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Abstract This paper globally explores two-impulse, low-energy Earth–Moon transfers in
the planar bicircular restricted four-body problem with transfer time of up to 200 days. A
grid search combined with a direct transcription and multiple shooting technique reveals nu-
merous families of optimal low-energy solutions, including some that have not been reported
yet. We investigate characteristics of solutions in terms of parameters in two- and three-body
dynamics, and discuss a trade-off between cost and transfer time based on Pareto-optimal
solutions, with and without lunar gravity assists. Analysis of orbital characteristics reveals
the role of the Sun, the Earth, and the Moon in the transfer dynamics.

Keywords Low-energy transfer · Restricted four-body problem · Direct transcription and
multiple shooting · Pareto-optimal solution · Lunar gravity assist

1 Introduction

Low-energy transfers to the Moon have remarkable benefits such as a lower cost (∆v) and
a wider launch window as compared with the conventional Hohmann transfer (Belbruno
1987; Yamakawa 1993; Belbruno and Miller 1993; Circi and Teofilatto 2001; Perozzi and
Di Salvo 2008; Mingotti and Topputo 2011; Topputo 2013; Parker et al. 2013; Parker and
Anderson 2013). Because of these advantages, HITEN (Uesugi et al. 1991; Kawaguchi et
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al. 1995; Uesugi 1996) and GRAIL (Hoffman 2009; Roncoli and Fujii 2010; Chung et al.
2010; Hatch et al. 2010) adopted low-energy transfers to reach the Moon in spite of a longer
transfer time (∆t).

Recently, Topputo (2013) globally explored a (∆t, ∆v) solution plane of two-impulse
transfers to the Moon lasting up to 100 days, including low-energy transfers. As shown in
Figure 1, the solutions cover a wide area of the search space, and intercept many known so-
lutions in previous studies near the local ∆v-minima. Some solutions were novel transfers to
the Moon, and one of these was later analyzed by Oshima et al. (2017a). Table 1 summarizes
the solutions in Figure 1 (the reader can find many of them in Topputo (2013)).

Fig. 1 Solution samples from previous studies (markers) and solutions obtained in Topputo (2013) (black
dots) in the (∆t, ∆v) plane. See Table 1 for more details of each solution.

Following two previous works (Topputo 2013; Oshima et al. 2017a), this paper globally
explores two-impulse, low-energy transfers to the Moon with transfer times up to 200 days.
This extension in terms of transfer time aims for a more complete picture of solution struc-
tures, but causes computational difficulties. Therefore, our strategy is to firstly perform an
extensive grid search to obtain good initial guesses. Then, we optimize these guesses via a
direct transcription and multiple shooting technique (Enright and Conway 1992; Betts 1998;
Topputo 2013) implementing analytic gradients and the parallel computation.

The obtained solutions cover a wide range of the (∆t, ∆v) plane, the large part of which
has not been fully explored yet. New solution families result in lower ∆v than known so-
lutions. We investigate characteristics of solutions in terms of angular momentum, Kepler
energy, and Jacobi energy. We highlight Pareto-optimal solutions to elaborate on a trade-off

between ∆t and ∆v, with and without lunar gravity assists. Analysis of sample Pareto-optimal
solutions reveals the role of the Sun, the Earth, and the Moon in reducing the ∆v.

The structure of this paper is as follows. Section 2 summarizes the mathematical model.
Section 3 introduces the problem statement. Section 4 describes methodologies of the global
search. Section 5 shows the computational results. Section 6 presents and analyzes the ob-
tained solutions.



Low-Energy Transfers to the Moon with Long Transfer Time 3

Table 1 Solutions from an initial circular Earth orbit of altitude hi = 167 km to a final circular Moon orbit of
altitude h f = 100 km. The fifth column represents the type of transfers (I: Interior, E: Exterior, LGA: Lunar
gravity assist).
(�) The theoretical minimum ∆v is calculated based on the differences between the Jacobi energy at L1 and
the departure and arrival orbits.
(†) ∆v of 676 m/s is added to achieve a 100 km circular Moon orbit.
(∗) ∆v has been corrected to match the initial and final orbits altitude. The procedure developed is detailed in
Appendix 1.

