given dynamic price and the 310 

forecasted demands, is the summation of all customer risks: 311 

 ( ),system i demand iSR U =  −  (47) 312 

2.6 Multi-objective dynamic pricing strategy 313 

In the dynamic pricing process, it is important to simultaneously deliberate multiple factors 314 

related to the interests of the different stockholders, including improving the profits of the suppliers, 315 



enhancing the supply reliability of the natural gas pipeline network, smoothing the fluctuation of 316 

gas consumption and increasing the happiness of the customers. Hence, the dynamic pricing 317 

problem is naturally converted to a multi-objective optimization problem, whose targets include: 318 

(1) Maximization of the suppliers’ profits: 319 
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(2) Minimization of the risks of natural gas shortages: 321 
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(3) Minimization of the total fluctuation of natural gas consumption: 323 
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(3) Minimization of the total satisfaction of the customers: 325 

 ( ) 
( )

1

+1+1

1 +1

1 +1 1 1

1 1

max min 1

t

tt

n
t t

t t t t
prpr

i t

l pr
s pr d

d





+

+

+ + +

= +

    
 = −   
     

  (47) 326 

Besides those target functions, there is a latent optimization target of maximization the 327 

happiness of the customers, which has already be considered in the model of customer response 328 

analysis in Section 2.3.  329 

The multi-objective pricing strategy complies with the following constraints: 330 

 min 1 maxtpr pr pr+    (47) 331 

 1tcost pr +   (47) 332 

 ( )1 1i,min i,t+ t+ i,maxl l pr l    (47) 333 
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where pricemin and pricemax define the acceptable range of the natural gas price; cost represents the 335 

cost generated during the processes of gas production, transportation and management; li,min and 336 

li,max give the range of natural gas consumption of Customer i; Supply Capacitytotal,max represents the 337 

maximal supply capacity of the overall system.  338 

Many efforts have been devoted to finding the solutions of multi-objective optimization 339 

problems. In this paper, a Genetic Algorithm, i.e., the Non-dominated Sorting Genetic Algorithm-II 340 

(NSGA-II) [72], is chosen to solve the specific optimization problem. This algorithm has shown  341 

good performance on complex multi-objective optimization problems and has been applied in many 342 

areas [35], [73].  343 

The multi-objective optimization method provides a set of Pareto solutions. Among these, 344 

ideally, the preferred solution can be determined. For this, a decision-making method, based on 345 

Level Diagram method and subtractive clustering method [74], [75], is used to effectively find out 346 

the optimal price under different conditions. The flowchart of the process to solve the dynamic 347 

pricing problem can be described as in Fig. 6. 348 

  349 



 350 

Fig. 6 The flowchart of the NSGA-II and the Level Diagram method to determine the optimal 351 

real-time price of natural gas 352 

2.7 Decision-making method for the optimal price 353 

Theoretically, all the solutions in the Pareto set can be used as a final decision for price making, 354 

and the decision makers can select a preferred solution Here, we use a decision-making method 355 

combining the clustering method and the level diagram method to help selecting the optimal price 356 

from the Pareto set [74], [75].  357 

In this decision-making process, the first step is to reduce the number of solutions by grouping 358 



them into a number of “families” (the number is K), according to their characteristics. In this work, 359 

the clustering method of subtractive clustering is applied to identify this kind of families [75], 360 

because of its advantages of independence on the choices of the initial cluster centers and the ability 361 

to directly represent the solutions on the Pareto set. Generally, clustering works is performed based 362 

on the distance between the elements which, in this work, is represented by the objective function 363 

values. 364 

2.7.1 Solutions reduction based on the subtractive clustering algorithm 365 

Assume a Pareto set  including n solutions, in which the ith solution i represents a vector of 366 

objective values as follows: 367 

 ( ) ( ) ( ) ( )1 2,i i i i

NUMobG G G G    =
 

  (47) 368 

in which NUMob denotes the number of objectives of the optimization problem. In this work, 369 

NUMob is 4. Considering that the four objectives are given in different scales and units, we need to 370 

firstly normalize them, e.g., to values between [0, 1].  371 
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Hence, 373 
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  (47) 374 

