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Abstract 

 

The aim of this study is that of presenting a new diagnostic and prognostic method aimed at 

automatically detecting deviations from the expected degradation dynamics of the batteries 

due to changes in the operating conditions, or, possibly, anomalous behaviors, and 

predicting their remaining useful life (RUL) in terms of their state-of-life (SOL), without 

needing to derive any complex physics-based models and/or gather huge amounts of 

experimental data to cover all possible operative/fault conditions. The proposed method in 

fact exploits the real time framework offered by particle filtering and resorts to neural 

networks in order to build a suitable parametric measurement equation, which provides the 

algorithm with the capability of automatically adjusting to different battery’s dynamic 

behaviors. The results of this study demonstrate the satisfactory performances of the 

algorithm in terms of adaptability and diagnostic sensibility, with reference to suitably 

identified case studies based on actual Lithium-Ion battery capacity data taken from the 

prognostics data repository of the NASA Ames Research Center database and of the CALCE 

Battery Group. 

 

 

1. INTRODUCTION 

 

In recent years, Lithium-ion (Li-ion) batteries have gained large popularity as portable energy sources 

due to their significant advantages with respect to other battery types, such as: i) the lower weight, 

due to the lightweight lithium and carbon-made electrodes, and, at the same time, the larger energy 

density, due to the high chemical reactivity of lithium; ii) the possibility of being recharged also if 

they are not completely discharged without any detrimental effects (no memory effect); iii) the lower 
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self-discharge rate, so that they better maintain their charge when not used; iv) the longer life cycle, 

since they can operate successfully even after hundreds of charge-discharge cycles [1], [2]. These 

features have played a major role in their successful use in many different application fields, including 

consumer electronics (cell phones, laptops, etc.) [ref b], hybrid and electric vehicles in the automotive 

industry [ref g], the more recent development of hybrid/electric aircraft (airplanes and helicopters), 

balanced management of electric power grids with significant contributions from fluctuating 

renewable power sources (solar and wind) [ref d] and [ref e], where studies are carried on aiming 

even at exploiting, at a domestic scale, Li-ion batteries previously used in electrical vehicles and no 

more satisfying the requirements of the automotive industry [ref c] and space exploration manned 

and unmanned missions [ref h]. 

However, due to their rechargeable nature, Li-Ion batteries are subject to irreversible processes 

occurring during their charging and discharging cycles, such as, for example, the formation of a solid-

electrolyte interphase (SEI) [3], which severely affect the batteries’ electrochemistry. These processes 

involve, in general, a continuous capacity fade, which eventually leads to the battery failure, with 

consequences ranging from a quite safe need to replace the battery of a mobile phone, to the 

catastrophic failure of an interplanetary probe [1], [4]. 

In order to overcome these issues, many efforts have been devoted in literature to devising proper 

methods for improving the reliability and the availability of Li-Ion batteries. More specifically, a 

major role is played by the so-called prognostic and health management (PHM) methods, which, on 

the basis of different kinds of available, but indirect, information, allow to automatically, and in real-

time, track some hidden indicators of the degradation state of the batteries, such as, for example the 

state-of-health (SOH), the state-of-charge (SOC), the state-of-life (SOL), and at predicting their 

remaining useful lifetime (RUL), either in terms of the end-of-discharge (EOD) or the end-of-life 

(EOL) times, possibly to support condition- or even prediction-based maintenance policies. In this 

regard, thorough reviews of many advanced PHM methods can be found in [5], [6]. Traditionally, 

these methods are classified in three major families, i.e., model (or physics)-based, data-driven or 

hybrid methods, depending on the type and quality of the information used to perform diagnostics 

and/or prognostics [7]. Model-based methods focus on identifying proper relationships between the 

observable quantities and the indicators of interest by building physics-based models of the 

degradation processes affecting the battery life [8]–[14]. Data-driven methods, on the other hand, aim 

at mapping the above by some approximating models adaptively built on the basis of available data, 

such as, for example, neural networks (NN), Gaussian process functional regressions, support vector 

regressions, fuzzy inference engines, etc [15]–[19]. Hybrid methods aim at combining model-based 

and data-driven methods, when possible, in an attempt to overcome the limitations of the individual 
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methods and, thus, improve diagnostic and prognostic accuracies by better exploiting all the available 

information [20]–[24]. A promising hybrid strategy seems that of resorting to particle filtering-based 

algorithms, where the required analytical models representing either the dynamic behavior of the 

system or the measurement equation are actually suitable data-driven surrogate models [25], [26]. 

These kind of methods are based on the consideration that, both physics-based model and surrogate 

models require the identification of suitable model parameters on the basis of some available 

observations; however, surrogate models do not require any physics/analytic-based derivations, 

which might turn out to be very time consuming, and are generally much computationally faster, 

especially with respect to numerical models, which might be a critical feature for real-time 

applications (as one can devise by reading the thorough review of the state-of-the-art available 

physical models in [ref i]). 

One important issue which still severely limits the applicability of these approaches is that the 

surrogate models are trained off-line on the basis of a set of available examples of the input/output 

mapping of interest, typically collected under some representative, fixed operative conditions, such 

as those offered by the controlled environments of laboratory tests. Actually, this represents a problem 

also for many other diagnostic/prognostic methods, not being restricted to those relying on surrogate 

modeling, although the latter mostly suffer from this limitation, due to the fact that their generalization 

capability only depends on the available data, and not on physical reasoning. For example, many 

works of literature derive and demonstrate their proposed methods with reference to sets of Li-ion 

batteries voltage/capacity laboratory measurements acquired at different, but constant discharge 

rates/currents and under controlled laboratory conditions (e.g. fixed ambient temperature, 

charge/discharge scheduled procedures, etc.). As the size of the available dataset increases, possibly 

including information on different operating conditions, this approach allows to devise algorithms 

with increasing prediction/generalization capabilities; at the same time, however, it does not account 

for operating conditions varying in real time, as typically occurring when considering the actual 

batteries mission profiles and/or boundary conditions (e.g., temperature, mechanical degradation, 

lithium metal plating and other ageing mechanisms, as summarized in [27]), thus severely limiting 

its application to real-life problems. 

