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Abstract:We consider an initial-boundary value problem for the classical linear wave equation, wheremixed

boundary conditions of Dirichlet and Neumann/Robin type are enforced at the endpoints of a bounded inter-

val. First, by a careful application of the method of characteristics, we derive a closed-form representation of

the solution for an impulsive Dirichlet data at the left endpoint, and valid for either a Neumann or a Robin

data at the right endpoint. Then we devise a reconstruction procedure for identifying both the interval length

and the Robin parameter. We provide a corresponding stability result and verify numerically its performance

moving from a finite element discretization.
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1 Introduction
Let us consider the following mixed boundary value problem for the wave equation:

{{{{{{{{{
{{{{{{{{{
{

uxx − utt = 0, 0 < x < b, t > 0,
u(x, 0) = 0, 0 < x < b,
ut(x, 0) = 0, 0 < x < b,
u(0, t) = h(t), t ≥ 0,

ux(b, t) + γu(b, t) = 0, t ≥ 0,

(1.1)

where b > 0, γ ≥ 0 and h(t) is a C1 function in [0, +∞) such that h(0) = 0 are assigned data. The above sys-
tem, though pretty simple, actually models some physical problems of interest in engineering applications.

For instance, the unknown function u(x, t) describes the transverse vibrations of a string of finite length,with
respect to the horizontal rest configuration, with vertical component of the tension given by ux(x, t). In this
context, Dirichlet, Neumann andRobin boundary conditions have a direct physical interpretation. In particu-

lar, a null Neumann data, ux(b, t) = 0, is associated with a free transversemotion, i.e., no external transverse

force acts on this end; a homogeneous Robin condition, ux(b, t) + γu(b, t) = 0, represents a linearly restora-
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tive transverse force, that is, the end is transversally restrained, but elastically rather than rigidly [12]. For

this reason, this last condition is often referred to as elastic.

Another relevant application of the wave equation is in acoustics, where u is the velocity potential asso-
ciated with the propagation of a pressure wave in a carrier medium [1]. The Dirichlet boundary condition on

a certain surface, for a complex amplitude pressure, is applied when the material of the surface has very low

acoustic impedance compared to that of themedium. In this case, the surface is called sound soft. Vice versa,

when the surfacematerial hasmuchhigher acoustic impedance than the one of the hostmedium, aNeumann

boundary condition holds, and the surface is called sound hard. The Robin (or impedance) boundary condi-

tion models finite acoustic impedance, γ being proportional to the admittance of the surface.

We suppose that the boundary, x = b, is unknown and inaccessible, whereas x = 0 is accessible for input
and output measurements. Then we deal with the inverse problem of determining b and γ, provided addi-

tional measurements ux(0, t) are known for t in a bounded interval (0, tf ).
An analogous problem was considered in spatial dimension d ≥ 2 by Isakov [7], assuming that the

unknown boundary Γ is a closed polygonal surface. Isakov proved that an additional measurement of the

normal derivative on the known part of the boundary for large enough tf uniquely determines Γ and γ. More-
over, inverse problems involving a Robin condition in a parabolic equation were considered by Bacchelli,

Di Cristo, Sinchich and Vessella [2]. They prove that two pairs of measurements guarantee uniqueness and

stability of both Γ and γ. In the context of hyperbolic problems, although addressing different identifica-

tion problems, it is worth mentioning the following works: In [13], the wave equation is considered where

the spatial operator is in conservation form (K(x)ux)x and the problem is set on the half line x > 0. An
inverse problem for the identification of the coefficient K(x) is proposed, based on the boundary impulse

response, i.e., by measuring the function u(x, 0) = f(t) associated with the Neumann boundary condition

ux(0, t) = δ(t). A similar problem in addressed in [9], where the inverse medium problem associated with

the reconstruction of the heterogeneous material profile of a semi-infinite layered soil medium, directly in

the time domain, is studied. The method is based on the complete waveform response of the medium to

a forcing Neumann boundary condition on the surface. The inversion process relies on a partial differential

equation constrained optimization approach, supplemented with a time-dependent regularization scheme.

An absorbing boundary condition is enforced at the bottom of the domain, at a certain depth, to take into

account the artificial truncation of the spatial domain. Moreover, for the case when there is no homogeneous

bottom layer, or its precise location is not a priori known, Na and Kallivokas [9] propose two iterative schemes

to identify the domain depth. A force identification problem for the wave equation is studied in [8], where

the space-dependent part of the source term is recovered from measurements of the final or time-average

displacement of the wave. Finally, in [5], a nonlinear inverse coefficient problem for the wave equation is

investigated. Namely, the nonlinear reconstruction of the space-dependent potential (the coefficient Q
0
(x)

of u) and/or of the damping (the coefficient Q
1
(x) of ut) from Cauchy data boundary measurements of the

solution and of its normal derivative are studied both theoretically in ℝn for n = 1, 2, 3, and numerically in

one dimension.

In this paper, we uniquely identify the pair (b, γ) by evaluating the output flux ux(0, t) of the solution
generated by an impulsive Dirichlet data h(t) for a sufficiently large time interval. We stress that no a priori

bound is required on γ, so that we include the limit case γ = 0 of the Neumann problem. Moreover, only

a lower bound b ≥ b
0
> 0 is assumed on the length of the unknown interval. By adding a further upper bound

on γ, we also provide a stability estimate (see Section 3.1).

A key point is the determination of the closed-form solution to (1.1), at least up to a definite time, but

in principle extendable to any larger time. This is carried out by a careful application of the method of char-

acteristics, which we exploit to build the solution in space-time triangular domains. Clearly, the domain of

dependence of u at a given space-time point, say (x̄, ̄t), is the interval [x̄ − ̄t, x̄ + ̄t], whose width increases

with
̄t, making the procedure more involved.

We remark that a closed-form solution of (1.1) was provided in [11], for the case of non-homogeneous

boundary conditions. In this paper, we provide the explicit construction based on the method of charac-

teristics both for the sake of completeness and with a view to possible generalizations of our method for

identifying b and γ to the case of a time dependent Robin coefficient γ(t) (see Remark 2.2 and Section 5),
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not treated in [11], and to the case of an inhomogeneous Robin boundary condition (see Remark 2.3 and

Section 5).