Based on Gnorm, we can calculate the potential P(Gnorm(i)) for all the solutions in the set by: 375 
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in which  is a parameter selected to the cluster radius [75]: 377 
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 =   (47) 378 

where the cluster radius rc ranges from 0 to 1 and represents the range of influence of a cluster center 379 

in every dimension. Hence, solutions outside rc should have negligible influences on the potential. 380 

The value of the cluster radius will directly determine the number of clusters: a smaller value gives 381 

more but small clusters. According to the experience, the value of rc should be smaller than 0.5, to 382 

maintain good clustering performances [75]. 383 

Then, we choose the first cluster center G1
norm with the highest potential value P(G1

norm). Based 384 

on this all the potential values of the other solutions are corrected as follows: 385 
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in which, 387 
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and the parameter q, named as squash factor, is used to represent the reduction of potential of the 389 

“neighborhood” solutions.  390 

This process of reducing the potential values and finding the cluster centers is repeated on the 391 

remaining solutions many times following the criteria: 392 

if 393 

 ( ) ( )1j

norm accept normP G P G   (47) 394 

the cluster center is accepted and the other remaining solutions is repeat the process of reducing 395 

their potential values:  396 



if  397 

 ( ) ( )1j

norm reject normP G P G   (47) 398 

the cluster center is rejected and the process is over. accept is the accept ratio and reject is the reject 399 

ratio. 400 

If Eq. 33 and Eq. 34 fail to find the cluster centers, one must introduce another acceptance 401 

criterion as follows: 402 
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in which  404 

 min min , 1,2, 1j m

norm normdis G G m j= − = −   (47) 405 

After all the cluster centers are found, the matrix  of the membership function is generated via 406 

the standard Gaussian distribution: 407 
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Then all the solutions in the Pareto set can be assigned to the families, corresponding to the 409 

cluster centers, according to the membership function. The process of this subtractive algorithm 410 

shows no random initialization and the results are independent of the choices of the membership 411 

function and the initial cluster center. Besides, the obtained cluster centers are all corresponding to 412 

the Pareto solutions and can be directly picked as representative solutions of the reduced Pareto set 413 

[75].   414 

2.7.2 The decision-making method based on the Level Diagram 415 

After grouping the Pareto solutions into K families, we still need to select the final optimal 416 



solution for the decision. Level Diagram is an effective method to visualize the cluster representative 417 

solutions. It is based on the distance of the Pareto solutions to the ideal solution, considering the 418 

requirement of all the objectives of the problem. In a multi-objective optimization problem, with m 419 

minimization objectives and n maximization objectives, all the values of the objective functions can 420 

be normalized by: 421 
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or 423 
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in which, ( )i

jG   , from 0 to 1, can indicate the performance of decision i for the objective j. 425 

( )i

jG  =0 means the decision i is the ideal solution for the objective j; otherwise, it is the worst 426 

solution for the objective j.  427 

To evaluate the deviation from the ideal solution, we need to choose a suitable norm, because 428 

different norms can give far different results from the same Pareto Front. In this paper, 1-norm (Eq. 429 

40) is used considering its ability to simultaneously take into account every objective. Because in 430 

the DSM problem, the overall performance of a solution is critical for decision-making:  431 
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Then, the Level Diagram is drawn as follows: for each objective, the X axis represents its 433 

physical value, while the Y axis corresponds to the value of ( )
1

i

j
norm

G 
−

 . The objectives are 434 

plotted separately. Hence, in the Level Diagram, the Y axis is synchronized, and the X axis presents 435 



the detailed information of the performances of the solutions on each objective.  436 

In this work, we assume that the four objectives share the same importance of consideration of 437 

the decision makers. Solutions with lower norm values, which means they are closer to the ideal 438 

points of all the objectives, are preferred. Hence, the representative solutions in each clustered 439 

family are selected by: 440 
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1
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where K is the number of clustered families; ns denotes the number of solutions in the family s. 442 

3. Case study  443 

This section presents an application of the developed DSM framework to on a natural gas 444 

supply system. The system includes 36 pipelines (diameters ranging from 950 mm to 1014 mm, 445 

total length of approx. 1100 km), 23 customers, two compressor stations, five regulation stations, 446 

two pipeline importers, one LNG terminal and one underground gas storage (UGS). The UGS and 447 

the LNG terminal are set at flow rate-controlled modes, whereas the control modes of the two 448 

pipeline importers are pressure-controlled. The regulation stations are set as inactive modes. The 449 

pressures provided by the two compressor stations are maintained at the set points of 6.5 MPa 450 