Some works of literature have already attempted to address this issue, which requires the capability 

of adapting in real time to the changing underlying dynamics. For example, in [28] the authors 

propounded an adaptive particle filter-based algorithm for predicting the remaining useful life of a 

battery when operating at different discharge rates; similarly, in [ref l], an equivalent circuit model 

accounting for the discharge current is used to perform adaptive diagnosis of Li-ion batteries under 

real operative mission profiles. Yet, the parameters of the resulting equivalent circuit models are still 
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identified off-line on the basis of available data (e.g., from AC Impedance Spectroscopy) and many 

of the factors actually influencing the degradation dynamics in real operative conditions are still not 

taken into account. In [2] some of the same authors of the present work presented a novel hybrid 

prognostics framework for the prediction of the end of discharge of Li-ion batteries, where the 

parameters of the surrogate model, i.e. a radial basis function neural network, were identified on-line 

by a particle filter on the basis of the real-time observations of the degradation process. That work 

represented a first attempt to create a prognostic tool capable of automatically coping to varying 

boundary conditions, with no need for explicitly modeling the dependency of the degradation 

dynamic on the external influencing factors. This allowed to naturally capture possible changes of 

the degradation dynamics and to accordingly update the RUL estimates. However, the algorithm was 

still only tailored to the specific EOD prognosis problem, and was still lacking of general optimization 

strategies which would guarantee its applicability also to different prognostic problems. Furthermore, 

the algorithm did not allow to perform any diagnostic tasks, which are fundamental for PHM 

applications. 

In this context, the first purpose of this work is that of adapting the hybrid approach introduced in [2], 

which was restricted to the EOD prediction within individual discharge cycles, to be able to perform 

also SOL estimation and predict the EOL of Li-ion batteries. First, it is proposed to resort to multi 

layer perceptron (MLP) neural networks, which have turned out to be simpler and more intuitive for 

this kind of application. Similarly to [2], the parameters of the MLP networks are adaptively identified 

on-line by the particle filter on the basis of real-time observations of the Li-ion battery capacity. Then, 

since, in this case, the algorithm has to predict an individual degradation history, and not several 

successive discharge curves as in the previous work, a pre-training of the MLP neural network on 

some reference trajectory is suggested (although not strictly required), so as to significantly restrict 

the search space of the surrogate model’s parameters and speed-up the algorithm convergence. Note 

that the actual degradation can be significantly different from the pre-training one, as it is 

demonstrated in this work, still guaranteeing the adaptation capabilities of the prognostic tool. 

Moreover, to further increase the algorithm adaptability, the set of particles used by the particle filter 

(i.e., neural networks weights, see [2]) is artificially enriched by a particle resulting from a back-

propagation-based optimization of a network on the basis of the capacity observations available up 

to the current time. 

The second objective of the present work is that of providing the proposed algorithm with an 

additional, original diagnostic module, based on the particle filter-based estimation of the 

observations log-likelihood ratio, for the automatic and on-line detection of any changes in the 

“expected” dynamic degradation process. This represents a very important task for Li-ion batteries, 
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which, to the authors’ knowledge, appears to be somehow overlooked by Li-ion PHM specialists, but 

may significantly improve the prognostic capabilities and, more generally, the safe management of 

the batteries, especially when operating in real environments subject to varying boundary conditions. 

The proposed method is demonstrated with reference to real degradation transients taken from the 

NASA Ames Research Center database [29] and the CALCE Battery Group [30]. The available 

trajectories are also properly modified in order to be able to test the algorithm in varying operating 

conditions and to prove the effectiveness of its diagnostic module. 

The paper is organized as follow. Section 2 briefly recalls the main features of the method proposed 

for sequentially train MLP-NN models by means of a particle filter algorithm. The multi layer 

perceptron-based particle filter (MLP-PF) approach here proposed is then customized in order to 

perform adaptive prognosis of the EOL of Li-Ion batteries and diagnosis of their SOH. Section 3 

discusses the performances of the proposed method, demonstrating the capability of the algorithm 

with reference to the datasets cited above, which are typically used as benchmark case studies in 

similar works of literature. Section 4 draws some conclusions on the results and proposes future 

developments of the methodology. 

 

 

2. MULTI LAYER PERCEPTRON PARTICLE FILTER (MLP-PF) FOR DIAGNOSIS AND 

PROGNOSIS 

 

In this Section first the method originally proposed in [31] and further developed and applied to PHM 

of Li-ion batteries in [2] is shortly recalled, where particle filters were used to sequentially, on line, 

train neural network models. The multi layer perceptron-based particle filter (MLP-PF) approach here 

proposed is tailored to the problem under investigation in order to be able to predict the EOL and to 

diagnose the SOH of Li-Ion batteries subject to repeated charge-discharge cycles. The interested 

reader is referred to [32], and to [33] and [34] for thorough descriptions of the functioning of MLPs 

and particle filters, respectively, and to [31] for further details on particle filtering-based NN training. 

 

2.1 Multi Layer Perceptron neural networks 

 

Figure 1 shows the structure of the MLP networks adopted in this work, which are modeled by means 

of the NETLAB MATLAB package [35]. The MLP model aims at representing the degradation 

behavior (in terms of capacity) of the Li-ion batteries as a function of the number of charge-discharge 

cycles. The input node is fed by the number of cycles (𝑘𝑘) at which the capacity is observed, whereas 
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the capacity observation (𝑧𝑧) is associated to the output node, which, in turn, gathers i) the outputs 

from a generic number 𝑀𝑀 of non-linear hidden nodes, each weighted by a factor 𝜃𝜃𝑖𝑖
(1,2), and ii) the 

biases 𝑏𝑏𝑖𝑖
(1,2), 𝑖𝑖 = 1, … ,𝑀𝑀. 