Then the performance of the identification procedure is tested numerically.Wedevise an algorithmwhich

takes into account the unavoidable approximations and smoothing effects introduced by the numerical dis-

cretization. In particular, the wave equation is dealt with a Galerkin finite element method with polynomial

approximation of arbitrary degree for the spatial variable, and a Newmark method to advance in time. The

impulsive Dirichlet data is approximated by a Gaussian function of unit area and with a very small vari-

ance. The overall scheme is unconditionally stable (with a proper selection of the parameters in the Newmark

method), and we show that one can obtain a very accurate reconstruction of the physical parameters. Actu-

ally, very small space and time discretization steps are required to describe the sharp Gaussian profile and to

reduce the dispersion error of the method.

The paper is organized as follows: In Section 2, we exploit the method of characteristics to obtain an ex-

plicit representation (for some bounded time interval) of the solution to (1.1) with h(t) = δ(t − t
0
), t

0
> 0. In

Section 3, we first discuss themotivations leading to the proposed reconstruction procedure based on amea-

surement of the output flux on a time interval; then we define a function g(T) by a suitable weighted integral
on (0, T) of the output flux ux(0, t) and we show that the study of g allows us to uniquely determine the pair

(b, γ) (see Proposition 3.2). Finally, the stability is discussed by defining an appropriate notion of distance

between a pair of such functions g. In Section 4, we introduce the numerical algorithm employed to assess

the robustness and accuracy of the identification procedure. Some conclusions and possible generalizations

are discussed in Section 5.

2 A representation formula of the solution
As it is known, problem (1.1) has a unique classical solution u ∈ C2((0, b) × (0, +∞)) ∩ C1([0, b] × (0, +∞))
(see [6]). We provide here a closed-form representation of the solution on a specific bounded time interval.

Proposition 2.1. A representation ux(0, t) of the flux, valid in the interval 0 < t < 3b, is provided by

ux(0, t) = −h󸀠(t) +
{{{{
{{{{
{

0, 0 < t < 2b,

2h󸀠(t − 2b) − 4γh(t − 2b) + 4γ2e−γ(t−2b)
t−2b

∫
0

eγsh(s) ds, 2b < t < 3b.
(2.1)

Proof. This proof is based on a repeated application of the method of characteristics [3]. To this end, it is

enough to obtain an explicit expression for the solution in the triangles T
0
and T

2
in Figure 1. As it should

be clear from this picture, for the evaluation of the solution in T
2
we need to compute the solution also in T

1
,

where the influence of the Robin boundary condition first appears. Thus we divide the proof into three steps,

by processing each triangle in turn.

Solution in T
0
. Weobserve that the solution u is vanishing for 0 ≤ x ≤ b and0 ≤ t ≤ x, while in the triangle T

0

defined by

T
0
:= {0 ≤ x ≤ b : x ≤ t ≤ 2b − x}

we simply have u(x, t) = h(t − x). Hence,

ux(0, t) = −h󸀠(t) for 0 ≤ t < 2b.

Solution in T
1
. We now represent the solution u(x, t) in the triangle

T
1
:= {

b
2

≤ x ≤ b : 2b − x ≤ t ≤ x + b}.

Then, thanks to the d’Alembert formula, we write the solution in T
1
in the form

u(x, t) = 1
2

ϕ(x − t + b) + 1
2

ϕ(x + t − b) + 1
2

x+t−b

∫
x−t+b

ψ(s) ds, (2.2)
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Figure 1: Graphic representation of the method of characteristics.

where ϕ, ψ are the Cauchy data at t = b, which depend on the solution at previous times. Clearly, in the

interval 0 ≤ x ≤ b we have ϕ(x) = h(b − x) and ψ(x) = h󸀠(b − x). Additionally, to define (2.2) for (x, t) ∈ T
1
it

is necessary to specify the data ϕ, ψ in the whole interval 0 ≤ x ≤ 2b. This can be accomplished by exploiting

the Robin boundary condition.

For this purpose, we rewrite (2.2) as

u(x, t) = 1
2

h(t − x) + 1
2

ϕ(x + t − b) + 1
2

b

∫
x−t+b

h󸀠(b − s) ds + 1
2

x+t−b

∫
b

ψ(s) ds.

By explicitly integrating the third term, and since h(0) = 0, we have

u(x, t) = h(t − x) + H(t + x − b), (2.3)

where

H(ξ) = 1
2

ϕ(ξ) + 1
2

ξ

∫
b

ψ(s) ds, b ≤ ξ ≤ 2b.

We now determine the unknown function H by imposing the boundary condition ux(b, t) + γu(b, t) = 0. We

obtain the Cauchy problem

{{
{{
{

H󸀠(t) + γH(t) = h󸀠(t − b) − γh(t − b), t > b,

H(b) = 1
2

ϕ(b) = 1
2

h(0) = 0.
(2.4)

The solution to this problem is given by

H(t) = h(t − b) − 2γe−γ(t−b)
t−b

∫
0

eγsh(s) ds = h(t − b) − 2γh̃(t − b),

where

h̃(ξ) := e−γξ
ξ

∫
0

eγsh(s) ds. (2.5)
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Note that h̃󸀠 = h − γh̃. By plugging the expression of H into (2.3), we obtain

u(x, t) = h(t − x) + h(t + x − 2b) − 2γh̃(t + x − 2b) (2.6)

for (x, t) ∈ T
1
.

We now determine the functions ϕ, ψ in (2.2). Let us consider the triangle

T := {b ≤ t ≤ 2b : t − b ≤ x ≤ 3b − t},

which includes T
1
, a part of T

0
and a part of the half-plane x > b (see Figure 1). By (2.6), and since

u(x, t) = h(t − x) in T
0
, it can be easily checked that u coincides with the solution (still denoted by u) of

the wave equation in T with Cauchy data at t = b given by

u(x, b) = {
h(b − x), 0 ≤ x ≤ b,
h(x − b) − 2γh̃(x − b), b ≤ x ≤ 2b,

(2.7)

and

ut(x, b) = {
h󸀠(b − x), 0 ≤ x ≤ b,
h󸀠(x − b) − 2γh(x − b) + 2γ2h̃(x − b), b ≤ x ≤ 2b.

(2.8)

By comparison with (2.2), it follows that the right-hand sides of (2.7) and (2.8) are the required functions

ϕ, ψ in b ≤ x ≤ 2b.

Solution in T
2
. We can now go further by evaluating the solution in the upper triangle

T
2
:= {0 ≤ x ≤ b

2

: 2b + x ≤ t ≤ 3b − x}.

