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Abstract

For maintenance of Gas Turbines (GTs) in Oil & Gas applications, capital parts are removed

and replaced by parts of the same type taken from the warehouse. When the removed parts

are found not broken, they are repaired at the workshop and returned to the warehouse, ready

to be used in future maintenance. The management of this �ow is of great importance for the

pro�tability of a GT plant. In this paper, we adopt a previously developed formalized frame-

work of the parts �ow and Reinforcement Learning (RL) to optimize part �ow management.

The formal framework and RL algorithm are extended to account for the stochastic failure

process of the involved parts. An application to a scaled-down case study derived from an

industrial application is illustrated.
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Symbols & Acronyms

θθθ Vector of the indexes of the time instants tθ ∈ Θ

∆t Discretization step

δθk Index of the GT maintained at the k-th shutdown

λ Elegibility trace

λr Failure rate of a part with r remaining cycles

Sθk State vector at time tθk , Sθk = [Sθk,1, ..., Sθk,R+G+2]

Θ Set of the time instants de�ning the partitioning of the time horizon

τ Time of installation of the part on the GT

aθk,ρ Boolean variable equal to 1 if action ρ is taken at time tθk and 0 otherwise

Aθk Action taken at the maintenance event performed at time tθk

Cfailure Failure penalty

Crep(r) Repair cost for a part with r maintenance cycles remaining

Cscrap Cost of scrapping a part

Ck Cost incurred at the k − th maintenance event occurring at time tθk

dg,θ MNRC of the part on the g-th GT at time tθ

Fr(τ) Cumulative Distribution Function of the failure time of a part with r remaining

cycles

G Total number of GTs

g GT Index
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H Number of hours of a GT working cycle

K Index of the last shutdown

N Total number of RL episodes

n Index of RL episodes, n = 1, ..., N

Qπ(Sθk , Aθk) State-Action pair value following policy π from the MS or the FO at time tθk on

R Maximum MRNC

r MRNC index

T Total number of working hours per GT

t Generic time instant

tθk MS or FO time instant

V Total value of the maintenance expenditures

W Maximum number of parts that can be stored at the warehouse

wr,θ Number of parts with MRNC=r available at the warehouse at time tθ

CDF Cumulative Distribution Function

DE Deterministic Environment

DM Decision Maker

FO Forced Outage

GT Gas Turbine

MNRC Maximum Number of Remaining Cycles

MRC Most Residual Cycles
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MS Maintenance Shutdown

PFM Part Flow Management

RL Reinforcement Learning

SDP Sequential Decision Problem

1 Introduction

Gas Turbines (GTs) are complex systems composed by several expensive capital parts (e.g., buck-

ets, nozzles, shrouds, etc.). Degradation of these parts (e.g., by fracture and fatigue [1], [2], [3],

fouling [4], [5], [6], corrosion [7], [8], oxidation [9]) can lead the GTs to failure and, thus, to costly

Forced Outages (FOs) for performing corrective maintenance actions, in which the failed parts are

scrapped and replaced by parts of the same type selected from those available at the warehouse.

To avoid FOs, GTs undergo periodic Maintenance Shutdowns (MSs), which restore the capital

parts. At every MS, capital parts are removed from the GTs and repaired at workshop, unless

they are scrapped because they have reached their pre-�xed maximum number of working hours.

The repaired parts are, then, put back at the warehouse, for use in future maintenance. The parts

removed from the GTs are replaced by parts taken from the warehouse, either restored or newly

purchased.

This brief description of GT maintenance brings out the complexity of its management, which

relies on a speci�c expertise for performing the intricate procedures for GT disassembling and

re-assembling, an e�cient logistic organization for spares management (i.e., their ordering, ship-

ping, etc.), a deep knowledge about the degradation processes a�ecting the parts for their e�ective

repair, etc. (see [10] for an overview). Di�erently from the GT manufacturing companies, which

are usually structured for addressing these issues, their customers are generally not fully quali�ed

to do so. This situation has boosted the di�usion of maintenance service contracts between the
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GT manufacturers (i.e., the maintenance service providers) and the GT owners (i.e., the recipients

of the service) [11; 12; 13; 14].

Service contracts yield new business opportunities to GT manufacturers, who can sell the GTs

production rates, instead of selling the GTs, with consequent added values if they assume portions

of the clients' business risks ([11; 15]). For the service contract to be pro�table, however, GT man-

ufacturers need to develop e�ective and e�cient maintenance strategies and spare part inventory

management policies ([13; 15; 16; 17]).

To manage the maintenance events (i.e, MSs and FOs), decisions must be made on both the re-

moved part (send it to the workshop for repair or scrap it?) and the part to be installed on the GT

(new part or part taken from the warehouse?), which strongly impact on the pro�tability of the

GT maintenance service contract. For example, the decision to repair the removed parts entails, on

the one hand, the possibility of re-using the part with consequent reduction in the number of parts

to purchase. On the other hand, the repair actions entail both direct workshop costs and indirect

costs related to the increased risk of FOs, with consequent penalties to the maintenance service

provider for business interruption: repaired parts have a failure probability larger than that of

new parts, as the risk of failure generally increases with part age. Furthermore, unnecessary repair

actions at the end of the maintenance service contract may lead to the warehouse containing parts

ready for installation, whose value is lost by the service provider. On the contrary, scrapping old

parts reduces the risk of failure and workshop costs, but increases the number of purchase actions

taken by the maintenance service provider.