The network parameters 𝜃𝜃𝑖𝑖
(1,2) and 𝑏𝑏𝑖𝑖

(1,2), 𝑖𝑖 = 1, … ,𝑀𝑀, are collected in the vectors 𝜽𝜽 ⊆ 𝜣𝜣 ∈ 𝑅𝑅𝑛𝑛𝜃𝜃𝑥𝑥1 

and 𝒃𝒃 ⊆  𝑩𝑩 ∈ 𝑅𝑅𝑛𝑛𝑏𝑏×1, respectively. According to the classical MLP structure, the non-linear 

activation function of the hidden neurons ℎ(∙): 𝑅𝑅[−∞,∞] 
1 𝑥𝑥 1 →  𝑅𝑅[−1,1] 

1 𝑥𝑥 1  is a tan-sigmoid: 

 

 ℎ�𝜃𝜃𝑖𝑖
(1)� =  

2

1 +  𝑒𝑒−2𝜃𝜃𝑖𝑖
(1) −  1;     𝑖𝑖 = 1, … ,𝑀𝑀 ( 1 ) 

 

while the output activation function  𝑓𝑓(𝛽𝛽) = 𝛽𝛽 (with 𝛽𝛽 being the generic node input) is linear. Then, 

the output 𝑔𝑔�(𝜃𝜃, 𝑏𝑏),𝑘𝑘� of the MLP network represented in Figure 1 is: 

 

 
𝑔𝑔�(𝜃𝜃, 𝑏𝑏),𝑘𝑘� = 𝑓𝑓 ���ℎ ��𝑘𝑘𝜃𝜃𝑖𝑖

(1) + 𝑏𝑏𝑖𝑖
(1)�𝜃𝜃𝑖𝑖

(2)� + 𝑏𝑏(2)�
𝑀𝑀

𝑖𝑖=1

� ( 2 ) 

 

Note that, given a set of values for the parameters 𝜃𝜃𝑖𝑖
(1,2) and 𝑏𝑏𝑖𝑖

(1,2), 𝑖𝑖 = 1, … ,𝑀𝑀, the MLP output 

𝑔𝑔�𝑘𝑘,𝜃𝜃𝑖𝑖
(1,2), 𝑏𝑏𝑖𝑖

(1,2)� is an individual battery capacity history as a function of the discrete charge-

recharge cycle index 𝑘𝑘. 

A good choice of the number of hidden nodes 𝑀𝑀, should, intuitively, rely on the general consideration 

that the larger the number of hidden neurons is, the higher the capability of the algorithm in 

approximating complex input/output mappings [32]. On the other hand, too large a number of hidden 

neurons may result in data over-fitting issues, which severely hamper the generalization capability of 

the NN models. In addition to that, a large number of hidden neurons also implies a larger number of 

unknown parameters network weights which must be determined, which may significantly threaten 

the efficiency of the training/updating process described later.  

Similarly to what was done in [2] for the RBF networks, in this application the number of hidden 

neurons is empirically chosen equal to 3 on the basis of a trial and error procedure. Similarly to [2], 

a qualitative sensitivity analysis performed by the authors (not shown here for brevity’s sake) has 

shown that increasing the number of hidden nodes to 4-7 does not significantly modify the algorithm 

performances.  
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The 𝑛𝑛𝑥𝑥 = 10 network parameters are then organized in a vector 𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥10]𝑇𝑇, where the 

elements 𝒙𝒙1:6 are the six connection weights (𝜽𝜽1:6) and the elements 𝒙𝒙7:10 are the four MLP biases 

(𝒃𝒃1:5). The MLP inputs 𝑘𝑘 and the Li-ion battery capacity observations 𝑧𝑧𝑘𝑘 are normalized with respect 

to the means and the standard deviations of the available data. 

 

 
Figure 1: MLP neural network structure. 

 

2.2 MLP-PF for Li-ion batteries EOL prognosis 

 

Following the strategy proposed in [2], a state-space representation is here defined for the 𝑛𝑛𝑥𝑥 MLP 

model parameters (weights and biases), which are then treated as unknown parameters to be 

sequentially estimated within the Bayesian framework offered by particle filtering. The MLP 

parameters are thus collected in the hidden state vector 𝒙𝒙 ∈  ℝ𝑛𝑛𝑥𝑥×1. Under the common operative 

assumption that the process observations 𝑧𝑧𝑘𝑘 are available at discrete cycles 𝑘𝑘, the state space 

representation then can be written as: 

 

 𝒙𝒙𝑘𝑘 = 𝒙𝒙𝑘𝑘−1 + 𝝎𝝎𝑘𝑘−1 

𝑧𝑧𝑘𝑘 = 𝑔𝑔(𝒙𝒙𝑘𝑘,𝑘𝑘) + 𝜂𝜂𝑘𝑘 
( 3 ) 

 

where, as anticipated in the previous Section, the discrete cycle index 𝑘𝑘 is the input of the non-linear 

MLP mapping 𝑔𝑔(⋅) in (2), 𝑧𝑧𝑘𝑘 is the output of 𝑔𝑔(⋅), i.e., the Li-ion battery capacity, the random process 

𝝎𝝎𝑘𝑘 ∈ ℝ𝑛𝑛𝑥𝑥×1 is the stochastic component of the MLP model parameter evolution and 𝜂𝜂𝑘𝑘 ∈ ℝ is the 

measurement noise [33]. Both random processes are here assumed to be Gaussian. The evolution of 

the MLP parameters during their updating process is thus modeled as a discrete random walk driven 
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by a process noise 𝝎𝝎𝑘𝑘, large enough to suitably “explore” the parameters’ space and to guarantee a 

certain degree of flexibility so as to possibly adapt to any, possibly unexpected, changes in the process 

dynamics. Note that the MLP network 𝑔𝑔(𝒙𝒙𝑘𝑘,𝑘𝑘) is here taken as the model of the measurement 

equation, i.e., the relationship between the hidden states 𝒙𝒙𝑘𝑘 and the observations 𝑧𝑧𝑘𝑘 at cycle 𝑘𝑘. 