To this end, we still employ the d’Alembert formula (2.2) to represent the solution u(x, t). However, since
(x, t) ∈ T

2
, the initial values at t = b have to be defined in the larger interval −2b ≤ x ≤ 2b. Using (2.7)

and (2.8) and since, for (x, t) ∈ T
2
, one has −2b ≤ x − t + b ≤ −b and b ≤ x + t − b ≤ 2b, it holds

u(x, t) = K(x − t + b) + 1
2

[h(x + t − 2b) − 2γh̃(x + t − 2b)] + 1
2

b

∫
0

h󸀠(b − s) ds

+
1

2

x+t−b

∫
b

[h󸀠(s − b) − 2γh(s − b) + 2γ2h̃(s − b)] ds,

where

K(ξ) := 1
2

ϕ(ξ) + 1
2

0

∫
ξ

ψ(s) ds, −2b ≤ ξ ≤ 0.

By explicit integration of the terms containing h󸀠, we obtain

u(x, t) = K(x − t + b) + 1
2

h(b) + h(x + t − 2b) − γh̃(x + t − 2b) − γ
x+t−2b

∫
0

h(s) ds + γ2
x+t−2b

∫
0

h̃(s) ds. (2.9)

To determine the unknown function K, we enforce the Dirichlet condition u(0, t) = h(t) for t ≥ b, so that

K(b − t) + 1
2

h(b) + h(t − 2b) − γh̃(t − 2b) − γ
t−2b

∫
0

h(s) ds + γ2
t−2b

∫
0

h̃(s) ds = h(t).

By solving for K and by replacing t by t − x, we have

K(x − t + b) = h(t − x) − 1
2

h(b) − h(t − x − 2b) + γh̃(t − x − 2b) + γ
t−x−2b

∫
0

h(s) ds − γ2
t−x−2b

∫
0

h̃(s) ds.
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Finally, using this expression in (2.9), we obtain

u(x, t) = h(t − x) + h(x + t − 2b) − h(t − x − 2b) − 2γ[h̃(x + t − 2b) − h̃(t − x − 2b)],

where h̃ is given by (2.5), with 0 ≤ x ≤ b
2

and 2b + x ≤ t ≤ 3b − x. Hence, by recalling that h̃󸀠 = h − γh̃, we
obtain

ux(0, t) = −h󸀠(t) + 2h󸀠(t − 2b) − 4γh(t − 2b) + 4γ2h̃(t − 2b), 2b < t < 3b,

so that (2.1) is proved.

Remark 2.2. We can easily extend (2.1) to the case of a time dependent γ = γ(t). In fact, the main difference

with respect to the proof of Proposition 2.1 is the Cauchy problem (2.4), which still can be solved by explicit

integration. Then, by elementary calculations and following the same steps as above, we obtain the repre-

sentation formula

ux(0, t) = −h󸀠(t) + {
0, 0 < t < 2b,
2h󸀠(t − 2b) − 4γ(t − b)h(t − 2b) + 4γ(t − b)h̃γ(t − b), 2b < t < 3b,

(2.10)

where

h̃γ(ξ) := e−Γ(ξ)
ξ

∫
b

eΓ(s)γ(s)h(s − b) ds, Γ(ξ) :=
ξ

∫
b

γ(s) ds.

Remark 2.3. When dealing with an inhomogeneous Robin condition, by linearity, we can write the solution

in the form u(x, t) + w(x, t), where u is the solution to the original problem (1.1) and w solves the wave equa-

tion with the boundary conditions: w(0, t) = 0 and wx(b, t) + γw(b, t) = f(t). We assume that f(t) is defined
for t ≥ 0 and is locally integrable.

It can be checked that, for 0 ≤ x ≤ b,

w(x, t) =
{{{
{{{
{

0, 0 ≤ t ≤ b − x,
̃f (t + x − b), b − x ≤ t ≤ b + x,
̃f (t + x − b) − ̃f (t − x − b), b + x ≤ t ≤ 3b − x,

where

̃f (ξ) := e−γξ
ξ

∫
0

eγs f(s) ds.

Note that
̃f (0) = 0 and ̃f 󸀠(ξ) = f(ξ) − γ ̃f (ξ).

Now, the representation formula (2.1) is replaced by

ux(0, t) + wx(0, t) = −h󸀠(t) +

{{{{{{{{{{
{{{{{{{{{{
{

0, 0 < t < b,
2f(t − b) − 2γ ̃f (t − b), b < t < 2b,

2f(t − b) − 2γ ̃f (t − b) + 2h󸀠(t − 2b) − 4γh(t − 2b)

+4γ2e−γ(t−2b)
t−2b

∫
0

eγsh(s) ds, 2b < t < 3b.

3 The inverse problem
Suppose 0 < b

0
≤ b, γ ≥ 0. The inverse problem of interest consists in determining uniquely b and γ, by

choosing a suitable input h(t) and by measuring the output flux ux(0, t), namely we aim to recover the

unknown pair of constants (b, γ) by measuring the flux at x = 0 generated by an impulse at time t
0
.
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By inserting in the representation (2.1) the impulse

h(t) = δ(t − t
0
), (3.1)

where t
0
> 0 is a suitable small time, we have

ux(0, t) = −δ󸀠(t − t0) + 2δ󸀠(t − (2b + t0)) − 4γδ(t − (2b + t0)) + 4γ2e−γ(t−(2b+t0))1(2b+t
0
,3b)(t), (3.2)

where 0 < t < 3b and 1(a,b) denotes the indicator function of the interval (a, b).
Clearly, equation (3.2) holds in the distribution sense, and can be obtained as the limit of (2.1) for

a sequence {hn(t)} of boundary data such that hn(t) → δ(t − t
0
) (e.g., a sequence of Gaussian functions cen-

tered at t
0
). In this case, after multiplying the first equation of (1.1) by ϕ ∈ C2(QT), with QT := [0, b] × [0, T],

integrating by parts and taking the limit above, we have that u is a weak solution to problem (1.1) in the

following sense: u is a continuous functional on C(QT) (i.e., a Radon measure) for every T > t
0
, satisfying

b

∫
0

T

∫
0

u(x, t)[ϕxx(x, t) − ϕtt(x, t)] dx dt +
T

∫
0

δ(t − t
0
)ϕx(0, t) dt = 0 (3.3)

for every ϕ ∈ C2(QT) such that

ϕ(0, t) = 0, ϕx(b, t) + γϕ(b, t) = 0, 0 ≤ t ≤ T,
ϕ(x, T) = 0, ϕt(x, T) = 0, 0 ≤ x ≤ b.