The parts installed on the GTs are no longer available at the warehouse for replacement at the

next MS and when they return to the warehouse, they do so with a reduced number of remain-

ing working cycles. Thus, the decisions at every MS in�uence the decisions at the next MSs: in

this sense, the Part Flow Management (PFM) can be framed as a Sequential Decision Problem

(SDP)[18], seeking for the sequence of future maintenance decisions (i.e., the optimal policy) which

entails the smallest expected maintenance costs over the duration of maintenance service contract.
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This requires the Decision Maker (DM) to consider variables such as the remaining time up to the

end of the service contract, the availability of spares, the costs related to the repair actions, etc.

Despite the relevance of PFM for the pro�tability of the maintenance service contracts, to the au-

thors' best knowledge, systemic approaches to address it are still lacking. Although the literature

on maintenance service is very vast [12; 17], it covers issues di�erent from that of optimizing the

part �ow. For example, methods for setting the optimal price of service contracts are proposed in

[11; 12; 14], within the game theory framework. The same issue, i.e., contract pricing optimiza-

tion, is investigated in [19] in combination with the optimization of logistics (i.e., facility locations,

capacities and inventories with given service level), and in combination with the issue of optimally

scheduling preventive maintenance in [16; 20]. Other optimization objectives are the minimization

of the warehouse costs through the reduction of the average number of parts sojourning therein

(e.g., [16]), the identi�cation of the optimal times for performing maintenance actions and ordering

parts (e.g., [21; 22]), the level of repair ([13; 23]), the number of maintenance jobs that can be

completed in each maintenance period ([24]), etc.

The focus of this paper is on the search of the best PFM strategy that minimizes the service con-

tract costs for the GT manufacturer over a �nite time horizon. Currently, the management of the

part �ow is dealt with experience-based rules, such as the Most Residual Cycles (MRC) one: the

removed parts are always repaired and the part with the largest residual life among those available

at the warehouse are installed on the GT; a new part is purchased only when the warehouse is

empty. Although MRC ensures at the smallest failure probability, nonetheless we have shown in

[25] that MRC does not necessarily yield optimal policies on a �nite time horizon in which the

sequence of MSs is a priori known.

In this work, we extend the modeling and optimization framework developed in [25] to account for

part failures stochastic processes and FOs, which change the pre-scheduled sequence of MSs. In

particular, we formalize the PFM problem as a SDP in a stochastic environment and propose the

use of Reinforcement Learning (RL, [18; 26; 27]) for its solution. RL is a machine learning technique
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suitable for addressing SDPs in stochastic environments [26] and widely applied to decision-making

problems in diverse industrial sectors, such as the electricity market [28; 29], military trucks [30],

process industry [31], supply chain and inventory management [21; 32; 33; 34], operations in port

container terminal [35; 36] to cite a few.

The problem formulation and solution framework proposed in this paper is applied to the same

case study as that of [25], although here we take into account the failure of the parts and the

FOs. In the case study, it turns out that also when considering the parts failures, the solution

given by the MRC rule is not optimal, being outperformed by the policy found by RL. Moreover,

we compare the optimal policy provided by our RL algorithm in case there are no FOs with that

presented in [25].

The original contributions of this paper are:

• The further development of a new problem (i.e., optimization of PFM), which has never

appeared in the literature. Given its relevance for maintenance service contract management

and pro�tability, it is expected to give rise to a dedicated line of research.

• The formalization of the PFM problem as a SDP, which allows taking into account the

dependency between consecutive decisions and the uncertainty in the parts failure.

• The proposal of a RL algorithm to �nd the optimal PFM policy. The algorithm can be applied

to medium-small, real applications and improve the current experience-based practice.

The structure of the paper is as follows. In Section 2, we introduce the extended mathematical

formulation of the considered SDP. In Section 3, details about the extended RL algorithm used

for optimizing the part �ow management are provided. In Section 4, the case study is discussed.

Finally, conclusions are drawn in Section 5.
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2 Problem Setting

Consider an Oil & Gas plant in which a number G of GTs are operated (Figure 1). A scheduled

preventive maintenance policy is de�ned, whereby every GT is maintained every H hours. We

assume the maintenance staggering so that two MSs are never performed simultaneously and that

the sequence of G MSs is shorter than H hours.

The GTs are operated for T hours each, T being a multiple of H. For generality, the time horizon

is made dimensionless through division by H and it is discretized into time channels of length

∆t. These are short enough that the probability of having multiple failures in the same channel is

negligible.