(Importer 2) and 7 MPa (Importer 1), respectively. The gas pipeline network system is presented in 451 

Fig. 7, where the customers are represented by the polygons. 452 



 453 

Fig. 7 Layout of the complex natural gas pipeline network system 454 

The basic parameters for DSM are the demand elasticity of price. In this application, we assume 455 

that all the consumers have the same demand elasticity of price in the same period of time, e.g., -456 

0.8 during the peak time, -0.5 during the normal time and -0.3 during the valley time. The fixed 457 

price of natural gas is set to 2.00 yuan/Nm3, and the average cost of production and transportation 458 

is assumed to 1.60 yuan/Nm3. But, we should notice that these parameters should be strictly 459 

determined by the collected data in the engineering applications, to obtain credible results. 460 

Because of the lack of real-world natural gas consumption data, the Mackey-Glass model is 461 

used to generate the natural gas consumption data. The Mackey-Glass model (Equation 26) is a 462 

periodic and chaotic time-series model, which is often used to verify the performance of predictive 463 

models [48]. Its chaotic behaviors are similar to the properties of fluctuations of natural gas 464 

consumptions, because the current data values are dependent on those of the past:  465 
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  (42) 466 

in which, the parameters a, c and b are constants: a=0.2, b=0.1, c=10. M is the time delay parameter 467 



(>16.8), which determines the chaotic property of the generated time series. In this case, the value 468 

of M has been set to be 20. The 4th Runge-Kutta method is used to generate the time series data and, 469 

then, the data is sampled at a given interval in our case equal to I hour. Besides, to make the 470 

application more realistic, a random term (of 1% of the nominal value of the generated gas demands) 471 

is introduced to the generated series data. 472 

Then, we need a “real” environment to generate operational data to test the performance of the 473 

DSM method and generate the data to train the deep learning model in Section 2.4. Considering that, 474 

a commercial software TGNET, which is professional in steady state and transient thermal-hydraulic 475 

simulation of gas pipeline networks, is used here to simulate the system working conditions 476 

according to the following assumptions and principles: 477 

(1) The active components are set at specific control modes, with desired set values;  478 

(2) The system condition changes along with the fluctuations in demands. There are two types 479 

of boundary conditions, i.e., consumptions with DSM and consumptions without DSM. Therefore, 480 

system conditions based on the former are used as the verification and those based on the latter are 481 

the benchmark.  482 

3.2 Results and analysis  483 

Accurate demand forecasting is the fundamental part of this DSM framework, which can 484 

directly impact the effectiveness and the usability. Hence, firstly, the accuracy of the proposed 485 

forecasting model (in Section 2.2) is tested, based on the series data generated by the Mackey-Glass 486 

model. The number of layers of the Bi-LSTM model is set to 2, by trial and error considering both 487 

the forecasting accuracy and the time consumption of training. Besides the number of layers, the 488 

learning rate during the training process can also affect efficiency and performance. In this work, 489 



the adaptive moment estimation (Adam) optimizer is adopted to train the deep-RNN forecasting 490 

mode. The initial learning rate is set to 0.005 and a maximum number of epochs for training is 300. 491 

In real-world application, a pre-processing step, e.g., data washing, should be performed prior to 492 

entering the data into the forecasting model. The whole data set is divided into 70% and 30%, used 493 

to train and test the forecasting model, respectively. After the natural gas demand data is 494 

decomposed by the wavelet transformation, the values of the autocorrelation functions of every 495 

wavelet component, which are used to identify the series data periodicity, are calculated. Based on 496 

these values, the input sizes of the components are determined, as the lengths of their first periods 497 

which are the most relevant data for the forecasting. By this method, the training set is accordingly 498 

grouped into a number of sub-sets for the training process. 499 

The forecasting time interval of the presented applications is chosen as 10 hours, and the 500 

forecasting results are presented in Fig. 8 for both the original data and the components: 501 