In this framework, the particle filter is used to recursively estimate the posterior probability density 

function (pdf) 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘) of the MLP parameters 𝒙𝒙𝑘𝑘, given the set of observations 𝒛𝒛1:𝑘𝑘 up to the 

current 𝑘𝑘-th cycle. The nonlinearity of the dynamic state-space model in (3), which is due to the 

representation of the measurement equation by a MLP model, is such that analytical solutions of the 

optimal prediction-update Bayesian recursion for 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘) cannot be obtained [33], [34]. Thus, 

similarly to [2], here it is proposed to estimate the posterior pdf 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘) by means of the sampling 

importance resampling (SIR) PF algorithm. The Monte Carlo estimator of the MLP parameters 

posterior pdf reads: 

 

 
𝑝̂𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘) ≈�𝑤𝑤𝑘𝑘

(𝑖𝑖)𝛿𝛿�𝒙𝒙𝑘𝑘 − 𝒙𝒙𝑘𝑘
(𝑖𝑖)�

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 ( 4 ) 

 

where the importance samples 𝒙𝒙𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 are 𝑁𝑁𝑠𝑠 independent and identically distributed 

realizations of the system state vector, drawn from the importance pdf 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒙𝒙𝑘𝑘−1) (also called the 

“prior”). The terms 𝑤𝑤𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 are the normalized importance weights and 𝛿𝛿(⋅) is the 

Kronecker delta. The SIR allows for a recursive estimation of the normalized importance weights as 

[34]: 

 

 
𝑤𝑤𝑘𝑘

(𝑖𝑖) =
𝑤𝑤�𝑘𝑘

(𝑖𝑖)

∑ 𝑤𝑤�𝑘𝑘
(𝑖𝑖)𝑁𝑁𝑠𝑠

𝑖𝑖=1

 ( 5 ) 

 

where the non-normalized weights 𝑤𝑤�𝑘𝑘
(𝑖𝑖) are: 

 

 𝑤𝑤�𝑘𝑘
(𝑖𝑖) = 𝑤𝑤𝑘𝑘−1

(𝑖𝑖) 𝑝𝑝�𝑧𝑧𝑘𝑘|𝒙𝒙𝑘𝑘
(𝑖𝑖)�;        𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 ( 6 ) 

 

The function 𝑝𝑝�𝑧𝑧𝑘𝑘|𝒙𝒙𝑘𝑘
(𝑖𝑖)� is the likelihood of the observation 𝑧𝑧𝑘𝑘, i.e., the probability of observing 𝑧𝑧𝑘𝑘 

given the set of MLP model parameters 𝒙𝒙𝑘𝑘
(𝑖𝑖). 



9 
 

A resampling scheme is implemented after the weight normalization, in order to avoid the well-known 

sample impoverishment problem [33], [34].  

In this particle filtering framework, the posterior distribution 𝑝𝑝(𝒙𝒙𝑘𝑘|𝒛𝒛1:𝑘𝑘), where the vector 𝒛𝒛1:𝑘𝑘 

represents the sequence of capacity observations in correspondence of the cycle sequence (1: 𝑘𝑘), is 

estimated at each cycle 𝑘𝑘, as soon as a new observation of the battery capacity 𝑧𝑧𝑘𝑘 becomes available. 

The set of samples and associated weights �𝒙𝒙𝑘𝑘
(𝑖𝑖),𝑤𝑤𝑘𝑘

(𝑖𝑖)� identifies 𝑁𝑁𝑠𝑠 MLP network models, which are 

here used also to predict the capacity behavior over the future charge-discharge cycles, i.e., the EOL, 

as it shall be discussed later. 

Operatively, the random walk in (3) is assumed to be driven by uncorrelated, zero-mean Gaussian 

noises, i.e., 𝝎𝝎𝑘𝑘~𝒩𝒩�0, Σ𝝎𝝎𝑘𝑘�, where the covariance matrix Σ𝝎𝝎𝑘𝑘 is diagonal. 

In general, the choice of the noise variances is not an easy task: too small values may hamper a proper 

(and reasonably fast) exploration of the state-space, whereas too large values do not guarantee a 

satisfactory state estimation, as discussed by many authors in literature. A common approach for 

achieving a satisfactory trade-off is that of letting the variances decrease from an initial value as the 

estimation process progresses, so as to guarantee the convergence of the algorithm[36], [37]. 

In order to achieve a satisfactory trade-off between the filter speed of convergence and its capability 

of effectively exploring the state-space, according to the discussion in [2], the following expression 

for the process noise covariance matrix as a function of the discrete cycle 𝑘𝑘 is here proposed: 

 

 
Σ𝝎𝝎𝑘𝑘 = �𝜎𝜎0 𝑒𝑒−

𝑘𝑘
𝜎𝜎1 + 𝜎𝜎2� ∙ I ( 7 ) 

 

where the artificial variances of all the parameters  𝒙𝒙𝑘𝑘 (MLP network weights and biases) are taken 

to be the same and 𝐼𝐼 is the 𝑛𝑛𝑥𝑥 × 𝑛𝑛𝑥𝑥 identity matrix. By using this expression for the variances, it is 

possible to easily and intuitively set their starting value (𝜎𝜎0 + 𝜎𝜎2), settling value (𝜎𝜎2) and rate of 

decrease ( 1
𝜎𝜎1

). The measurement noise 𝜂𝜂𝑘𝑘 is also zero-mean, Gaussian with variance 𝜎𝜎𝜂𝜂2 and 

independent from 𝑘𝑘, i.e., 𝜂𝜂𝑘𝑘~𝒩𝒩�0,𝜎𝜎𝜂𝜂2�. 