To formalize the part �ow management in a stochastic environment, the model proposed in [25]

must be modi�ed to allow decisions to be taken upon FOs, which occur at time instants di�erent

from those initially scheduled for the MSs. In fact, any failure event requires a re-scheduling of the

maintenance activities, which entails a variability in both the number of events over the GT plant

operation horizon and their timing and sequence. To consider this uncertain dynamic aspect of the

SDP, the GT plant operation time horizon is partitioned into time channels, which are identi�ed by

the instants t ∈ Θ = {0,∆t, 2∆t, ..., T/H + 1} (Figure 1 in dashed line), where t = 0 corresponds

to the �rst MS, T/H is the time instant of the last MS of the GT maintained at t = 0, according

to the initial schedule; the last time instant, t = T/H+1, dimensionless, is the upper bound of the

time instant of the last scheduled MS, as the maintenance cycle determines the maximum distance

between the G MSs. For brevity, we indicate the θ − th time instant of Θ, in ascending order, by

tθ, θ = 1, ..., |Θ|, where |�| indicates the cardinality of its argument set �.

Given the discretization of the time horizon, we assume that if a failure occurs at time tθ + τ, τ ∈

[0, 1] on the GT that has been maintained at the θ− th time instant, tθ, then the FO is performed

at the θ∗ − th time instant θ∗ = arg minη∈Θabs[tθ + τ − tη] (e.g., Figure 1, the FO is performed at

the time instant tθk+2
).
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In case any GT experiences a FO at a time τ after its last MS, τ ∈ [0, 1], then all its future MSs

are shifted by τ , as maintenance is always intended to allow the GT working continuously for H

hours. For example, Figure 1, bottom, shows the original sequence of MSs of GT G, which is

shifted forward by the FO event originating a di�erent MS sequence. Notice that we assume that

the end of the plant operational time horizon does not change even when the actual MS and FO

sequence change due to random failures.

In regards to the time to repair the parts removed from the GT, we assume that this is negligible

with respect to ∆t, whereby the parts repaired are immediately available at the next event. Every

part is assigned a Maximum Number of Remaining Cycles (MNRC), indicated by r, which ranges

between r = 0, in case of parts that must be scrapped and r = R, for new parts. The MNRC is

reduced by one upon the installation of the part on a GT: if the GT is stopped, the part will no

longer be able to re-perform the entire started cycle.

Insert Figure 1 here.

The failure times of the parts obey the exponential distribution with failure rate, λr, depending

on the MNRC value r ∈ {1, ..., R}. To have dimensionless time channels, the values of the failure

rates are scaled on the duration of the H hours cycle.

The cumulative distribution function (CDF) of the failure time reads:

Fr(τ) = 1− e−λrτ (1)

where τ is the time since the installation of the part on the GT. Notice that the choice of describing

the part failure behaviour by the exponential distribution with failure rate depending on the

MNRC value allows modeling the part degradation mechanism as a Markov process. The resulting

step-wise, monotonously increasing behavior of the failure rate can be thought of as a rough

approximation of a continuously increasing hazard rate [37].
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At any shutdown, the DM has to take the following decisions:

• If the maintenance event is a MS, decide whether to repair or scrap the part removed from

the maintained GT. Crep(r) is the cost of repairing a part with r ∈ {1, ..., R} remaining

cycles, whereas Cscrap is the cost of scrapping a part.

• If the maintenance event is a FO, then the part must be scrapped, and a penalty Cfailure

must be paid, which also encodes the extra-costs related to the management of an unplanned

event.

• To replace the removed part, decide whether to buy a new part or select one from those

available at the warehouse, if any. Cpur is the cost of purchasing a new part, whereas the

cost of selecting a part from the warehouse is zero, as the repair costs have already been

accounted for.

To simplify the notation, we de�ne two indicator functions:

1|FOθ =


1 if a FO occurs at time tθ, θ = 1, ..., |Θ|

0 otherwise

(2)

1|MS
θ =


1 if a MS occurs at time tθ, θ = 1, ..., |Θ|

0 otherwise

(3)

To keep track of the shutdown temporal sequence, we introduce set θθθ = {θ1, ..., θK} encompassing

the indexes of the time instants tθ ∈ Θ at which a shutdown event occurs, where K is a random

variable indicating the last shutdown within the operational time horizon: if there are no failures,

then K = T/H ·G. Notice that the time index θ ∈ θθθ if 1|FOθ + 1|MS
θ = 1, θ = 1, ..., |Θ|.

We also introduce the integer variables dg,θ and wr,θ to indicate the MNRC of the capital part on

the g-th GT at the θ−th time instant and the number of parts withMNRC equal to r available at
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the warehouse at the θ − th time instant, respectively, θ = 1, ..., |Θ|, g ∈ {1, ..., G}, r ∈ {1, ..., R},

w ∈ {0, ...,W}, where W is the maximum number of parts that can be stored in the warehouse

for each MNRC value (Figure 1). The index of the GT maintained at the k-th shutdown, i.e., at

time tθk is traced by δθk ∈ {1, ..., G}.

Finally, the boolean variable aθk,ρ ∈ {0, 1} indicates the action ρ ∈ {0, ..., 2R + 1} taken at the

k − th maintenance event at time tθk ∈ Θ, θk ∈ θθθ:

• aθk,0 = 1 when a new part is purchased and installed and the removed part is scrapped.

• aθk,ρ = 1, ρ ∈ {1, ..., R}, when a part with MNRC = ρ is installed and the removed part is

scrapped.

• aθk,R+1 = 1 when a new part is purchased and installed and the removed part is repaired.