 502 

 503 



 504 

 505 

 506 
Fig. 8 Forecasting results on the Mackey Glass generated data 507 

The forecasting performance is also quantified in terms of Mean Absolute Error (MAE), Mean 508 

Relative Error (MRE) and Root Mean Squared Error (RMSE): 509 
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where Fi denotes the forecasting result and Ti denotes the target value.  513 

 514 

Table 2 Prediction performances on the Mackey Glass series for different forecasting horizons 515 

Data basis Task MAE MRE RMSE 

The Mackey 1 hour forecasting 0.0596 0.0017 0.1182 



Glass series 5 hours forecasting 0.1960 0.0054 0.5537 

10 hours forecasting 0.5724 0.0157 1.0719 

Fig. 8 and Table 2 indicate a good performance of the developed model for forecasting natural 516 

gas demand. The performances in Table 2 show that the MRE, which can be used to represent the 517 

errors of the forecasting, remains around 0.0157 even though the prediction horizon is set to 10 518 

hours ahead. Time complexity and space complexity are also important indices to evaluate the model. 519 

The time complexity of the proposed forecasting model is determined by the time complexity of 520 

each layer. The deep-RNN model is constructed by stacking two Bi-LSTM layers and one LSTM 521 

layer, with the time complexity of o(2W) and o(W), which can be calculated follows: 522 

 24 4 3num num num num num numW I H H H H K= + + +   (46) 523 

in which Inum denotes the number of inputs, Hnum denotes the number of hidden cells, Knum denotes 524 

the number of outputs. 525 

The space complexity (SC) determines the memory storage needed by the algorithm, which, in 526 

LSTM and Bi-LSTM layers, can be represented by the number of their parameters:  527 

 ( )24 num num num numSC I H H H= + +   (47) 528 

Comparing with the previous forecasting models based on the shallow neural networks, their 529 

time complexities are close. The space complexity of the proposed algorithm is, however, higher 530 

than the previous ones, which means more memory storage is needed. From another perspective, 531 

the larger number of parameters is, of course, also the reason of enabling the developed model to 532 

better fit the high nonlinearity of natural gas demand data.  533 

In the DSM method, the responses of the natural gas pipeline network to the customers’ 534 

behaviors, because of its dynamic property, can significantly influence the supply reliability and the 535 



system efficiency. Considering this, the accuracy of the prediction of the dynamic behavior of the 536 

gas pipeline network is also very important for making successful DSM strategies. The ability of 537 

the developed deep learning model has been verified in our previous work [61], for the prediction 538 

of dynamic changes in the gas pipeline network.  539 

To illustrate the decision-making process, the Pareto set of one time interval (4 hours) is 540 

presented here. Besides the utility of the customers, the objectives of shortage risk minimization, 541 

supplier revenue maximization and consumption fluctuation minimization are chosen to illustrate 542 

the Pareto Front, which is made of 188 solutions. 543 

 544 

Fig. 9 Pareto Front of the multi-objective DSM problem 545 

The Pareto solutions are obtained through the NSGA-II algorithm and all the solutions 546 

represent the compromises between different, sometimes, conflicting objectives. To analyze the 547 

relationships between the four objectives and illustrate the power of the decision-making method, 548 

the Level Diagram presentation is plotted in Fig. 10 before performing the subtractive clustering. 549 



 550 

Fig. 10 Level Diagram representation of the original Pareto Front of the multi-objective DSM 551 

problem 552 

However, it is difficult to take a final decision and choose one preferred solution from the dense 553 

Pareto Front and corresponding Level Diagram of Figs. 9-10. To this aim, the decision-making 554 

method introduced in Section 2.7 is used to reduce the Pareto solutions and select the optimal price 555 

of gas. 556 

The value of the cluster radius can significantly influence the performance of the clustering. In 557 

this paper, the radius is determined by trial and error with referred to the global silhouette criterion 558 