Uniqueness of the above weak solution can also be checked. For this, let u
1
, u

2
be two solutions of (3.3) in

the dual space C(QT)󸀠 and let φ ∈ C(QT) be arbitrary. By classical results, there exists a unique ϕ ∈ C2(QT)
satisfying ϕxx(x, t) − ϕtt(x, t) = φ(x, t) and the above boundary conditions. Then

b

∫
0

T

∫
0

(u
1
(x, t) − u

2
(x, t))φ(x, t) dx dt =

b

∫
0

T

∫
0

(u
1
(x, t) − u

2
(x, t))[ϕxx(x, t) − ϕtt(x, t)] dx dt = 0,

so that u
1
= u

2
by the arbitrariness of φ.

Remark 3.1. By inspection of the right-hand side of (3.2), we see that for t > t
0
(i.e., after shooting the

impulse at the accessible boundary) the output flux consists of two “singular” terms at t = 2b + t
0
, followed

by an exponentially decreasing term. Then, by assuming some a priori upper bound b ≤ b̄, one could try

to recover the pair (b, γ) by measuring ux(0, t) at two distinct times t
1
and t

2
larger than 2b̄ + t

0
, and by

using (3.2) when 2b̄ + t
0
< 3b

0
, or vice versa its suitable extension provided in [11]. Nevertheless, if no

reasonable upper bound on b is available, one is forced to measure the output flux on a suitable interval

of time in order to detect the perturbation generated by the initial impulse. Besides, even if such an upper

bound is known, it turns out that the identification of (b, γ) with two measurements of the flux at distinct

times becomes unstable for γ → 0. In fact, in the limit case of the Neumann condition at b (i.e., γ = 0), the
representation formula (3.2) shows that ux(0, t) is concentrated at the unknown time t = 2b + t

0
(more gen-

erally, at t = 2nb + t
0
, n = 1, 2, . . .), so that the identification of b bymeasuring ux(0, t) at a single time does

not seem feasible.

Wewill take as observable output boundary data someweighted integral of (3.2) with test function supported
in the interval [0, 3b). The presence of the derivatives of the delta function in (3.2) leads to using C1 weight

functions (i.e., we can not simply integrate the output flux on some interval [0, T] ⊂ [0, 3b)). However, piece-
wise smooth, continuous functions can be chosen too. Thus, for every T ≥ b0

2

, we consider the continuous,

piecewise linear function

φT(t) :=

{{{{{{
{{{{{{
{

1, 0 ≤ t ≤ T − b0
2

,

2

b
0

(T − t), T − b0
2

≤ t ≤ T,

0, t ≥ T.

(3.4)
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Assume further that t
0
< b0

2

and t
0
+ b0

2

≤ T < 3b. Then we define

g(T) :=
T

∫
0

ux(0, t)φT(t) dt, (3.5)

with ux(0, t) as in (3.2). Note that the integral can be extended to the interval [0, 3b) by exploiting the

bounded support of φT . In practice, the function g represents the so-called observed data.
By the properties of the delta function and of its derivative, we obtain

g(T) =

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

0 for t
0
+
b
0

2

≤ T < 2b + t
0
,

4

b
0

−
8γ
b
0

(T − (2b + t
0
)) +

8γ2

b
0

T

∫
2b+t

0

s(t)(T − t) dt for 2b + t
0
< T < 2b + t

0
+
b
0

2

,

−4γ + 4γ2
T− b0

2

∫
2b+t

0

s(t) dt + 8γ
2

b
0

T

∫

T− b0
2

s(t)(T − t) dt for 2b + t
0
+
b
0

2

< T ≤ 3b,

where, to simplify notation, we set s(t) = e−γ(t−(2b+t0)). Then, by the explicit evaluation of the integrals, we

get

g(T) =

{{{{{{{{
{{{{{{{{
{

0 for t
0
+
b
0

2

≤ T < 2b + t
0
,

4

b
0

(2s(T) − 1) for 2b + t
0
< T < 2b + t

0
+
b
0

2

,

−
8

b
0

s(T)(eγ
b
0

2 − 1) for 2b + t
0
+
b
0

2

< T ≤ 3b.

(3.6)

The function g is not defined at T = 2b + t
0
and T = 2b + t

0
+ b0

2

, where it exhibits discontinuities due to the

jumps of the (weak) derivative of φT . In particular, at T = 2b + t0 we have

g(2b + t
0
)− = 0, g(2b + t

0
)+ =

4

b
0

.

Then g decreases until reaching the second discontinuity at T = 2b + t
0
+ b0

2

, where

g(2b + t
0
+
b
0

2

)
−
=

4

b
0

(2e−γb0/2 − 1), g(2b + t
0
+
b
0

2

)
+
= −

8

b
0

(1 − e−γb0/2) < 0.

Finally, g increases, still remaining negative for larger T (see Figure 2 for an example).

Notice that either the abscissa 2b + t
0
or 2b + t

0
+ b0

2

of the points of discontinuity uniquely determines

the length b.
Now, in order to determine γ it is convenient to extend g to a right-continuous function (still denoted by g)

for T ∈ [0, 3b), that is,

g(2b + t
0
) = g(2b + t

0
)+, g(2b + t

0
+
b
0

2

) = g(2b + t
0
+
b
0

2

)
+
. (3.7)

Then g(T) assumesmaximum value g(2b + t
0
) = 4

b
0

andminimum value

g(2b + t
0
+
b
0

2

) = −
8

b
0

(1 − e−γb0/2) := −∆. (3.8)

The maximum is independent of the unknowns b and γ (and equals the jump at both discontinuities, see

Figure 2), while the minimum depends only on γ, so that γ can be uniquely determined as

γ = − 2
b
0

ln(1 −
∆b

0

8

). (3.9)
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Figure 2: Plot of g for b0 = 1, b = 1.5, t0 = 0.2, γ = 0.2 (left) and γ = 0.8 (right).

Note that ∆ is also equal to the value of the gap

g(2b + t
0
) − g(2b + t

0
+
b
0

2

)
−
=

8

b
0

(1 − e−γ
b
0

2 ).

We can sum up the previous discussion in the following proposition.

Proposition 3.2. Let u(x, t) be the weak solution to (1.1) with Dirichlet data u(0, t) = δ(t − t
0
) in the sense

of (3.3). Assume that the endpoint b and the parameter γ in (1.1) satisfy b ≥ b
0
> 0 and γ ≥ 0, and that

0 < t
0
< b0

2

. Moreover, let g be the right-continuous function defined by (3.5)–(3.7). Then, denoting by TM the
abscissa of the unique maximum of g, we have

b = 1
2

(TM − t0). (3.10)

Furthermore, the parameter γ is determined by

γ = − 2
b
0

ln(1 +
gmb0
8

), (3.11)

where gm = g(TM + b0
2

) is the minimum value of g.