The likelihood function in (6) is chosen to be: 

 

 ℒ𝑘𝑘
(𝑖𝑖) = 𝑝𝑝�𝒛𝒛1:𝑘𝑘|𝒙𝒙𝑘𝑘

(𝑖𝑖)� = 

= �(2𝜋𝜋)𝑘𝑘+1�Σ𝜂𝜂��
−0.5

 exp �−
1
2
�𝒛𝒛1:𝑘𝑘 − 𝑔𝑔�𝒙𝒙𝑘𝑘

(𝑖𝑖), 1: 𝑘𝑘��
𝑇𝑇
Σ𝜂𝜂−1 �𝒛𝒛1:𝑘𝑘 − 𝑔𝑔�𝒙𝒙𝑘𝑘

(𝑖𝑖), 1: 𝑘𝑘��� 
( 8 ) 
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where the terms 𝑔𝑔�𝒙𝒙𝑘𝑘
(𝑖𝑖), 1: 𝑘𝑘� are the predictions of the i-th MLP network with parameters 𝒙𝒙𝑘𝑘

(𝑖𝑖) in 

correspondence of the input sequence (1: 𝑘𝑘). By doing so, the particles weights are computed on the 

basis of the whole sequence of capacity observations up to the current step k, thus increasing the filter 

robustness [2]. 

On the basis of the results obtained in [2], in order to improve the efficiency of the approach, a pre-

training of the MLP on the basis of a properly chosen degradation curve observed in some reference 

Li-Ion battery is performed. By doing so, in fact, the network weights are expected to reach a region 

of the parameter space closer to the optimal one for the observations that will be used during the 

diagnostic/prognostic task. However, Li-Ion batteries may show very different degradation behaviors, 

due to the operating conditions, the battery types, etc., so that a pre-training on data very different 

from those that will actually be used might be even misleading. In order to soften this issue and 

improve the algorithm flexibility and robustness, the observations in the pre-training set are shifted 

so that the first capacity observation (corresponding to 𝑘𝑘 = 1) is equal to the first available 

observation of the new degradation dynamics. By so doing, at least the initial values of the 

observations processed by the filter are going to be similar to those seen in the pre-training stage, so 

that the algorithm is not forced to adapt to the different values from the very beginning of the 

estimation process and can, more gradually, adjust itself to the, possibly, different trend. Note also 

that, as anticipated at the end of Section 2.1, the input cycles and the corresponding capacity 

observations in the pre-training set are normalized by their means and standard deviations. 

At each cycle 𝑘𝑘 the posterior pdf of the end of life time, 𝑝𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘), is estimated by letting the 𝑁𝑁𝑠𝑠 

MLP networks, associated to the 𝑁𝑁𝑠𝑠 parameter samples (particles) 𝒙𝒙𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠, evolve until 

their capacity predictions reach the predefined threshold [38]. In order to do so, a vector 

[𝑘𝑘 + 1, … ,𝑘𝑘 + 𝑝𝑝] (with the number of steps ahead, 𝑝𝑝, properly chosen so as to be sure that each 

network prediction reaches the threshold within this time horizon) is fed to each of the 𝑁𝑁𝑠𝑠 MLP 

networks. Then, the sample posterior pdf 𝑝̂𝑝(𝑧̃𝑧𝑘𝑘+𝑙𝑙|𝒛𝒛1:𝑘𝑘) of the capacity predictions at the future cycles 

 𝑙𝑙 is constructed on the basis of the corresponding MLP outputs, thus obtaining: 

 

 
𝑝̂𝑝(𝑧̃𝑧𝑘𝑘+𝑙𝑙|𝒛𝒛1:𝑘𝑘) ≈�𝑤𝑤𝑘𝑘

(𝑖𝑖)𝛿𝛿 �𝑧̃𝑧𝑘𝑘+𝑙𝑙 − 𝑔𝑔�𝒙𝒙𝑘𝑘
(𝑖𝑖), 𝑡𝑡𝑘𝑘+𝑙𝑙 ��

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 ( 9 ) 

 

At the same time, the EOL𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑠𝑠 obtained in correspondence of each MLP network are used 

to build the sample posterior pdf of the EOL𝑘𝑘, 𝑝̂𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘): 
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𝑝̂𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘) ≈�𝑤𝑤𝑘𝑘

(𝑖𝑖)𝛿𝛿�EOL𝑘𝑘 − EOL𝑘𝑘
(𝑖𝑖)�

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 ( 10 ) 

 

Note that the remaining useful lifetime of the battery at the current cycle 𝑘𝑘 is RUL𝑘𝑘 = (EOL𝑘𝑘 − 𝑘𝑘). 

In order to enhance the prognostic capabilities, both in terms of accuracy and stability, improving the 

strategy suggested in [2], the algorithm introduced above is further modified by empirically 

enhancing the likelihood function in (8). Operatively, at each cycle 𝑘𝑘, before the resampling stage, a 

small number 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 of particles 𝒙𝒙𝑘𝑘
(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (note that each particle is a sample of the 

MLP network parameters) are substituted by a new particle (called hereafter “trivial”) built by 

training the same MLP network architecture with a set made up of the actual sequence of degradation 

observations 𝒛𝒛1:𝑘𝑘 up to the current cycle 𝑘𝑘 and the observations 𝒛𝒛𝑘𝑘+1:𝑒𝑒𝑒𝑒𝑒𝑒 of the initial pre-training 

set, after properly shifting them according to a procedure similar to that illustrated for the first training 

of the MLP, so as to smoothly connect the two observation sequences. Figure 2 illustrates how the 

training datasets for the trivial MLP networks are created at two different cycles for a capacity 

degradation example (top left and right figures) and the resulting trivial predictions (bottom left and 

right figures): the blue circles represent the observations of the current Li-ion degradation curve, the 

green circles represent the portion of the pre-training observations appended to the trivial training 

dataset, the grey circles are the pre-training dataset and the dashed green lines are examples of 

particles’ trajectories projected in the future at the two cycles considered. As qualitatively verified by 

the authors, but not shown here for brevity’s sake, this scheme is qualitatively shown to improve the 

prognostic performances with the parameter 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 set to values ranging between 1 and 10. In fact, 

a few particles with a good behavior up to (at least) the current cycle 𝑘𝑘 should contribute to maintain 

the whole particle swarm “close” to the actual degradation dynamics, especially when unexpected 

behaviors of the observations and/or exceedingly deviated values of the noises occur. On the other 

hand, using a too large number of identical “trivial” particles would tend to be equivalent to directly 

using the trivial MLP for the predictions, thus not exploiting the filtering capabilities of the filter. 