• aθk,ρ = 1, ρ ∈ {R+ 2, ..., 2R+ 1}, when a part with MNRC = ρ−R− 1 is installed and the

removed part is repaired.

The boolean variable aθk,ρ is such that only one action can be taken at the k-th shutdown:

2R+1∑
ρ=0

aθk,ρ = 1 (4)

From the above, the cost incurred at the k-th shutdown is:

Ck = (aθk,0 + aθk,R+1) · Cpur +
R∑
ρ=0

aθk,ρ · CScrap +
2R+1∑
ρ=R+1

aθk,ρ · CRep(dg,θk) + Cfailure · 1|FOθk (5)

The objective is to minimize the value of the expected maintenance expenditures incurred in the

whole time horizon, which is given by the sum of the costs of all shutdowns within the time

horizon:
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V = E[
K∑
k=1

Ck] (6)

Notice that the total maintenance expenditures within the operational time horizon is a random

variable depending on both the number of failures in the time horizon and their occurrence time.

For simplicity, this sum is considered undiscounted.

Notice also that in real industrial applications, the failures of the capital parts mounted on the

same GT are dependent on each other, as failures can originate cascading e�ects. Nonetheless, we

track a single capital part, only. The object of future research work will be the extension of the

developed framework to applications in which the �ows of di�erent capital parts are considered as

a whole for a global optimization.

3 Algorithm

In this Section, we provide some insights about the RL algorithm developed to address the part-

�ow management issue. To develop the RL algorithm, we need to de�ne the environment state,

the actions available at each state and the corresponding rewards [18].

The state at the shutdown occurring at time tθk is de�ned by vector Sθk ∈ NR+G+2, whose j-th

element is:

Sθk,j =



wj,θk if j ∈ {1, ..., R}

dj−R,θk if j ∈ {R + 1, ..., R +G}

δθk if j = R +G+ 1

θk if j = R +G+ 2

(7)

In words, the �rst R entries of the state vector de�ne the number of parts with the di�erentMNRC
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values available at the warehouse; the G entries from R + 1 to R +G indicate the MNRC of the

parts installed on the GTs at their corresponding last MS; the (R+G+ 1)-th entry points to the

GT maintained at time instant tθk ; the last entry encodes the time of the shutdown. This de�nition

of the environment state entails that its size is equal to (W + 1)R · RG · G · (T/H + 1) · (H/∆t).

For a medium scale problem in the Oil & Gas industry, with G = 6, R = 6, W = 6, H = 10 ·∆t

and T = 8 ·H, this corresponds to 3 · 1012 states.

Notice that the state de�nition in Eqs. (7) di�ers from that given in [25], which encodes only

two variables: the number of parts with the di�erent MNRC values available at the warehouse

and the index of the MS (in place of the index of the time channels). As shown in [25] for the

Deterministic Environment (DE) case, i.e., without stochastic failures, the other variables entering

Eq. (7) contain redundant information and, thus, can be neglected: this strongly reduces the

dimension of the state space and the computational burden.

Notice also that the de�nition of the environment state in Eqs. (7) does not fully satisfy the Markov

property [18], as the state vector does not include the time up to the next MS. This time interval

determines the probability of moving from one state to another, as parts have higher chances of

failing when operated for longer time periods. Then, omitting the information about the remaining

time up to the next scheduled event undermines the knowledge about the probabilistic behavior of

the future evolution of the state. However, the state de�nition completely satisfying the Markov

property turns out into a very large state space, thus requiring a much larger computational e�ort.

Then, our state de�nition seems the best compromise between an accurate description of the

environment and a computationally manageable number of states.

The action taken at the shutdown occurring at time tθk is indicated as:

Aθk =
2R+1∑
ρ=0

(aθk,ρ · ρ) (8)

The base reward of the shutdown at time tθk is the opposite of the maintenance cost −Ck, as
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RL is usually addressed as a maximization task (i.e., minimizing cost is equal to maximizing

its opposite). In the RL framework, each state-action pair is described by Qπ(Sθk , Aθk), which

measures the expected return starting from state Sθk , taking action Aθk and thereafter following

the policy π [18]:

Qπ(Sθk , Aθk) = Eπ[
K∑

k=k∗

(−Ck)|Sθk , Aθk ] (9)

where π = π(ε) is the ε-greedy policy [18], which selects with probability ε an action uniformly

among the available ones; with probability 1−ε, the action with largest expected return is selected

on each state, i.e. Aθk = argmaxA∈{A0,...A2·R+1}Qπ(Sθk , A).

Note that ε = εn decreases at each episode, as the �rst episodes require a large exploration rate

to rapidly move from the initial values assigned to the state-action function. As the simulation

proceeds, more state-action pairs are visited, whereby the values of Qπ(Sθk , Aθk) become more

accurate. This allows selecting the optimal action in every state, as the epsilon-greedy exploration

policy converges to the optimal (greedy) policy (for further details, see exploration-exploitation

dilemma, e.g. [18]). To properly set the value of the exploration rate and its evolution over time,

we have applied a trial and error procedure.