Reference ∆v [m/s] ∆t [days] Model Type

Hohmann 3954 5 I

Sweetser (1991)(�) 3726 – Restricted three-body, 2D I

Yamakawa (1993)(†),(∗) 3839 102 Bicircular restricted four-body, 2D E
3825 102 E
3896 81 E+LGA
3785 80 E+LGA
3805 134 E+LGA
3769 83 E+LGA
3784 95 E+LGA
3856 85 E+LGA

Belbruno and Miller (1993) 3838 160 Full ephemeris n-body, 3D E+LGA

Pernicka et al. (1995) 3824 292 Restricted three-body, 2D I

Yagasaki (2004a) 3916 32 Restricted three-body, 2D E
3924 31 I
3947 14 I
3951 4 I

Yagasaki (2004b) 3855 43 Bicircular restricted four-body, 2D E+LGA
3901 32 E
3911 36 E+LGA
3942 24 I

Topputo et al. (2005) 3894 255 Restricted three-body, 2D I
3899 193 I

Mengali and Quarta (2005) 3861 85 Restricted three-body, 2D I
3920 68 I
3950 14 I
4005 3 I

Assadian and Pourtakdoust (2010) 3865 111 Bicircular restricted four-body, 3D E
3880 96 E
4080 59 E

Morcos (2010)(∗) 3823 107 Bicircular restricted four-body, 2D E+LGA
3827 138 E+LGA
3775 120 E+LGA

Peng et al. (2010)(∗) 3916 112 Patched restricted three-body, 2D E
3916 121 E
3923 114 E
3929 109 E

Mingotti and Topputo (2011) 3793 88 Bicircular restricted four-body, 2D E+LGA
3828 51 E
3896 31 I
3936 14 I

Moore et al. (2012)(∗) 3916 168 Bicircular restricted four-body, 2D E
3888 161 E
3864 98 E
3862 95 E

Oshima et al. (2017a) 3820 66 Bicircular restricted four-body, 2D E+LFB
3859 66 E+LFB

Onozaki et al. (2017) 3880 100 Bicircular restricted four-body, 2D E
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2 Planar Bicircular Restricted Four-Body Problem

The planar bicircular restricted four-body problem (PBRFBP) is considered. The PBRFBP
models the motion of a massless particle, P3, under the gravitational influences of three
massive bodies, P0 (the Sun), P1 (the Earth), P2 (the Moon) of masses m0, m1, m2 (m0 >
m1 > m2), respectively. The model assumes that P1 and P2 revolve in circular orbits around
their barycenter, P0 revolves in a circular orbit around the P1–P2 barycenter in the same
orbital plane as P1 and P2, and P3 moves in the same orbital plane as the massive bodies. In
this study, P0 is the Sun, P1 is the Earth, and P2 is the Moon. Let x := [r,v]> be the system
state, r and v being the position (x, y) and the velocity (ẋ, ẏ) of the particle, respectively.
The equations of motion are

ẋ = f (x, t), (1)

where the time-dependent (t) vector field is

f (x, t) B
[

v
g(r, t) + h(v)

]
, (2)

with

g(r, t) B
[
∂Ω4/∂x
∂Ω4/∂y

]
, h(v) B

[
2ẏ
−2ẋ

]
, (3)

and

Ω4(x, y, t) B Ω3(x, y) +
µs√

(x − as cos θs)2 + (y − as sin θs)2
−
µs

a2
s
(x cos θs + y sin θs), (4)

Ω3(x, y) B
1
2

(x2 + y2) +
1 − µ√

(x + µ)2 + y2
+

µ√
(x − 1 + µ)2 + y2

+
1
2
µ(1 − µ). (5)

In Eqs. (4)–(5), µ B m2/(m1 + m2), µs is the mass of the Sun, as is the distance from the
Earth–Moon barycenter to the Sun, and θs(t) B θs,0 + ωst is the phase angle of the Sun for
some initial θs,0 at t = 0, while ωs is the relative angular velocity of the Sun. All the physical
parameters used in this paper are in accordance with those in Table 3 in Topputo (2013).