a sufficient number of trivial particles will speed up the filter convergence and stability, whereas too 

large values of the parameter 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 will worsen the filter prediction outside the training domain.  
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Figure 2: Illustration of the trivial MLP networks creation procedure at two different cycles 

(marked with red, dashed lines) for an illustrative degradation curve (top figures) and 

corresponding trivial network predictions (black solid line, bottom figures. 

 

2.3 Log-likelihood ratio (LLR)-based diagnostic module 

 

In this Section, the particle filter-based prognostic algorithm described above is equipped with an 

additional diagnostic module, based on the estimation of the observations log-likelihood ratio (LLR), 

for the automatic and on-line detection of any changes in the current dynamic degradation process, 

due, for example, to variations in the operating conditions (e.g., ambient temperature, charge and 

discharge procedures, mechanical stresses, etc.) or internal battery failures. To this aim, according to 

[39], [40] and [41], the following diagnostic index (𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘), based on the particle mean likelihoods, is 

introduced: 

 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 = 𝑙𝑙𝑙𝑙�

1
𝑁𝑁𝑠𝑠
∑ ℒ𝑘𝑘−1

(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1

1
𝑁𝑁𝑠𝑠
∑ ℒ𝑘𝑘

(𝑖𝑖)𝑁𝑁𝑠𝑠
𝑖𝑖=1

� ( 11 ) 

 

where the numerator and the denominator are the mean likelihoods of the particles (i.e., the MLP 

network parameters) at the cycles 𝑘𝑘 − 1 and 𝑘𝑘, respectively. Operatively, if the mean likelihood of 

the particles at cycle 𝑘𝑘 is equal to that at cycle 𝑘𝑘 − 1, i.e., ℒ 𝑘𝑘 =  ℒ𝑘𝑘−1, then 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 = 0 and, probably, 

the observed capacity behavior does not differ significantly from that predicted by the 𝑁𝑁𝑠𝑠 particles, 

i.e. the 𝑁𝑁𝑠𝑠 MLP networks. On the other hand, if, on average, ℒ 𝑘𝑘 <  ℒ𝑘𝑘−1, then 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 > 0, meaning 
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that the observation at 𝑘𝑘 is not as “coherent” as that at 𝑘𝑘 − 1 with the degradation dynamics predicted 

by the MLP networks, probably due to some changes in the observed capacity with respect to the 

expected behavior, occurred between cycles 𝑘𝑘 and 𝑘𝑘 − 1. The case ℒ 𝑘𝑘 >  ℒ𝑘𝑘−1, so that 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 < 0, 

may also occur after a change in the degradation behavior has occurred and when the algorithm 

eventually “understands”, or equivalently adjusts to, the new dynamics: this behavior will be quite 

clear in the Figures described in the next Section. As a matter of fact, even simple statistical 

fluctuations in the capacity observations may give rise to situations where, on average, ℒ 𝑘𝑘 <  ℒ𝑘𝑘−1: 

thus, in order to build a robust diagnostic module, an anomaly is assumed to be detected any time the 

index in (11) is larger than some threshold. As well known in literature, setting such a threshold is 

not, in general, an easy task, being necessary to identify a proper trade-off between the probability of 

false alarms (threshold too low) and the probability of missed alarms (threshold too high). In order to 

avoid the problem of the identification of the optimal trade-off, a dynamic threshold as 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡ℎ,𝑘𝑘 = 3 ∙

𝜎𝜎�(𝐿𝐿𝐿𝐿𝐿𝐿1:𝑘𝑘) is set, where 𝜎𝜎�(𝐿𝐿𝐿𝐿𝐿𝐿1:𝑘𝑘) is the standard deviation of the log-likelihood ratios up to the 

current cycle 𝑘𝑘. By so doing, the threshold is automatically and dynamically set to a value that is 

typically used for triggering alarms in diagnostic applications [42]. Note that, in correspondence of 

events like recharge or storage, the Li-ion batteries may partially recover their capacity, thus resulting 

in short increasing trends in the, otherwise, generally decreasing capacity measurements. These 

behaviors could mislead the log-likelihood ratio-based diagnostic tool, since they are interpreted as 

anomalies of the expected degradation dynamics. In order to overcome this problem, a simple 

modification of the algorithm is implemented, which relies on the evaluation of the average derivative 

of the observations over the last few cycles (say 3 cycles). When the threshold 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡ℎ,𝑘𝑘 is overcome, 

if the average observation derivative is positive (meaning that the capacity has actually improved), 

then i) the alarm is not triggered, ii) 𝜎𝜎�(𝐿𝐿𝐿𝐿𝐿𝐿1:𝑘𝑘) is not updated and iii) the 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 is re-initialized to 0, 

until the observations become smaller than the last, pre-anomaly one. In fact, keeping 𝜎𝜎�(𝐿𝐿𝐿𝐿𝐿𝐿1:𝑘𝑘) 

equal to the same value reached before the (positive) anomaly occurred (instead of letting it increase) 

allows to avoid that future anomalies are not detected (missed alarms) due to too large threshold 

values. At the same time, by forcing the 𝐿𝐿𝐿𝐿𝐿𝐿𝑘𝑘 to zero, a sequence of false alarms, due to the fact that 

a few cycles are needed by the battery capacity to go back to the same pre-anomaly levels, can be 

avoided. These behaviors are further explained in Figure 3 with reference to an illustrative capacity 

degradation example: the top Figure shows the reference capacity degradation curve, the middle 