In this work, we use the SARSA(λ) algorithm (e.g., [18], [38], [25]) to �nd the best approximation

of the values of Qπ(Sθk , Aθk), which relies on the following updating formula:

Q(Sθz , Aθz)←− Q(Sθz , Aθz) + (λ)(k−z)αn · [−Ck +Q(Sθk+1
, Aθk+1

)−Q(Sθk , Aθk)] (10)

where z ∈ {1, ..., k} is the MS counter, k is the actual MS, λ ∈ [0, 1] is the eligibility trace and

αn ∈ [0, 1] is the learning rate at the n-th episode. According to [27], we have applied a trial-and-

error procedure to set the value of λ = 0.8.
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Notice that the eligibility trace λ is di�erent from the failure rate, λr (i.e., with subscript), although

we indicate them with the same letter. This is due to the large use of this letter in the respective

�elds.

The choice of using SARSA(λ) among the available RL algorithms (e.g., [27]) is justi�ed by the

fact that within the family of value-based RL algorithms, SARSA(λ) has been shown to be a

very e�ective on-policy method ([27]). This makes it simpler to extend it to the eligibility trace

paradigm, which guarantees fast and robust convergence, especially in case of �nite time horizon

SDPs ([18], [38]). On the contrary, o�-policy RL algorithms such as Q(λ) need to be �nely set

to avoid biased estimations of the state action values. Further research work will focus on the

comparison of SARSA(λ) with policy-based and actor-critic RL algorithms ([27]).

Other optimization algorithms such as dynamic programming algorithms ([18]) could also be used

for the speci�c setting considered in this work. However, in this respect the choice of RL has

a twofold justi�cation. On one side, RL algorithms allow encoding the aleatory uncertainty in

the failure times of the GT parts more easily than the other algorithms. On the other side,

although here not considered, the complexity of the real industrial applications requires that the

SDP encode many additional GT operational aspects, such as the possibility of inspecting the

parts without performing maintenance (i.e., condition-based maintenance), the di�erent duration

of the maintenance intervals for parts of di�erent technologies, the constraints on the sharability

of the parts on GTs with di�erent operation temperatures, the long repair durations that make

the parts not readily available for the next MS, etc. Accounting for these GT operational aspects

requires encoding constraints about the actions that can be taken in each state, which are really

di�cult to set in model-based frameworks such as dynamic programming. On the contrary, RL

acts on the simulation of the decision process and, thus, selects actions from those feasible, only.

This makes RL easily integrable with part �ow simulators.

On the other hand, the proposed RL solution su�ers from some limitations that can still prevent

its full application to the industrial practice. First, in complex problems the state-space becomes
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very large, whereby the tabular representation of the state-action value function is not doable. For

this, action-value approximation techniques can be used instead of the tabular approach hereby

presented. This issue will be tackled in future works. Yet, although the time required to run a single

part �ow simulation episode is very small (in the order of milliseconds), nonetheless RL requires

performing a very large number of simulated episodes. This can undermine the application of RL

to contexts in which decisions must be taken readily. In any case, the proposed RL framework is

not meant to be used in a real-time setting. Rather, it is conceived to be run either at the �rst

decision time or when unforeseen events such as a change in the warehouse con�guration due to

external reasons, modify the environment and pose a new optimization problem. In these cases,

however, we usually have plenty of time to take decisions.

4 Case Study

In this Section, we extend the case study proposed in [25], which derives from an industrial appli-

cation, to include consideration of the parts failure stochastic process. The main characteristics

are summarized in Table 1.

In the considered Oil & Gas plant there are G = 2 GTs (�rst column in Table 1), each one

maintained every H = 24 000 hours (second column) over a time horizon of T = 216 000 hours

(third column). The time step is set to ∆t = 0.1, dimensionless (fourth column). The maximum

part MNRC, R, and the maximum number of available parts in the warehouse for each MNRC

value, W , are both set to 3 (�fth and sixth columns in Table 1, respectively). The cost values

are reported from the 7-th to the 11-th columns of Table 1, in arbitrary units. Finally, the failure

rates λr, r = 1, 2, 3, are reported in the last three columns, dimensionless. These values are for

illustration, only.

Notice that the failures we are referring to do not entail the complete loss of the entire GT. Rather,

we consider as failure the degradation of the functional performance to a level which requires the
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GT control system to command the stop of the GT for removing the degraded part. The major

costs associated to this event are those related to business interruption and to the loss of the part,

which is scrapped.

Insert Table 1 here.

The total number of possible states is (W + 1)R ·RG ·G · (T/H + 1) · (10) = 126 720 and the total

number of state-action pairs is (W + 1)R ·RG ·G · (T/H + 1) · (10) · (2R + 2) = 1 013 760.

The SARSA(λ) algorithm has been run for 107 episodes, which took 25 200 seconds on a 2.20GHz

CPU, 4GB Ram computer. The convergence path is reported in Figure 2, which shows the values

of Q(S1, A1), where A1 is the optimal action at tθk = 0 (i.e., in this case A1 = 5). To verify that

SARSA algorithm converged to the optimal solution, we considered the oscillating behavior at the

end of the episodes and checked that this is coherent with the stochastic nature of the considered

SDP, which entails that Q(Sθ, Aθ) oscillates around its average value, for any θ = 1, ..., |Θ| ([27]).

Insert Figure 2 here.