Due to solar perturbation, the Jacobi energy of the circular restricted three-body problem
(Szebehely 1967)

C B 2Ω3 − (ẋ2 + ẏ2). (6)

is no longer a constant of motion in the PBRFBP.
The state transition matrix (STM) is defined by using the flow of the system (1)

ϕ(xi, ti, t f ) B xi +

∫ t f

ti
f (x, τ) dτ (7)

as Φ(x, ti, t f ) B dϕ(x, ti, t f )/dx, and its time evolution is (Topputo 2016)

Φ̇(x, ti, t) = Dxf Φ(x, ti, t), Φ(x, ti, ti) = I4, (8)

where the subscripts i and f represent initial and final values, respectively, I4 is a 4 × 4
identity matrix, and

Dxf =


0 0 1 0
0 0 0 1

Ω4 xx Ω4 xy 0 2
Ω4yx Ω4yy −2 0

 , (9)

where the subscripts in Ω4 indicate partial derivatives.
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3 Problem Statement

This study computes two-impulse transfers from an initial circular Earth orbit of altitude
hi = 167 km to a final circular Moon orbit of altitude h f = 100 km in the PBRFBP. Since
many of the previous studies used these initial and final orbits (see Table 1), we assume
these orbits as well for the sake of comparison. The first impulse of magnitude ∆vi at the
initial time ti injects the spacecraft into a trans-lunar trajectory, and the second impulse of
magnitude ∆v f at the final time t f inserts the spacecraft into the final Moon orbit. We set both
maneuvers tangential to the local velocities of the initial and final circular orbits. Therefore,

∆vi =

√
(ẋi − yi)2 + (ẏi + xi + µ)2 −

√
1 − µ

ri
, (10)

∆v f =

√
(ẋ f − y f )2 + (ẏ f + x f + µ − 1)2 −

√
µ

r f
, (11)

where ri and r f are non-dimensional distances from the center of the Earth and the Moon,
respectively. Note that (ẋi, ẏi) are velocities after the first impulse, and (ẋ f , ẏ f ) are those
before the second impulse. Therefore, the cost of transfer is ∆v = ∆vi + ∆v f and the transfer
time is ∆t = t f − ti. The following boundary conditions must hold:

ψi B

[
(xi + µ)2 + y2

i − r2
i

(xi + µ)(ẋi − yi) + yi(ẏi + xi + µ)

]
= 0, (12)

ψf B

[
(x f + µ − 1)2 + y2

f − r2
f

(x f + µ − 1)(ẋ f − y f ) + y f (ẏ f + x f + µ − 1)

]
= 0. (13)

See Topputo (2013) for more details on the problem formulation.

4 Methodology

4.1 Generation of Initial Guesses

We compute initial guess solutions by adopting a grid search in the three-dimensional α, β,
θs,0 parameter space; α is an angle between the Earth–Moon line and the line segment from
the Earth to the initial position of the spacecraft; β is a proportionality factor of the initial
velocity vi of the spacecraft with respect to the local circular velocity

√
(1 − µ)/ri, that is,

vi B β
√

(1 − µ)/ri; θs,0 is the initial phase of the Sun with respect to the Earth–Moon line.
Thus, the initial state of the spacecraft in the Earth–Moon rotating frame reads

xi = ri cosα − µ, yi = ri sinα, ẋi = −(vi − ri) sinα, ẏi = (vi − ri) cosα. (14)

Table 2 summarizes the search space and corresponding number of grid points. Note that
each combination of the three parameters uniquely determines an initial condition. This is
integrated forward and if the trajectory reaches less than 100 km altitude from the Moon, we
label this initial guess ”type I” (IG1) and finish the propagation. Otherwise, if a trajectory
reaches less than 10,000 km altitude from the Moon, we label it ”type II” (IG2) and continue
the propagation. We stop the propagation if transfer time reaches 200 days.

Since the grid search produces a huge amount of initial guesses, we optimize only those
satisfying the following conditions, which could result in convenient low-energy transfers:

– For IG1: ∆vi ≤ 3200 m/s and C f ≥ 3.1
– For IG2: ∆vi ≤ 3140 m/s and C f ≥ 3.05



6 Kenta Oshima et al.

Table 2 Grid search bounds and discretization.