Figure shows the 𝑳𝑳𝑳𝑳𝑳𝑳𝒌𝒌 (blue, solid line) and the corresponding ±𝝈𝝈�(𝑳𝑳𝑳𝑳𝑳𝑳𝟏𝟏:𝒌𝒌) (red, dashed lines), the 

bottom Figure displays the modified 𝑳𝑳𝑳𝑳𝑳𝑳𝒌𝒌 (blue, solid line) and the corresponding lower 

±𝝈𝝈�(𝑳𝑳𝑳𝑳𝑳𝑳𝟏𝟏:𝒌𝒌) (red, dashed lines) compared to the previous one (grey dashed lines). 
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Figure 3: Procedure adopted to avoid triggering detection alarms in correspondence of 

capacity gains, shown with reference to the same illustrative example of Figure 2.  

 

 

3. RESULTS 

 

In this Section the prognostic and diagnostic capabilities of the proposed algorithm are demonstrated, 

with reference to the SOL datasets by the Prognostic Center of Excellence at NASA Ames Research 

Center and of the CALCE Battery Group ([29] and [30]), shown in Figure 4. In particular, the datasets 

labeled “NASA 1, 2 and 3” are taken from the NASA Ames research center database, whereas the 

one labeled “CALCE” is taken from the CALCE database. Note that these datasets are obtained under 

controlled laboratory conditions and at constant discharge rates (constant current). 

According to the initialization procedure illustrated in Section 2, for convenience, but with no loss of 

generality, NASA 2 is chosen as the pre-training dataset for the MLP networks, as it shows the 

broader range of variation of its capacity. The PF-MLP algorithm is run with 𝑁𝑁𝑆𝑆 = 500 particles; a 

larger number of particles would excessively slow down the algorithm, with no benefits in terms of 

mean of the RUL posterior pdf 𝑝̂𝑝(EOL𝑘𝑘|𝒛𝒛1:𝑘𝑘), as qualitatively verified by the authors. The parameters 

defining the process noise variance in (7), chosen on the basis of a trial and error procedure, are: 𝜎𝜎0 =

5 ∙ 10−3, 𝜎𝜎1 = 102 and 𝜎𝜎2 = 10−4. The standard deviation of the measurement noise is taken equal 

to 𝜎𝜎𝜂𝜂 = 10−1. Note only that the factor 𝜎𝜎1 is taken large enough for the process variance to decrease 

quite slowly with respect to the degradation times, so as to avoid a too large reduction of the parameter 

space spanned by the particles at later times. 
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In practical applications, Li-ion batteries are usually assumed to be failed when their capacity drops 

below 80% of its initial value. However, in the case studies shown in this work, the failure threshold 

will be set in order to both maximize the number of available capacity observations to be processed 

by the algorithm and enhance the readability of the results, with no loss of generality. 

 

3.1 MLP-PF for the EOL prognosis of Li-Ion batteries 

 

First, the algorithm is tested in an ideal situation, i.e., for predicting the RUL of NASA 2 after the 

initialization of the MLPs of all the particles is performed using the same NASA 2 dataset. Indeed, 

in this case it is expected that the best algorithm performance, since the MLP parameters already start 

from good, optimized values. The failure threshold is here set to a value that is 2% larger than the 

lowest capacity observation available in the dataset. Figure 5 shows that, after an initial, rather short, 

adaptation period, the actual RUL (grey, dashed line) is always between the 5th and 95th percentiles 

of the estimated RUL posterior distribution (green lines) and rather close to the RUL posterior mean 

(red line). The initial deviation from the actual RUL, which should not be expected since all the MLP 

particles are trained on the same NASA 2 degradation trajectory, is actually due to the fact that, the 

MLPs input cycles are here normalized with respect to a mean sufficiently larger than that of the pre-

training set: in fact, since the RUL of a new battery is not a priori known, the prediction performances 

of the MLPs are better if the inputs are normalized over an interval which includes the unknown, 

current one. Hence, the first RUL predictions tend to be larger than the actual RUL (~160 cycles). 

This approach will be adopted also for all the following examples. 

Then, the algorithm is applied to predict the RUL of NASA 1 (1850mAh initial capacity). Figure 6 

shows that the prognostic performances are satisfactory, although the actual RUL (grey, dashed line) 

is systematically slightly underestimated by the mean of the RUL poterior distribution (red lines). 

This is motivated by the fact that the degradation curve of NASA 1 (as also those of the other types 

of battery considered in this work, see Figure 4) shows several positive spikes due to the performances 

recovery phenomenon [43]. This behavior is actually beneficial to the SOL of the battery, thus 

leading, in general, to larger RULs. However, these “anomalies” cannot be predicted by the algorithm, 

which, nevertheless, is shown to be capable of adapting to the changed degradation dynamics and, 

consequently, to quickly update the RUL posterior pdf estimate. 