To fairly compare the optimal policy found by RL with that provided by MRC, these are tested

for 106 Monte Carlo (MC) episodes, in which the GT parts fail according to the exponential

distributions introduced above. Table 2 summarizes the results of these simulations. In particular,

the last row reports the average total maintenance expenditures, independently on the number of

failures leading to FOs. From these values, we can see that RL outperforms MRC for managing

the part �ow.

To understand this result, in the next sub-Sections we investigate the MC simulation outcomes

summarized in Table 2: the �rst column shows the possible number of FOs occurring over the time

horizon; for every number of FO, the second and third columns report the corresponding average
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portion of MC episodes for MRC and RL policies, respectively, with related 68% con�dence bounds,

whereas the two last columns report the mean total maintenance expenditures for MRC and RL,

respectively.

Insert Table 2 here.

4.1 Scenario with no FO

The second row of Table 2 shows that 53.24% of the simulated episodes do not experience FOs

if we apply the RL policy, against 51.90% obtained by MRC, with no overlap of the con�dence

intervals of these estimates. This leads us to conclude that for a signi�cant portion of the possible

stochastic evolutions of the part �ow, the RL policy yields a large number of episodes without FOs

and, thus, small costs.

To investigate this result, we can refer to Table 3, which shows the part �ow policy derived by the

application of the MRC rule. Namely, the �rst three columns report the index of the shutdown, k,

the MS time instant, tθk and the corresponding time index θk. The following three columns report

the corresponding situation of the warehouse. For example, at the beginning of the considered

time horizon, i.e., at t1=0, there are three parts with one remaining cycle, w1,1 = 3, one part with

two remaining cycles, w2,1 = 1, and no new parts, w3,1 = 0.

The MNRC values of the parts installed on GTs g = 1 and g = 2 are reported in the seventh and

eighth columns, respectively, where the maintained GT is indicated in bold. For example, the part

on the GT undergoing maintenance at θ1 = 1, i.e., g = 1, has d1,1 = 2 remaining cycles, whereas

the GT g = 2 has been equipped with a part with one remaining cycle at the last MS.

The next three columns detail the action taken at the k-th shutdown. For example, at the �rst

MS, the MNRC of the part installed on GT g = 1 is r = 2 (ninth column) and the removed part

is repaired (tenth column), with no purchase of new parts (eleventh column), i.e., A1 = 6. Finally,
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the last column reports the maintenance cost, Ck, at the k-th shutdown.

To further detail the updating dynamics of Table 3, we can see that at the second MS w2,6 = 1,

because the part removed from GT g = 1 is now available at the warehouse for installation on GT

g = 2. The removed part must be scrapped, as it has no remaining cycles, d2,6 = 0. This gives a

maintenance cost C2 = 0.

The part �ow solution given by the application of the MRC rule yields a total maintenance cost

of 1150 (in arbitrary units), as reported in the last row of Table 3.

The application of the RL policy yields the part-�ow summarized in Table 4, which follows the

same scheme as Table 3, whereas Table 5 summarizes the main di�erences between the two policies.

From this Table, we can see that RL is able to �nd a more e�cient part �ow policy in the case

of no FO, because it scraps two parts with MNRC > 0 (second row, �fth column), with one less

purchase.

Insert Table 3 here.

Insert Table 4 here.

Insert Table 5 here.

4.2 Scenario with single FO

The percentage of episodes with one FO is almost the same for RL and MRC (i.e., 34.46% and

34.76%, respectively). However, if we look at the average total maintenance expenditures (third

row in Table 2), these are signi�cantly di�erent: 1291 for RL and 1361 for MRC, both in arbitrary

units. This result can be explained by looking at Table 6, where the �rst column reports the

values of all the possible maintenance expenditures that are encountered in case there is one FO,

whereas the second and third columns show the corresponding percentage of time in which these
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are encountered in case of application of RL and MRC policies, respectively. We can see that

around 77% of the episodes corresponding to the RL policy end with maintenance expenditures

smaller or equal to 1300, whereas MRC accounts only for 2.17%. Thus, also if the number of FOs

is the same, still RL is capable of managing well the unplanned event, better than MRC.

Insert Table 6 here.

4.3 Scenario with multiple FOs

The reasoning for single FO also applies to the case of two FOs, which occur almost the same

number of times in both RL and MRC policies (i.e.,10.21% for RL and 10.84% for MRC, fourth

row in Table 2), but with sensibly di�erent average maintenance expenditures (i.e., 1549 for RL

and 1586 for MRC, in arbitrary units, Table 2). Similarly to Table 6, Table 7 reports the possible

values of maintenance expenditures and the corresponding percentage of time in which these are

encountered in case of application of RL and MRC policies. We notice that 70.31% of times

RL total maintenance expenditures are smaller than or equal to 1550, whereas the percentage

reduces to 39.26% of times for MRC. However, for larger cost values the di�erence between their

percentages decreases. For instance, consider the total maintenance expenditures smaller than or

equal to 1600; then, RL accounts for 90.43% of times, whereas MRC for 86.48%. This explains

why the di�erence between the average maintenance expenditures of RL and MRC in case of two

FOs is smaller than that of the single FO scenario. With respect to Table 2, �nally notice that the

MRC policy has a large percentage of episodes in which the FOs is larger than 2, although with

similar values of expenditures. However, these scenarios account only for roughly 2% of times (i.e.,

they are quite rare events).