Parameter Minimum Maximum Number of points
α 0 2π 373
β 1.4

√
2 500

θs,0 0 2π 500

4.2 Optimization

4.2.1 Direct Transcription and Multiple Shooting

The initial guesses obtained in Section 4.1 are optimized by a direct transcription and mul-
tiple shooting technique (Enright and Conway 1992; Betts 1998; Topputo 2013), which
translates an optimal control problem into a nonlinear programming (NLP) problem. We
divide a trajectory into N − 1 segments by N nodes evenly spaced in time. Splitting a trajec-
tory reduces the sensitivity and increases the robustness for convergence, which is desirable
when aiming to find long-lasting trajectories in a highly sensitive dynamics. For recent ap-
plications of the multiple shooting method to optimize chaotic trajectories in multi–body
problems, see Whitley and Ocampo (2009); Lantoine et al. (2011) for example. The formu-
lations below closely follow the work in Topputo (2013).

We introduce the NLP variables

y B {x j, t1, tN}, j = 1, . . . ,N, (15)

where t1 B ti and tN B t f are initial and final times, respectively, and x j B (x j, y j, ẋ j, ẏ j) is
the state on the j-th node at time t j = t1 + (tN − t1)( j − 1)/(N − 1).

The objective function is given by

J(y) B ∆v1 + ∆vN , (16)

where ∆v1 B ∆vi and ∆vN B ∆v f are initial and final maneuvers, respectively,
The boundary conditions in terms of the distances from the Earth and the Moon, and the

tangency of the maneuvers with the local circular velocities (see Section 3) are given by

ψ1 = 0, ψN = 0, (17)

where Eqs. (12) and (13) are evaluated at the initial and final nodes, respectively.
The state x j is integrated in the PBRFBP dynamics (1) for the fixed time span [t j, t j+1].

For the continuity of a trajectory, the defect

ζ j = ϕ(x j, t j, t j+1) − x j+1, j = 1, . . . ,N − 1 (18)

must vanish.
To avoid impacts with the Earth or the Moon, we impose inequality conditions at each

node

η j B

[
Re

2 − (x j + µ)2 − y j
2

Rm
2 − (x j + µ − 1)2 − y j

2

]
< 0, j = 1, . . . ,N, (19)

where Re and Rm are non-dimensional radii of the Earth and the Moon, respectively. After
the convergence, we only save non-impact solutions through the entire trajectories. For the
sake of consistency in terms duration, an inequality condition τ B t1 − tN < 0 is also set.

This study provides analytic derivatives of the objective function and constraints with
respect to the NLP variables for fast and accurate computations of optimal solutions. See
Appendix 2 for the calculation of the analytic derivatives.
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4.2.2 Continuation

Optimal solutions are continued in transfer time for broader exploration of solution struc-
tures. To this purpose, we compute optimal solutions of the transfer time ∆t′ B ∆t + δt in
each continuation step, where ∆t is the transfer time of the optimal solution in the previous
step, and δt is the continuation increment (δt > 0) or decrement (δt < 0). Each continuation
process is started from the local optimum, and ends when the continuation fails or ∆v ≥
3950 m/s.

5 Results

We solve the NLP problems by using the MATLAB’s constrained optimization solver “fmin-
con”. A tolerance of 10−10 is set for all constraints. The optimization process is computed
in parallel in terms of each initial guess, which realizes a linear speedup. Trajectories are
integrated by a variable step Runge–Kutta algorithm of orders 7 and 8 with absolute and
relative tolerances of 10−12.

Figure 2 shows the obtained solutions (gray dots) by the procedure in Section 4, dis-
played with solutions in Topputo (2013) (black dots) and the known solutions in the litera-
ture. The obtained solutions cover a wide range of the (∆t, ∆v) space, the large part of which
has not been fully explored yet. The solutions also include the low-∆v region where no so-
lutions in the previous studies have been reported (to the best of our knowledge), though
the extension of transfer times up to 200 days does not contribute to drastic reductions in
∆v. Most of the solutions result in ∆v ≤ 3850 m/s because of our selection of initial guesses
(see Section 4.1). The obtained solutions could be useful as a database to efficiently pickup
candidate trajectories for future lunar missions.