According to this proposition, the unknown pair (b, γ) is recovered by evaluating the weighted integrals (3.5)
of the output flux up to the time TM + b0

2

.

Remark 3.3. If an upper bound b < b̄ is known a priori, the flux could be evaluated up to a maximum time

T = 2b̄ + t
0
+ b0

2

.

Notice that the value of γ is determined regardless of b. This property could be exploited to improve the evalu-

ation of b. For this, let us suppose that the points of discontinuity are known to lie in the interval (T − ϵ, T + ϵ)
and (T + b0

2

− ϵ, T + b0
2

+ ϵ), respectively, where 0< ϵ < b0
4

(this means that

1

2

(T − t
0
− ϵ) < b < 1

2

(T − t
0
+ ϵ)).

Then, after computing γ as in (3.9), choose

TM ∈ (T + ϵ, T +
b
0

2

− ϵ)

and measure the value g(TM). Since TM lies between the points of discontinuity, by (3.6) we readily obtain

b = 1
2

(TM − t0) +
1

2γ
ln[

1

2

+
b
0

8

g(TM)].

The above formula could be used to provide a better estimate of b provided that γ and g(TM) are determined

with sufficient precision (see below).
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10 | V. Bacchelli et al., Parameter identification for the linear wave equation with Robin data

Remark 3.4 (The case of the Neumann condition). It is interesting to consider the case γ = 0 in (1.1), that is,
to uniquely determine bwhen the homogeneousNeumann condition ux(b, t) = 0 is assigned. By setting γ = 0
in (3.6), it turns out that

g(T) = 4

b
0

1(2b+t
0
,2b+t

0
+ b0

2

),

so that the unknown b is determined by locating the discontinuities of g, which degenerates in a rectangle

function.

Remark 3.5. One could also choose any scaled versionmφT of the test function in (3.4), withm > 0. In such
a case, the function g scales accordingly, while (3.9) still holds with ∆ defined by (3.8).

3.1 Stability analysis

We have shown that if u is the solution of (1.1) with impulsive Dirichlet data at x = 0, then the function g
defined in Proposition 3.2 uniquely determines the parameters (b, γ). We now discuss the stability of such

reconstructionprocedure.Hence,wewill estimate the distance between twopoints in the plane (b, γ) in terms

of some suitably defined distance between two functions g. To this end, notice the following facts:
∙ By (3.11), the parameter γ is uniquely determined by the minimum value of g.
∙ By extending g(T) to zero outside the interval (t

0
+ b0

2

, 3b), the graphs of two functions with the same γ
and b = b

1
, b = b

2
differ by a shift of b

2
− b

1
along the T axis.

Let us now define g{b,γ} : ℝ → ℝ to be the extension to zero of g(T) given by (3.6). For any b ≥ b
0
> 0 and

γ ≥ 0, the function g{b,γ} is bounded and compactly supported.

Thanks to the two previous remarks, we define the distance

d(g{b
1
,γ

1
}, g{b

2
,γ

2
}) := ∫
ℝ

|g{b
1
,γ

1
}(T) − g{b

2
,γ

2
}(T)| dT + 󵄨󵄨󵄨󵄨infT g{b

1
,γ

1
}(T) − inf

T
g{b

2
,γ

2
}(T)󵄨󵄨󵄨󵄨,

where the right-hand side is well defined in the set G × G, where

G := {g{b,γ} : (b, γ) ∈ [b0, +∞) × [0, +∞)}.

Then we prove the following stability result.

Theorem 3.6. Let g{b,γ} be defined as above and assume that b ≥ b
0
> 0 and 0 ≤ γ ≤ γ̄ for some γ̄ > 0. Then

there exist positive constants C and η depending only on b
0
and γ̄ such that

d(g{b
1
,γ

1
}, g{b

2
,γ

2
}) ≥ C(|b1 − b2| + |γ1 − γ2|) (3.12)

whenever |b
1
− b

2
| ≤ η.

Proof. Let ∆
1
, ∆

2
be defined as in (3.8) for γ = γ

1
and γ = γ

2
, respectively. By (3.9) and simple calculus, we

have

|γ
1
− γ

2
| =

2

8 − b
0
∆̃

|∆
1
− ∆

2
|,

where ∆
1
< ∆̃ < ∆

2
. By (3.8) and exploiting the bound on γ, we obtain ∆̃ ≤ ∆̄ < 8

b
0

, with ∆̄ as in (3.8) for γ = γ̄,
so that

|γ
1
− γ

2
| ≤

2

8 − b
0
∆̄

|∆
1
− ∆

2
|. (3.13)

Suppose now that b
1
< b

2
≤ b

1
+ b0

4

, and consider the function g
1
− g

2
, where we set g

1
= g{b

1
,γ

1
} and

g
2
= g{b

2
,γ

2
}. Note that in the interval 2b1 + t0 ≤ T < 2b2 + t0 one has

g
1
(T) = 4

b
0

(2e−γ1(T−(2b1+t0)) − 1) and g
2
(T) = 0.
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Figure 3: Degrees of freedom and nodes associated with the space Ur
σ for r = 4.

Moreover, g
1
is decreasing in 2b

1
+ t

0
≤ T < 2b

2
+ t

0
, with

g
1
(2b

2
+ t

0
) =

4

b
0

(2e−2γ1(b2−b1) − 1) ≥ 4

b
0

(2e−2γ̄(b2−b1) − 1).

The last term is positive provided that

b
2
− b

1
<

1

2γ̄
ln 2.

Hence, by defining

η := min{
b
0

4

,

ln 2

2γ̄ }
,

for |b
1
− b

2
| < η holds

∫
ℝ

|g
1
(T) − g

2
(T)| dT >

2b
2
+t

0

∫
2b

1
+t

0

|g
1
(T)| dT ≥ 8K

b
0

|b
1
− b

2
|, (3.14)

where the positive constant K depends only on γ̄ and η. By recalling that ∆i = − infT gi(T) with i = 1, 2,
result (3.12) follows by estimates (3.13) and (3.14) and by choosing C = min{8Kb

0

, (8 − b
0
∆̄)/2}.