Insert Table 7 here.
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4.4 Comparison with RL in deterministic environment

A �nal comment seems in order about the comparison of the RL solution found in the stochastic

environment with that of the DE setting ([25]) where it is assumed that parts cannot fail during

operation. To fairly compare the policies, we assume that in the DE setting the risk of failure

before the end of the cycle is factored into the MS maintenance cost: the repair costs reported in

Table 1 are summed to the expected value of the failure cost (i.e., the product between Cfailure and

the failure probability within H hours, Table 8) to have a rough estimate of the total cost of the

random failure. This DE setting is a simpli�cation of the proposed framework. On the one hand,

this allows a large reduction in the dimension of the state space. On the other hand, the DE setting

neither considers the increase in the total number of maintenance events over the time horizon nor

provides a policy in the event of a FO during operation, which changes the environment because

the failed part is no longer available for the next maintenance events. The part �ow solution found

by RL in the DE setting is shown in Table 9 ([25]), whereas Table 5, last row, summarizes the

policy characteristics. The number of purchase and repair actions is the same as that of the RL

in case of stochastic environment and no FO, the only di�erence being that in the DE setting one

additional part is scrapped with r = 0 and one less with r = 1. Consequently, the RL solution

for DE requires installing a part with r = 1 on the last maintained GT, whereas, in the stochastic

environment with no FO, a part with r = 0 is set on the GT at the same maintenance event (see

last rows of Tables 4 and 9). This implies that the policy found by RL in DE would increase the

total risk of failure if it were adopted in the stochastic environment, as one part with r = 0 would

be put on the GT during the early maintenance events, instead of a part with r = 1. To sum up,

the solution under the stochastic environment overcomes that found in the DE setting because it

takes into account the decrease of risk of failure provided by setting newer parts on the GTs during

the maintenance period rather than at the last maintenance event.

Moreover, the �nal maintenance expenditure in DE is 1146 in arbitrary units, which is larger than
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that of the RL policy in case of stochastic environment with no FO, 1050, but smaller than the

average value of the RL policy, 1200 ()Table 2). This di�erence is obviously due to the fact that

the policy found by RL in the DE, does not take into account that the occurrence of a FO entails

not only a failure expenditure, which is encoded in the cost of the DE setting, but also the loss

of the failed part, which requires re-scheduling the MSs. This con�rms that the policies found in

the DE are not optimal in the stochastic one and, also, that the estimations of the maintenance

expenditures provided by the RL algorithm in the DE setting are not correct, even if they encode

the average cost of failure.

Insert Table 8 here.

Insert Table 9 here.

Then, the size of the state is much smaller than that of a real case study (i.e., 3 · 1012, see Section

3). Future research work will address the issue of extending the methodology to large state spaces,

which requires substituting the tabular representation of the state-action space by a suitable value-

function approximation method ([18], [27]).

5 Conclusions

This work extends the formalization of the GT part �ow management in the Oil & Gas industry

as a SDP by considering the part failure stochastic process. RL is used as solving technique. The

results of a case study inspired by a real industrial application show that RL �nds a more e�cient

part �ow policy, which increases the GTs reliability, as the percentage of episodes with no forced

outages is increased, but even in case of one or two forced outages, the policy found by RL results

more e�cient, leading to lower total maintenance expenditures.

The application of the proposed framework to a case study in which the number of turbines is
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larger and with larger MNRC values of the parts would require large computational e�orts to

explore the search space for �nding the optimal solution. Future research work will, then, focus

on extending the proposed modeling and optimization framework and the RL algorithms for its

solution.
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Figure 1: Summary of the model setting
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Figure 2: Q(S1, A1) over the 107 simulated episodes
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Table 1: Initial scenario and model parameters

G H T ∆t W R CScrap
Crep

(r = 1)
Crep

(r = 2)
Cpur Cfailure λr=1 λr=2 λr=3

2 24 000 216 000 0.1 3 3 0 50 50 100 200 0.06 0.03 0.01

Table 2: Comparison of MRC and RL policies

Number of

FOs
MRC RL

Average maintenance

costs for MRC

Avarage Maintenance

costs for RL

0 0.519± 0.00044 0.5324± 0.00049 1150 1050

1 0.3476± 0.00047 0.3446± 0.00047 1361 1291

2 0.1085± 0.00031 0.1021± 0.00030 1586 1549

3 0.0215± 0.00014 0.0183± 0.00013 1804 1803

4 or more 0.0034± 0.00005 0.0025± 0.00005 2078 2079

- -
Average Total

Maintenance Costs
1288 1200
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Table 3: MRC policy, scenario with no FO