Fig. 2 Obtained solutions by the procedures in Section 4 (gray dots), displayed with solutions in Topputo
(2013) (black dots) and the solutions in the previous studies. See Table 1 for more details of the latter.
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6 Analysis and Discussion

6.1 Angular Momentum, Kepler Energy, Jacobi Energy

We investigate the final values of the angular momentum around the Moon, h2, final values
of the Kepler energy around the Moon, H2, initial and final values of the Jacobi energy, Ci

and C f . h2 and H2 are given by (Topputo 2013)

h2 = (x + µ − 1)(ẏ + x + µ − 1) − y(ẋ − y), (20)

H2 =
1
2

[(ẋ − y)2 + (ẏ + x + µ − 1)2] −
µ√

(x − 1 + µ)2 + y2
. (21)

Figure 3(a) highlights the sign of h2 at lunar captures. Direct capture solutions (h2 > 0)
are shown in blue and retrograde solutions (h2 < 0) are shown in red. From this figure,
low-energy solutions tend to end up in direct captures. This is qualitatively understandable
from the perspective of dynamical flows around the Lagrange point L2, where low-energy
trajectories guided by stable and unstable manifolds are naturally captured by the Moon in a
direct fashion (see Figure 4(b) in Koon et al. (2001) for example). Some retrograde solutions
are analyzed in Section 6.2.

Figure 3(b) highlights the sign of H2 at lunar captures. Ballistic capture solutions (H2 <
0) are shown in red and non-ballistic capture solutions (H2 > 0) are shown in blue. Since our
computation focuses on low-energy transfers, most of the obtained solutions are ballistically
captured by the Moon.

Fig. 3 Solutions classified into positive (blue) and negative (red) values of (a) h2 and (b) H2 at final times.

Figure 4 highlights the values of the Jacobi energy at (a) initial time Ci and (b) final
time C f . Since the Jacobi energy directly influences the magnitude of ∆v, combinations of
high Jacobi energies at initial and final times result in small ∆v. Figure 4(b) indicates that in
many solutions C f is sufficiently high considering that the Jacobi energy at L2 ≈ 3.184 in
the Earth–Moon system. According to Figure 4(a), increasing Ci could still reduce ∆v1 with
additional ∆t, but the total transfer time may become too long for missions using impulsive
maneuvers.
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Fig. 4 Solutions colored according to the values of the Jacobi energy at the (a) Earth departure after ∆vi and
(b) lunar capture before ∆v f .

6.2 Sample Pareto–Optimal Solutions

This section presents orbital characteristics of sample Pareto–optimal solutions. Figure 5
highlights Pareto–optimal solutions (dark) in terms of ∆t and ∆v extracted from the obtained
solutions (light gray). We only extract those with ∆v ≤ 3780 m/s because some Pareto–
optimal low-energy solutions were already obtained and analyzed in Topputo (2013). The
sample solutions (i)–(iv) are investigated to discuss a trade-off between ∆t and ∆v.

80 100 120 140 160 180 200
3750

3755

3760

3765

3770

3775

3780

(i)

(ii)

(iii)
(iv)

Fig. 5 Pareto–optimal solutions (dark) in terms of ∆t and ∆v extracted from the obtained solutions (light
gray) as those having the optimal balance between ∆t and ∆v (Topputo 2013). Sample solutions (i)–(iv) (red)
are further investigated.

In the remainder, EMrf and SErf abbreviate Earth–Moon and Sun–Earth rotating frames,
respectively. In the Earth–Moon rotating frame, the black points indicate the Earth (left) and



10 Kenta Oshima et al.

the Moon (right), respectively. In the Sun–Earth rotating frame, the black point represents
the Earth and the dashed circle indicates the Moon orbit.

6.2.1 Sample (i): (∆t, ∆v)=(82.7 days, 3769.4 m/s)

This solution closely coincides with the minimum ∆v solution found in Yamakawa (1993);
Topputo (2013). In spite of relatively short transfer time among low-energy transfers, it
exploits lunar gravity assist (LGA) and solar perturbation effectively as shown in Figure 6
to realize an efficient transfer with a good balance between ∆t and ∆v.