4 The discrete problem
The aim of this section is to apply the reconstruction procedure in Proposition 3.2. For this purpose, we

compute a numerical approximation of g on a finite number of time levels, thus simulating the actual

experimental setting. In particular, to determine TM (and analogously gm) it suffices to process all of these

values and then use formulas (3.10) and (3.11) to recover the pair (b, γ).
Additionally, to be more realistic with respect to an actual experimental procedure, we also consider the

effects of replacing the idealized impulsive stimulus with a Gaussian source as well as of a random noise

added to the observed data. Moreover, also the numerical scheme used to solve (1.1) unavoidably introduces

a discretization error, which can be assimilated to some further uncertainties in the actual physical setting.

Clearly, these error sources cannot be analytically accounted for in an easy way, so that a numerical simu-

lation turns out to be a practical and effective way to asses the performance of the reconstruction procedure

under more realistic conditions.

We consider the discretization of problem (1.1). In particular, since we are dealing with a space-time

problem,we first discretize in space via a finite element scheme, and then in time by resorting to theNewmark

method.

Let us start by subdividing thedomain [0, b] intoN uniform sub-intervals via theN + 1nodes {xi}Ni=0, with
xi+1 = xi + σ, with σ = b

N , x0 = 0 and xN = b. With a view to the finite element approximation, we introduce

the finite-dimensional space

U rσ = {w ∈ C0([0, b]) : w|[xi ,xi+1] ∈ ℙr}
of piecewise continuous function of degree r, whose corresponding degrees of freedom are denoted by ξj,
j = 0, . . . , rN, following the ordering described in Figure 3.

Thus, the semi-discrete finite element approximation is as follows: for all t > 0, find uσ(t) ∈ U rσ such that,
for all vσ ∈ V rσ,

b

∫
0

uσtt(x, t)v
σ(x) dx +

b

∫
0

uσx (x, t)vσx (x) dx + γuσ(b, t)vσ(b) = 0, (4.1)
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12 | V. Bacchelli et al., Parameter identification for the linear wave equation with Robin data

with uσ(0, t) = h(t) and uσ(x, 0) = uσt (x, 0) = 0, and where V rσ = {w ∈ U rσ : w(0, t) = 0 for all t > 0}. Notice
also that we adopt the standard convention of omitting the dependence on xwhen, at a given time, functions

are meant in U rσ.
The algebraic counterpart of (4.1) is provided by the following system of ordinary differential equations:

{{{
{{{
{

M̃ũtt(t) + K̃ũ(t) = 0, t > 0,
ũ(0) = 0
ũt(0) = 0,

(4.2)

with

ũ(t) = {uσ(ξi , t)}rNi=0 ∈ ℝ
rN+1

, M̃ = [m̃ij]rNi,j=0 ∈ ℝ
(rN+1)×(rN+1)

, K̃ = [k̃ij]rNi,j=0 ∈ ℝ
(rN+1)×(rN+1)

,

with

m̃ij =
b

∫
0

ϕi(x)ϕj(x) dx, k̃ij =
b

∫
0

ϕi,x(x)ϕj,x(x) dx + γδi,rNδj,rN ,

being the elements of the mass and of the stiffness matrix, respectively, δk,rN being the Kronecker symbol,

uσ(ξ
0
, t) = h(t), and with {ϕk}rNk=0 being the finite element basis functions, assumed to be Lagrangian, so that

uσ(x, t) =
rN
∑
k=0

uσ(ξk , t)ϕk(x).

System (4.2) can be reduced in dimension in order to highlight the known quantities as

{{{
{{{
{

Mutt(t) + Ku(t) = −(h(t)f + htt(t)m) =: F(t), t > 0,
u(0) = 0,
ut(0) = 0,

(4.3)

where¹

K = K̃(2 : rN + 1, 2 : rN + 1) ∈ ℝrN×rN ,
M = M̃(2 : rN + 1, 2 : rN + 1) ∈ ℝrN×rN ,
f = K̃(2 : rN + 1, 1) ∈ ℝrN ,
m = M̃(2 : rN + 1, 1) ∈ ℝrN ,

u(t) = {uσ(ξi , t)}rNi=1 ∈ ℝ
rN
.

Notice that both M and K are symmetric positive definite.

Concerning the time discretization, we focus on the time window [0, tf ] for some final time tf > 0,
and divide such interval in Nτ sub-intervals, identified by the time step τ = tf /Nτ, such that tn+1 = tn + τ
for n = 0, . . . , Nτ − 1. Then we resort to the Newmark method [10], and in particular to its a-form imple-

mentation. This is a well-known one-step algorithm for a second-order ordinary differential system in time

describing general damped/undamped structural dynamics applications [4]. In this method, system (4.3) is

reformulated in terms of three unknowns, a = utt, v = ut and u, so that it becomes

{{{
{{{
{

Ma(t) + Ku(t) = F(t), t ∈ (0, tf ],
u(0) = 0,
v(0) = 0.

(4.4)

Then the first equation of (4.4) is evaluated at the time level tn+1 as

Man+1 + Kun+1 = Fn+1,

1 We adopt a standard Matlab syntax to extract array components.
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where the superscripts indicate the corresponding time level, supplemented with the following Taylor-like

expansions to link the unknowns at tn and at tn+1:

un+1 = un + τvn + τ2((1
2

− β)an⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
unp

+βan+1) = unp + τ2βan+1,

vn+1 = vn + τ((1 − α)an⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
vnp

+αan+1) = vnp + ταan+1.

The variables unp and vnp denote predicted values for the displacement and the velocity, respectively, and can

be computed explicitly since they depend just on the state at time level n. The Newmark one-step procedure

to advance in time consists of, given [un , vn , an], computing [un+1, vn+1, an+1] by the following steps:

unp = un + τvn + τ2(
1

2

− β)an ,

vnp = vn + τ(1 − α)an ,
(M + τ2βK)an+1 = Fn+1 − Kunp ,

un+1 = unp + τ2βan+1,
vn+1 = vnp + ταan+1,

where the first two and the last two assignments are straightforward vector updates. The third line involves

solving an algebraic linear system for the unknown an+1, with a symmetric positive definite matrix being a

linear combination of the stiffness and mass matrix.

After dealing with the approximation to the wave equation, we have to address the recovery of the model

parameters b and γ by a suitable identification procedure. We summarize the overall algorithm, comprising

both the approximation of the wave equation and the estimate of b and γ, in Algorithm 1.