k tθk θk w1,θk w2,θk w3,θk

MNRC@ GT

g = 1
MNRC@ GT

g = 2
MNRC
Installed

Repair Purchase Ck

1 0 1 3 1 0 2 0 2 Y N 50

2 0.5 6 3 1 0 1 0 2 N N 0

3 1 11 3 0 0 1 1 1 Y N 50

4 1.5 16 3 0 0 0 1 1 Y N 50

5 2 21 3 0 0 0 0 1 N N 0

6 2.5 26 2 0 0 0 0 1 N N 0

7 3 31 1 0 0 0 0 1 N N 0

8 3.5 36 0 0 0 0 0 3 N Y 100

9 4 41 0 0 0 0 2 3 N Y 100

10 4.5 46 0 0 0 2 2 3 Y Y 150

11 5 51 0 1 0 2 2 2 Y N 50

12 5.5 56 0 1 0 1 2 2 Y N 50

13 6 61 0 1 0 1 1 2 Y N 50

14 6.5 66 1 0 0 1 1 1 Y N 50

15 7 71 1 0 0 1 0 1 Y N 50

16 7.5 76 1 0 0 0 0 1 N N 0

17 8 81 0 0 0 0 2 3 N Y 100

18 8.5 86 0 0 0 2 2 3 N Y 100

19 9 91 0 0 0 2 2 3 Y Y 150

20 9.5 96 0 1 0 2 2 2 Y N 50

- - - 0 1 0 2 1 - - TOT 1150
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Table 4: RL policy without FO

k tθk θk w1,θk w2,θk w3,θk

MNRC@ GT

g = 1
MNRC@ GT

g = 2
MNRC
Installed

Repair Purchase Ck

1 0 1 3 1 0 2 0 1 Y N 50

2 0.5 6 2 2 0 0 0 3 N Y 100

3 1 11 2 2 0 0 2 1 N N 0

4 1.5 16 1 2 0 0 2 3 Y Y 150

5 2 21 1 3 0 0 2 2 N N 0

6 2.5 26 1 2 0 1 2 2 Y N 50

7 3 31 1 2 0 1 1 2 Y N 50

8 3.5 36 2 1 0 1 1 1 Y N 50

9 4 41 2 1 0 1 0 3 Y Y 150

10 4.5 46 3 1 0 2 0 3 N Y 100

11 5 51 3 1 0 2 2 3 Y Y 150

12 5.5 56 3 2 0 2 2 2 Y N 50

13 6 61 3 2 0 2 1 2 Y N 50

14 6.5 66 2 3 0 1 1 1 Y N 50

15 7 71 2 3 0 1 0 1 N N 0

16 7.5 76 1 3 0 0 0 1 N N 0

17 8 81 0 3 0 0 0 2 N N 0

18 8.5 86 0 2 0 1 0 2 N N 0

19 9 91 0 1 0 1 1 2 Y N 50

20 9.5 96 1 0 0 1 1 1 N N 0

- - - 0 0 0 0 0 0 - - TOT 1050

Table 5: Comparison between MRC and RL policies in case of no FO, and RL in the deterministic
environment

Number of
Purchasing

Repairs of Parts
with r=2

Repairs of Parts
with r=1

Scrap of Parts
with r>0

Scrap of Parts
with r=0

RL 5 6 5 2 7
MRC 6 6 5 0 9
RL Det 5 6 5 1 8

Table 6: Number of episodes vs V , single FO scenario

Total maintenance
Expenditures V

%
MRC

%
RL

1250 0 41.32
1300 2.17 36.11
1350 74.17 20.41
1400 21.67 2.16
1450 1.99 0
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Table 7: Number of episodes vs V , double FOs case-scenario

V % MRC % RL
1450 0 10.21
1500 2.33 18.55
1550 36.93 41.55
1600 47.22 20.12
1650 12.45 7.71
1700 1.03 1.40
1750 0.05 0.35
1800 0.00 0.06
1850 0.00 0.03
1900 0.00 0.00
1950 0.00 0.01
2000 0.00 0.02

Table 8: Repair costs, DE setting

Crep (r = 2) Crep (r = 1)
56 62

Table 9: RL policy, DE setting [25]

k tθk θk w1,θk w2,θk w3,θk

MNRC@ GT

g = 1
MNRC@ GT

g = 2
MNRC
Installed

Repair Purchase Ck

1 0 1 3 1 0 2 0 1 Y N 56

2 0.5 6 2 2 0 0 0 3 N Y 100

3 1 11 2 2 0 0 2 2 N N 0

4 1.5 16 2 1 0 1 2 3 Y Y 156

5 2 21 2 2 0 1 2 3 Y Y 162

6 2.5 26 3 2 0 2 2 2 Y N 56

7 3 31 3 2 0 2 1 2 Y N 56

8 3.5 36 3 2 0 1 1 1 Y N 62

9 4 41 3 2 0 1 0 1 Y N 62

10 4.5 46 3 2 0 0 0 1 N N 0

11 5 51 2 2 0 0 0 3 N Y 100

12 5.5 56 2 2 0 2 0 1 N N 0

13 6 61 1 2 0 2 0 2 Y N 56

14 6.5 66 1 2 0 1 0 1 N N 0

15 7 71 0 2 0 1 0 2 Y N 62

16 7.5 76 1 1 0 1 0 2 N N 0

17 8 81 1 0 0 1 1 3 N Y 100

18 8.5 86 1 0 0 2 1 1 Y N 62

19 9 91 1 0 0 2 0 1 Y N 56

20 9.5 96 0 1 0 0 0 2 N N 0

- - - 0 0 0 0 1 - - TOT 1146
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