-4 -2 0 2 4

x (EMrf)

-4

-2

0

2

4

y
(E

M
rf
)

(a)

0.99 0.995 1 1.005 1.01

x (SErf)

-0.01

-0.005

0

0.005

0.01

y
(S
E
rf
)

(b)

L
1

L
2

Fig. 6 Trajectories of Sample (i) in the (a) Earth-Moon and (b) Sun-Earth rotating frames.

6.2.2 Sample (ii): (∆t, ∆v)=(92.5 days, 3764.2 m/s)

This solution appears to be similar to Sample (i), but having longer ∆t and smaller ∆v. Unlike
ordinary exterior low-energy transfers, the capture mechanism of which can be explained via
invariant manifolds around L2 (Koon et al. 2001), this solution is finally captured from inside
of the lunar orbit as shown in Figure 7(b). Figure 7(c) amplifies the vicinity of the Moon
in Figure 7(a), where the trajectory bounces in the third quadrant around the Moon in the
Earth-Moon rotating frame.

According to the well-known mechanism of the gravity gradient of a perturbative body
(Yamakawa 1993; Kawaguchi et al. 1995; Miller 2003), this bounce decreases the angular
momentum with respect to the Moon (h2) by perturbation of the Earth as shown in Fig-
ure 7(d). This is an opposite way of exploiting the third-body perturbation to an exterior
lunar transfer, in which the solar gravity gradient is used in the second or fourth quadrant to
increase the angular momentum with respect to the Earth.

Note that a retrograde capture (h2 < 0) is finally realized in Figure 7(d), which is more
favorable than a direct capture in terms of insertion ∆v due to the rotational direction of the
frame (Campagnola and Russell 2010).

6.2.3 Sample (iii): (∆t, ∆v)=(138.3 days, 3756.3 m/s)

As shown in Figure 8(a) and (b), this solution exploits high-altitude lunar flybys with multi-
ple revolutions around the Earth. The high-altitude lunar flybys replenish the small departure
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Fig. 7 Trajectories of Sample (ii) in the (a) Earth-Moon and (b) Sun-Earth rotating frames. (c) Amplified
figure of (a) around the Moon. (d) Change in h2 in the final part of the transfer.

∆vi (high initial Jacobi energy, see Figure 8(c)) by pumping up the semi-major axis a (Ross
and Lo 2003; Ross and Scheeres 2007; Topputo et al. 2008; Belbruno et al. 2008; Jerg et
al. 2009; Grover and Ross 2009; Campagnola and Russell 2010; Lantoine et al. 2011; Cam-
pagnola et al. 2014; Oshima et al. 2017b) as shown in Figure 8(d).

The semi-major axis around the Earth is given by a = −(1 − µ)/(2H1), where H1 is the
Kepler energy around the Earth. An n:m resonance (n is the number of revolutions of the
Moon, and m is the number of revolutions of the spacecraft in the Earth–centered inertial
frame) is related to the semi–major axis as a = (n/m)2/3.

As a result of increasing the semi-major axis, low-altitude LGA occurs (t ≈ 33 days) and
an effective use of solar perturbation outside the lunar orbit is available to finally realize a
low-energy capture by the Moon. This solution exploits dynamics of both inside and outside
of the lunar orbit, which may be classified into “interior–exterior” transfers to the Moon.

It is interesting to see Figure 8(d) that from 5 to 30 days, the semi-major axis deviates
from 1:2 resonance, though the trajectory is in a fashion of 1:2 resonance and encounters the
Moon in one month. This could be due to solar perturbation (Yárnoz et al. 2016) because
the Jacobi energy varies to some extent during the revolutions around the Earth even inside
the lunar orbit as shown in Figure 8(c).
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Fig. 8 Trajectories of Sample (iii) in the (a) Earth-Moon and (b) Sun-Earth rotating frames. (c) Change in
the Jacobi energy. (d) Change in the semi-major axis around the Earth in the initial part of the transfer.