[75], which is computed as follows: 559 
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where CSi represents the cluster silhouette of the cluster family i, which can be calculated by the 561 

average value of the silhouette width cs(n) in the ith cluster. The cs(n) can be obtained by: 562 
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where a(n) represents the average distance from the solution n to the other solutions in the cluster; 564 

b(n) is the average distance from the solution n to the solutions in the nearest cluster. The trial and 565 

error attempts are performed in the range of [0.1, 0.4], by steps of 0.01. The cluster radius is finally 566 



determined to be 0.19. 567 

Fig. 11 presents the Pareto Front after clustering and Fig. 12 gives the Level Diagram 568 

representation of the reduced Pareto set. From the Figures, we can observe that the Pareto Front 569 

maintains the original shape but with significant reduction of the solutions, which are more 570 

intelligible and easier to handle for selecting the optimal prices in the DSM.  571 

 572 

Fig. 11 Pareto Front of the reduced set of solutions of the multi-objective DSM problem 573 

 574 

Fig. 12 Level Diagram representation of the family representative solutions, for the multi-575 

objective DSM problem 576 

Based on the simplified Level Diagram, the optimal solution can be easily found, which is 577 

corresponding to the final decision of the natural gas price. To verify the effectiveness of the multi-578 

objective dynamic pricing strategy, this is performed based on different time horizons of pricing, 579 



i.e., 1 hour, 2 hours, 4 hours and 6 hours. During a time period of pricing, the price of natural gas is 580 

kept fixed at the value determined at the beginning and changed only at the end, according to the 581 

optimal solution of the multi-objective optimization problem. The performances of the developed 582 

dynamic pricing strategy for different pricing periods are presented in Figs. 13-16. 583 

 584 

Fig. 13 Comparison of the aggregate natural gas consumptions, before and after performing the 585 

DSM strategy (for 1 hour pricing period) 586 

 587 
Fig. 14 Comparison of the aggregate natural gas consumptions, before and after performing the 588 

DSM strategy (for 2 hours pricing period) 589 



 590 
Fig. 15 Comparison of the aggregate natural gas consumptions, before and after performing the 591 

DSM strategy (for 4 hours pricing period) 592 

 593 

Fig. 16 Comparison of the aggregate natural gas consumptions, before and after performing the 594 

DSM strategy (for 6 hours pricing period) 595 

Figs. 13-16 show that the developed DSM strategy has a relatively good performance of peak 596 

shaving and valley filling, for all four selected time periods of pricing. The results also indicate 597 

different performances on different pricing periods: the performances of the pricing periods of 1 598 

hour and 2 hours are slightly better than those of the pricing periods of 4 hours and 6 hours. This is 599 

because of the higher flexibilities of the strategies with shorter pricing periods. From the overall 600 

perspective, the DSM shows a good stability on different pricing periods.  601 

The following indices are calculated based on the results of the application of DSM, with 602 

respect to the other aspects of suppliers’ profit, supply reliability and customers’ satisfaction. The 603 



profit improvement (PI) is calculated by Eq. 48, which represents the change in suppliers’ profits 604 

after DSM with respect to a strategy of fixed price of the natural gas. The aggregate consumption 605 

fluctuation reduction (ACFR) is introduced to quantify the effect of the dynamic pricing strategy on 606 

reducing the load fluctuation (LF) of natural gas, which is calculated based on Eqs. 51-52. The peak 607 

reduction (PR) represents the ability of the DSM method to shave the peak of load, which is 608 

calculated by Eq. 53. The performance of improving the supply reliability is quantified by Eq. 54, 609 

which represents the risk reduction (RR) after DSM. Satisfaction is measured by aggregating all 610 

customers’ satisfactions calculated in Eq. 2, which is named aggregate customers’ satisfaction (ACS): 611 
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in which profitDSM and profitfixed_price denote the total profits of the suppliers with and without DSM, 613 

respectively; 614 
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in which ACFDSM and ACFfixed_price represent the aggregate consumption fluctuations with and 617 

without DSM, respectively. loadi is the natural gas consumption at time step i and loadaverage is the 618 

average natural gas consumption;  619 

 
, _ ,

1 _ ,

1 NP
DSM i fixed price i

i fixed price i

peak peak
PR

NP peak=

−
=    (53) 620 

in which peakDSM,i and peakfixed_price,i denote the ith peak of loads with and without DSM, 621 

respectively. NP is the number of peaks;  622 
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in which SRDSM,i and SRfixed_price,i are estimated by the method proposed in Section 2.5, and are the 624 

risk of shortage with and without the DSM, respectively. 625 

The values are presented in the following Table 3. 626 

Table 3 Performances of the developed DSM method 627 

Pricing 

period

（hour） 

PI (%) PR (%) AFCR (%) RR (%) ACS (×106) 