Some remarks are in order. The function in line 2 (and its corresponding second-order derivative in time

in line 3) replaces the impulse in (3.1). This is a user-defined Gaussian function, centered at t = t
0
, with

variance λ and with unit integral overℝ.
The vector function F in line 4 coincides with definition (4.3).
In lines 5–7, according to a standard finite element approach, we introduce the local degrees of freedom

(the r + 1 uniform nodes associated with the space ℙr) on the reference unit interval and form the corre-

sponding global stiffness andmassmatrices by typical local-to-global assembly procedures [14]. The relation

τ = 0.1σ reduces the dispersion error in the Newmark method.

The timemarching process is carried out in lines 11–16, via the Newmarkmethod, after the initialization

in lines 8–9.

To compute g(T) in (3.5) we resort to a numerical integration formula after replacing ux(0, t)with a suit-
able approximation. Concerning this last issue, the idea is to first interpolate the values {ũn+1k }

r
k=0 at the

generic time level n + 1 at the r + 1 uniform nodes {ξk}rk=0 on the leftmost interval [0, x
1
] by a polynomial

in ℙr. However, for numerical conditioning issues, this approximation is carried out on the reference ele-

ment: Given {(x̂k , ũn+1k )}
r
k=0, find the coefficients {ck}rk=0 such that

pr(x̂j) =
r
∑
k=0

ck x̂r−kk = ũj , j = 0, . . . , r.

The coefficients {dk}rk=0 of the polynomial qr(x) = ∑rk=0 dkxr−k on the physical interval [0, x
1
] are computed

by the transformation {dk}rk=0 = {ckσ
k−r}rk=0. Finally, the approximation wn+1 to ux(0, tn+1) is computed in

line 17 as

wn+1 = qrx(0) = dr−1, (4.5)

with

qrx(x) =
r−1
∑
k=0
(r − k)dkxr−k−1.
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14 | V. Bacchelli et al., Parameter identification for the linear wave equation with Robin data

Algorithm 1. The Newmark method and the reconstruction procedure.

1. Input: b
0
, t

0
, λ, γ, b, r, N, tf , β, α.

2. Define: h(t) = 1/(√2πλ) exp ((−(t − t
0
)2)/(2λ2)).

3. Define: htt(t) = ((t − t0)2 − λ2)/λ4h(t).
4. Define: F(t) = −(h(t)f + htt(t)m).
5. Define: {x̂k}rk=0 : x̂k =

k
r .

6. Set: σ = b
N , τ = 0.1σ, Nτ = tf /τ.

7. Assemble: M, K as in (4.3).

8. Set: n = 0, t0 = 0, u0 = v0 = 0, w0 = 0.
9. Solve for a0: Ma0 = F(0).
10. For n = 0 : Nτ − 1

% Newmark step.

11. tn+1 = tn + τ.
12. Set: unp = un + τvn + τ2(12 − β)a

n
.

13. Set: vnp = vn + τ(1 − α)an.
14. Solve for an+1: (M + τ2βK)an+1 = Fn+1 − Kunp.
15. Set: un+1 = unp + τ2βan+1.
16. Set: vn+1 = vnp + ταan+1.
% Approximation to ux(0, tn+1).
17. Compute: wn+1 by (4.5).

18. End.

% Estimate of b, γ.
19. Compute: g(Tn) by (4.6) for Tn ∈ [ b0

2

+ t
0
, 3b − τ].

20. Compute: b by (4.7).
21. Compute: ∆ = −minn g(Tn).
22. Compute: γ by (3.9).

As for the numerical integration involved in (3.5), we consider the interval [ b0
2

+ t
0
, 3b − τ] for T, and sample

this interval with the same step used for the Newmark method, i.e., τ, and denote by Tn the variable right
endpoint in the integral in (3.5). Additionally, we resort to a composite quadrature rule based on the uniform

nodes {tn}n≥0. Thus, we divide the interval [0, Tn] in Nn = Tn/τ sub-intervals, and employ the composite

trapezoidal quadrature rule, taking into account that w0 = 0, due to the initial condition in (1.1). This yields
the computation in line 19:

g(Tn) ≃ τ
Nn−1
∑
k=1

wkφTn (tk) + 0.5τwNnφTn (tNn ). (4.6)

We are now ready to compute the pair (b, γ) in lines 20–22, inspired by (3.10) and (3.11). In particular, b is
derived by computing first TM = argmaxn

dg
dT (T

n) in a neighborhood of the positive steep gradient of g, and
then the quantity

b = 0.5(TM − t0). (4.7)

As for γ, we exploit (3.9) after properly approximating ∆ in (3.8) as the minimum of g(Tn) over the interval
[ b0
2

+ t
0
, 3b − τ] up to the sign.

A numerical assessment. We now carry out two numerical experiments, corresponding to the data in Fig-

ure 2. Concerning the configuration on the left, we pick the input parameters to Algorithm1: b
0
= 1, t

0
= 0.2,

λ = 0.0025, γ = 0.2, b = 1.5, r = 2,N = 6000, tf = 3b + 2t0 = 4.7, β = 1

4

and α = 1

2

. For estimating b, we con-
sider the plot of g in Figure 4 (left), and zoom in on around the first discontinuity in Figure 4 (center). With

high confidence, we can state that 3.19 < 2b + t
0
< 3.21. The derivative of g(T), represented in this interval

in Figure 4 (right), predicts TM = 3.200075, from which we can recover the value b = 1.5000375, which is

a very accurate approximation to the exact value.
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Figure 4: Test 1: Plot of g(T n) (left), of a detail (center) and of dg
dT (T

n) (right) for T n ∈ [3.16, 3.24].
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Figure 5: Test 2: Plot of g(T n) (left), of a detail (center) and of dg
dT (T

n) (right) for T n ∈ [3.16, 3.24].

SNR TM b γ

70 3.200099 1.5000498 0.199854
60 3.200140 1.5000700 0.200574
50 3.199943 1.4999717 0.203104

Table 1: Test 1 with noisy data: reconstructed quantities for three different values of SNR.

The computedvalue in line21, basedonFigure4 (left), is ∆ = 0.759734,whichyields the estimatedvalue

γ = 0.199567, very close to the exact value, differing only by circa 0.2% with respect to a relative error.

Figure 5 collects the results associated with the configuration on the right in Figure 2. The same param-

eters as in the previous case are chosen, except for γ set to 0.8. The estimated values of the parameters are

TM = 3.200050, b = 1.5000250, ∆ = −2.618865 and γ = 0.793084, with a relative error on this latter of

about 0.8%.