6.2.4 Sample (iv): (∆t, ∆v)=(182.9 days, 3753.2 m/s)

This solution is the minimum ∆v solution found in this study. The trajectory can be also
classified into the interior–exterior transfer, which exhibits longer ∆t and smaller ∆v than
Sample (iii). In this case, the orbital periods in terms of resonances are consistent according
to Figure 9(d); the spacecraft encounters the Moon after 1-month stay in 1:3 resonance and
performs the low-altitude LGA (t ≈ 91 days) after 2-month stay in 2:5 resonance.

6.3 Lunar Gravity Assist

As shown in Section 6.2, LGA plays an important role in Pareto–optimal solutions. Strictly
speaking, we detect LGA if the distance from the Moon crosses 1.2×rSOI (sphere of influence
of the Moon) upward. Note that the threshold 1.2 × rSOI excludes loops around the Moon
before the insertion such as the one in Sample (ii), and the upward condition avoids to detect
the lunar capture as LGA.

Figure 10(a) classifies the obtained solutions, combined with the solutions in Topputo
(2013), into those using LGA (red) and those not using LGA (blue) based on the above
threshold. This figure highlights the quantitative significance of LGA in reducing ∆v, which
is roughly 100 m/s. Since LGA only requires an Earth departure maneuver to reach the
Moon, LGA is useful for reducing Earth departure maneuvers of lunar transfers using solar
perturbation outside the lunar orbit.
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Fig. 9 Trajectories of Sample (iv) in the (a) Earth-Moon and (b) Sun-Earth rotating frames. (c) Change in the
Jacobi energy. (d) Change in the semi-major axis around the Earth in the initial part of the transfer.

However, LGA is not always available because of its strict requirements to a launch
window. One such example is for a piggyback probe, which usually cannot freely determine
its launch date. Because of this reason, we focus on Pareto-optimal solutions among non-
LGA trajectories in this section as examples to investigate their orbital characteristics not
using LGA.

Figure 10(b) extracts Pareto-optimal solutions (dark) in terms of ∆t and ∆v among non-
LGA solutions (light). Figure 11 presents trajectories of the sample Pareto-optimal solutions
(I)–(IV) in the (a) Earth–Moon and (b) Sun–Earth rotating frames. Values of ∆t and ∆v of
each sample are reported in the caption in Figure 11.

Samples (I), (II), and (III) instantly go outside the lunar orbit due to their relatively large
departure maneuvers and exploit solar perturbation. Trajectories of Samples (II) and (III)
are similar, except that Sample (III) exploits perturbation of the Earth to reduce the angular
momentum with respect to the Moon as discussed in Section 6.2. Sample (IV) indeed uses
weak LGA. However, it is classified as a non-LGA solution because of our definition of
LGA based on the threshold distance from the Moon. Sample (IV) also reduces the angular
momentum with respect to the Moon before the insertion.

7 Conclusions

This paper globally explored two-impulse, low-energy Earth-Moon transfers with transfer
times up to 200 days in the planar bicircular restricted four-body problem. An extensive
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Fig. 10 (a) Solutions in this study and in Topputo (2013), which are classified into those using LGA (red)
and those not using LGA (blue). (b) Pareto–optimal solutions (dark) in terms of ∆t and ∆v extracted from the
solutions not using LGA (light). Sample solutions (I)–(IV) (red) are further investigated.

grid search with a direct transcription and multiple shooting technique generated solutions
in a wide range of the (∆t, ∆v) solution plane. Though the extension of transfer times up to
200 days did not contribute to drastic reductions in ∆v, some new families of the obtained
solutions resulted in smaller ∆v than known solutions. We investigated characteristics of
solutions in terms of angular momentum, Kepler energy, and Jacobi energy. We discussed a
trade-off between transfer time and fuel expenditure based on Pareto-optimal solutions with
or without lunar gravity assists. The maximum gain in ∆v of the low-energy transfers was
about 200 m/s as compared with a Hohmann transfer, which may be compensated by their
much longer transfer times. Still, low-energy lunar transfers are practical options not only
for large spacecrafts but also for CubeSats, for which ∆v is much higher priority than transfer
time. Analyses on orbital characteristics of sample solutions revealed roles of perturbations
of the Sun, Earth, and Moon in reducing ∆v.
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Appendix 1