1 0.67 6.38 21.43 40.10 -1.05 

2 1.58 7.06  20.16 26.22 -0.28 

4 6.81 6.72 15.13 28.15 1.77 

6 10.56 7.61 12.10 32.34 4.33 

 628 

The results in Table 3 show the good performances of the developed DSM framework for the 629 

different pricing periods considered. The DSM method is able to effectively reduce the peaks of 630 

load, around 6%-7% in all pricing periods, and significantly improve the short-term supply 631 

reliability of pipelines. According to the values of the index of AFCR, we can conclude that the 632 

approach is capable of smoothing the fluctuation of natural gas consumption, which can improve 633 

the efficiency of resources usage and system operation. In the case study, the horizons of 1 hour and 634 

2 hours can be identified as the best choices of the pricing period for the dynamic pricing DSM. As 635 

to the pricing period of 4 hours and 6 hours, although they show satisfactory results for most 636 

objectives, however, the results of ACS indicate that the customers may suffer (a positive ACS value 637 

means a loss of satisfaction). This is because as the pricing period becomes longer, the flexibility of 638 

the DSM decreases. 639 

 640 



4. Conclusions and future works  641 

In this paper, a systematic data-driven Demand Side Management framework is developed for 642 

future smart natural gas supply systems, with the targets of load profile smoothing, supply reliability 643 

enhancement, company profit improvement and customers’ satisfaction. The framework can help 644 

the natural gas supply system improving the efficiency, reliability and flexibility. The DSM 645 

framework integrates five main parts, including demand forecasting, customer response analysis, 646 

real-time system dynamic conditions prediction, supply reliability evaluation, multi-objective 647 

optimization and decision-making.  648 

The gas demand forecasting model is built up by combining wavelet transform and Deep-RNN 649 

model, for learning the complex patterns of gas consumption data and make accurate hourly 650 

forecasting of natural gas demand. The customer response analysis is performed based on 651 

Microeconomics theory, to analyze the behaviors of the customers according to their demand 652 

elasticity of price and the forecasted demand. Then, a deep-learning-based prediction model is used 653 

for the dynamic condition of natural gas pipeline networks, considering the changes of the system 654 

due to the customers’ demand changes and the complex physical process of gas transportation in 655 

pipelines. Based on the predictions, this framework allows to fast evaluate the risk of natural gas 656 

shortages, considering the hydraulic properties of pipelines and the uncertainties in both the 657 

transportation system and the demands. Finally, a multi-objective optimization problem is 658 

developed to find the optimal price based on all the analysis results. The optimization problem is, 659 

here, solved by a genetic algorithm, named as NASG-II. To select the optimal solution from the 660 

resulting Pareto Front, a decision-making method is used, which amounts to first reducing the Pareto 661 

set by the subtractive clustering method and, then, making the final selection based on the Level 662 



Diagram method.  663 

In the case study, the DSM framework is applied to a natural gas supply system, which has a 664 

complex topology structure and multiple demands, to verify its effectiveness. Considering the 665 

critical role of demand forecasting in the DSM framework, the ability of the demand forecasting 666 

model is analyzed in detail. The decision-making process is also clearly illustrated. Finally, the 667 

performance of DSM is presented from two perspectives, i.e., graphical analysis and quantification 668 

analysis, for four different pricing periods. By comparing the load profiles with and without the 669 

DSM framework, we can highlight its good performance on peak shaving and valley filling, for 670 

each pricing period. Furthermore, the quantification results show the ability of load profile 671 

smoothing, company profit improvement, peak reduction, supply reliability enhancement and 672 

customers’ satisfaction. The results also indicate the pricing period should be set within 2 hours, to 673 

maintain a good flexibility.  674 

In the future research, we intend to explore the DSM when the gas supply system is integrated 675 

with other energy systems, such as power grids, wind farms, heating systems and so on. Also, the 676 

cost of natural gas pipelines operation will be considered as an important factor for optimal price 677 

determination. Besides, this method will be applied to a real natural gas pipeline network system to 678 

further verify its effectiveness.   679 

 680 
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