We now consider the more realistic case of a noisy signal, i.e., we suppose that additive noise affects the

measurement, so that the actual observed data is g̃ = g + wn, where wn represents noise. In particular, we as-
sume wn to be an independent and identically distributed random variable according to a Gaussian density

functionN(0, sd) characterized by a zeromean and a standard deviation sd. This latter depends on the signal-
to-noise ratio SNRwith respect to the power of the signal in the followingway: Let v ∈ ℝm be a generic discrete

signal sampled at m time levels. Then its power E(v) can be defined as ‖v‖2/m, with ‖ ⋅ ‖ being the Euclidean
norm in ℝm. Denoting by snr = 10SNR/10 the signal-to-noise ratio in linear scale, we have that the standard

deviation is sd = √E(v)/snr. In practice, Algorithm 1 is applied also to the noisy case by replacing the func-

tion g in lines 19–22with the noisy data g̃ obtained by theMatlab command awgn(g,SNR,’measured’)which

performs automatically the procedure just described.We consider the same setting as in the first test case, and

select the values 50, 60 and 70 of SNR and, due to the randomness of the noise, we determine the estimate

of the parameters b and γ by averaging the results over 50 samples of wn.
Figure 6 shows details of the function g and of its derivative for above choices of SNR.
As expected, differentiating a noisy function emphasizes the noise level. However, the peaks are still

detectable. The quantitative results of the reconstruction procedure are gathered in Table 1.
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Figure 6: Test 1 with noisy data: Plot of g(T n) (top) and of dg
dT (T

n) (bottom) for T n ∈ [3.7, 3.73] and T n ∈ [3.16, 3.24],
respectively, for SNR = 70 (left), 60 (center) and 50 (right).

In the worst case, SNR = 50, the relative error on γ turns out to be 1.6%, thus assessing the good robust-

ness of the proposed reconstruction procedure. For this test case, the value 50 represents somewhat the

minimum SNR which can be dealt with by the reconstruction procedure, as is. Indeed, for smaller values

of the SNR the noise present in the numerical derivative of g(T) is of the same order of magnitude as themain

spikes, so that it is no longer possible to easily detect the abscissa TM. On the other hand, in a real situation,
in the presence of a stronger noise it is possible to apply a suitable filter to obtain a derivative of g enjoying the
same amount of noise as that acting on g, and then to follow the same steps in lines 19–22 of Algorithm 1.

Due to the extra technical details involved, we will not address this issue. Moreover, the reconstruction pro-

cedure is not affected considerably and remains as effective and stable as with the moderate values of noise

just considered in Table 1.

5 Conclusions
The exact solvability of the linear wave equation in a one-dimensional setting turns out to be a non-trivial

issue when the spatial interval is bounded and mixed-boundary conditions complete the problem. In partic-

ular, the Robin data makes the problem more challenging with a view to the computation of the solution in

closed form. Indeed, the constructive procedure used in the proof to Proposition 2.1, although based on the

standardmethod of characteristics, demands a particular care due to the boundedness of the spatial domain.

In principle, we can extend the solution to larger times, though the technicalities become more involved.

The reconstruction formulas (3.10) and (3.11) provide a practical way to compute the unknown param-

eters. This is corroborated by the numerical investigation in Section 4 which shows that the accuracy of the

recovered parameters is high, thus assessing the reliability of Algorithm 1. The regularization of the Dirichlet

data (i.e., the replacement of the impulsive signal with a Gaussian function) required by the numerical proce-

dure can be conceived as a possible physical effect due to measurement errors. Nevertheless, this smoothing

does not spoil the physics of the problem, thanks to both a stable recovery procedure (as shown in Section3.1)

and a robust numerical scheme (the Newmark finite element method).

Finally, we briefly discuss possible extensions of our reconstruction method to problems with a time

dependent γ. For example, it couldbe interesting to assume that theRobin coefficient decreases exponentially
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in time, modeling a transition over time from elastic to a free-force at the boundary. In this case, we could

suitably modify the proposed reconstruction procedure taking into account (2.10) in order to identify also

the unknown decay rate. We expect to preserve the stability of the reconstruction algorithm also in this case.

The case of a non-homogeneous Robin boundary condition, discussed in Remark 2.3, can be dealt with too,

e.g., by employing the superposition principle to split the effect of h(t) and f(t) also in the reconstruction

procedure.

References
[1] M. J. Crocker, Handbook of Acoustics, John Wiley & Sons, New York, 1998.
[2] V. Bacchelli, M. Di Cristo, E. Sinchich and S. Vessella, A parabolic inverse problem with mixed boundary data. Stability

estimates for the unknown boundary and impedance, Trans. Amer. Math. Soc. 366 (2014), no. 8, 3965–3995.
[3] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 2010.
[4] T. J. R. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis, Dover, Minneola, 2000.
[5] S. O. Hussein, D. Lesnic and M. Yamamoto, Reconstruction of space-dependent potential and/or damping coefficients in

the wave equation, Comput. Math. Appl. 74 (2017), no. 6, 1435–1454.
[6] M. Ikawa, Hyperbolic Partial Differential Equations and Wave Phenomena, Transl. Math. Monogr. 189, American

Mathematical Society, Providence, 2000.
[7] C. Isakov, On uniqueness of obstacles and boundary conditions from restricted dynamical and scattering data, Inverse

Probl. Imaging 2 (2008), 151–165.
[8] D. Lesnic, S. O. Hussein and B. T. Johansson, Inverse space-dependent force problems for the wave equation, J. Comput.

Appl. Math. 306 (2016), 10–39.
[9] S.-W. Na and L. F. Kallivokas, Direct time-domain soil profile reconstruction for one-dimensional semi-infinite domains,

Soil Dyn. Earthq. Eng. 29 (2009), 1016–1026.
[10] N. M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. 3 (1959), 67–94.
[11] A. A. Nikitin, On the mixed problem for the wave equation with the third and first boundary conditions, Differ. Equ. 43

(2007), no. 12, 1733–1741.
[12] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, New York, 1990.
[13] G. Q. Xie, A new iterative method for solving the coefficient inverse problem of the wave equation, Comm. Pure Appl.

Math. 39 (1986), 307–322.
[14] O. C. Zienkiewicz, R. L. Taylor and J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 7th ed.,

Elsevier/Butterworth Heinemann, Amsterdam, 2013.

Brought to you by | Politecnico di Milano
Authenticated | stefano.micheletti@polimi.it author's copy

Download Date | 5/4/18 11:06 AM


	Parameter identification for the linear wave equation with Robin boundary condition
	1 Introduction
	2 A representation formula of the solution
	3 The inverse problem
	3.1 Stability analysis

	4 The discrete problem
	5 Conclusions