Since the majority of the studies in Table 1 use the initial and final circular orbits around
the Earth and the Moon of “reference”altitudes 167 km and 100 km, respectively, this study
transforms the values of ∆v of the solutions using different altitudes (Yamakawa 1993; Mor-
cos 2010; Peng et al. 2010; Moore et al. 2012) for a fair comparison. The following calcu-
lation shows the case of transforming Earth departure maneuvers, but the transformation of
Moon arrival maneuvers is similar.

The Kepler energy at departure from an initial Earth circular orbit of a different altitude
from the reference altitude is

HE1 =
1
2

vE1
2 −

1 − µ
rE1

, (22)

where vE1 and rE1 are the magnitude of the spacecraft’s velocity in the Earth–centered iner-
tial frame and the distance from the center of the Earth, respectively.

The required velocity vE2 to achieve HE1 from the reference altitude at the Earth is

vE2 =

√
2(HE1 +

1 − µ
rE2

), (23)

where rE2 is the distance between the reference circular orbit and the center of the Earth.
The transformed Earth departure maneuver can be computed by assuming the tangential

maneuver as

∆vE = vE2 −

√
1 − µ
rE2

. (24)
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Appendix 2

This appendix presents analytic derivatives of the objective function and the constraints with
respect to the NLP variables in the optimization problem in Section 4.2.1. For the sake of
simple notations, we assume N = 4 in the following expressions, but the generalization is
straightforward.

The derivative of the objective function J with respect to the NLP variables y can be
expressed as

∂J
∂y

=
[
P1 O PN O

]
, (25)

where

P1 B
∂J
∂x1

=
1√

(ẋ1 − y1)2 + (ẏ1 + x1 + µ)2

[
ẏ1 + x1 + µ y1 − ẋ1 ẋ1 − y1 ẏ1 + x1 + µ

]
, (26)

PN B
∂J
∂xN

=
1√

(ẋN − yN)2 + (ẏN + xN + µ − 1)2

[
ẏN + xN + µ − 1 yN − ẋN ẋN − yN ẏN + xN + µ − 1

]
.

(27)
The derivative of the equality constraints c B {ζ j,ψ1,ψN} = 0 with respect to the NLP

variables y can be expressed as

∂c

∂y
=


Φ(t1, t2) −I4 O O Q1

1 Q1
N

O Φ(t2, t3) −I4 O Q2
1 Q2

N
O O Φ(tN−1, tN) −I4 QN−1

1 QN−1
N

R1 O O O O O
O O O RN O O

 , (28)

where

Q j
1 B

∂ζ j

∂t1
= −

N − j
N − 1

Φ(t j, t j+1)f (x j, t j)+
N − j − 1

N − 1
f (ϕ(x j, t j, t j+1), t j+1), j = 1, . . . ,N−1,

(29)

Q j
N B

∂ζ j

∂tN
= −

j − 1
N − 1

Φ(t j, t j+1)f (x j, t j)+
j

N − 1
f (ϕ(x j, t j, t j+1), t j+1), j = 1, . . . ,N−1,

(30)

R1 B
∂ψ1

∂x1
=

[
2(x1 + µ) 2y1 0 0

ẋ1 ẏ1 x1 + µ y1

]
, (31)

RN B
∂ψN

∂xN
=

[
2(xN + µ − 1) 2yN 0 0

ẋN ẏN xN + µ − 1 yN

]
. (32)

The derivative of the inequality constraints g(y) B {η j, τ} < 0 with respect to the NLP
variables y can be expressed as

∂g

∂y
=


S 1 O O O O
O S 2 O O O
O O S 3 O O
O O O S N O
O O O O S t

 , (33)
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where

S j B
∂η j

∂x j
=

[
−2(x j + µ) −2y j 0 0
−2(x j + µ − 1) −2y j 0 0

]
, j = 1, . . . ,N, (34)

S t B

[
∂τ

∂t1

∂τ

∂tN

]
=
[
1 −1
]
. (35)
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