The batteries used in the previous tests show rather similar trends, even if belonging to different types 

(NASA 1 1850mAh, NASA 2 2000mAh). So, according to what illustrated in Section 2 with regards 

to the pre-training procedure, satisfactory results are to be expected. However, as anticipated in the 

Introduction, the aim of this work is that of developing a flexible computational prognostic/diagnostic 
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tool capable of automatically dealing with different types of Li-Ion batteries. In order to demonstrate 

this capability, now the prognostic performances of the algorithm when predicting the RUL of a very 

different type of battery, i.e. the 1100mAh battery (CALCE) taken from the CALCE database [30], 

are presented. The comparison of the training dataset (NASA 2 from the NASA Ames database) and 

that used for testing the algorithm (CALCE from the CALCE database) in Figure 4 shows how the 

two datasets differ both in terms of absolute capacities and lifetimes. In this case, the failure threshold 

is set to a value that is 20% less of the initial maximum battery capacity. Thus, the pre-training dataset 

normalization procedure illustrated in Section 2.2 plays an important role for guaranteeing a fast 

adaptation of the algorithm to the new degradation dynamics. In spite of the fluctuating appearance 

of the RUL estimate, Figure 7 shows that the RUL predictions (red lines) are still quite satisfactory 

and that the MLP-PF behaves as expected. In fact, at earlier times, the capacity observations are still 

rather close to those of the normalized ones used for the initial MLPs training, so that all the particles 

(i.e., the MLP networks parameters) do not significantly differ from the training ones, and the 

corresponding predictions are coherent with the normalized training RUL trajectory (blue, dashed 

line). As soon as the algorithm starts perceiving the different behavior of the actual observations, at 

approximately 100 cycles, it suddenly changes the RUL prediction, which accordingly becomes much 

higher (the true RUL is shown by the grey, dashed line). The weird behavior of the 5th percentile 

(green line) is due to the presence of the “trivial” particles (see Section 2.2), which tend to adapt more 

slowly to the new degradation dynamics, thus also being responsible for the initial overestimation of 

the RUL after approximately cycle 100. 

Note that, as verified by the authors, but not reported here for brevity’s sake, the filter is capable of 

converging even if no pre-training sets are available, provided the degradation process is not too fast, 

since the adaptation phase generally requires longer times. 

 

3.2 MLP-PF diagnostic module 

 

Now the diagnostic capabilities of the proposed MLP-PF algorithm, equipped with the diagnostic 

module described in Section 2.3, are tested. The goal is that of detecting anomalies occurring during 

the “normal” degradation process of the batteries while, simultaneously, performing prognosis.  

To this aim, first a possible sudden drop of the battery capacity is considered, which is due, for 

example, to some problems during the battery recharge stage or to changed storage conditions. Since 

the databases available do not present such anomalies, being obtained in controlled laboratory 

conditions at constant discharge currents, the drop is artificially introduced by manipulating the 

available data. Figure 8 (a) shows the manipulated observations with the artificial drop (5% of the 
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current capacity) introduced at cycle 120 of the NASA 3 dataset. As, for the previous case studies, 

the MLP particles are pre-trained using the properly normalized NASA 2 dataset, according to the 

procedure described in Section 2.2. The failure threshold is set to a value that is 2% larger than the 

lowest capacity observation available in the dataset. Figure 8 (b) shows the corresponding RUL 

prediction. The anomaly leads to a reduction of the actual RUL, which decreases from 156 to 125 

cycles, which is not fully captured by the algorithm at earlier times: the RUL estimate should, in fact, 

slightly overestimate the actual one, since the anomaly still has to occur. However, the magnitude of 

the drop is rather small, especially if compared to that of several performances recovery phenomena 

experienced by the battery during its life, and its late occurrence does not significantly modify the 

battery RUL. Nevertheless, the LLR of (11) and the corresponding anomaly indicator, shown in 

Figure 8 (c) and (d), respectively, flawlessly and timely capture the change in the degradation 

dynamics. Note also that, according to the procedure illustrated in Section 2.3, all the beneficial 

performances recovery phenomena are not detected by the anomaly indicator. On the other hand, the 

capacity recovery occurring at approximately 90 cycles is so large in magnitude that the algorithm 

correctly starts changing its RUL prediction, which becomes larger than the actual one. 

Then, the MLP-PF performances are tested with respect to a different, more subtle, type of anomaly. 

More specifically, with reference again to the NASA 3 dataset, an increase of the degradation speed 

is considered, as illustrated in Figure 9 (a), which is obtained by artificially modifying the original 

capacity observations so that their average slope is significantly increased. As expected, the 

prognostic behavior of the MLP-PF algorithm is very similar to that of the previous case study. Even 

though the anomaly is now less severe than in the previous case study, the algorithm is still effectively 

capable of detecting its occurrence, as shown in Figure 9 (c) and (d). The only difference lies in the 

fact that a short sequence of multiple alarms is triggered after the first detection, which is probably 

due to the fact that, since the anomaly is less severe, the algorithm takes some additional time to adapt 

to the new degradation behavior. These multiple alarms are observed also in other situations, not 

reported here for brevity’s sake: however, since they always occur in compact sequences, we believe 

they do not pose significant problems to the detection task, leaving the solution to future work. 

Moreover, a small detection delay can also be observed, which is due to the fact that the anomaly is 

less severe than the drop of the previous case study, so that a larger number of cycles is required by 

the filter to reach convergence on the new degradation dynamics. 

In both the previous case studies, it is worth underlying how the algorithm tries to adapt to the new 

degradation dynamics after the anomaly occurs, although not enough cycles are available for the 

algorithm to converge on the new RUL, due to the anomaly being very close to the EOL. In order to 

further investigate the algorithm adaptation capabilities, a new case study, based on the CALCE 
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battery dataset, is considered where an anomaly in the degradation speed is introduced at some earlier 

battery cycle. In this case, the failure threshold is set to a value that is 35% less of the initial maximum 

battery capacity.  

The prognostic behavior of the algorithm is similar to that of Figure 7. At earlier cycles the RUL 

estimate is strongly affected by the initial pre-training of the particles’ MLPs. Then, at approximately 

cycle 85, the algorithm suddenly “understands” the actual degradation dynamics and, consequently, 

predicts a RUL of approximately 250 cycles (i.e., EOL ≅ 350 cycles). After a few cycles (at 100 

cycles) the anomaly occurs: the algorithm effectively captures the change of degradation dynamics 

at approximately 120 cycles (Figure 10 (c) and (d)), the delay being already explained for the previous 

case study. Accordingly, at the same number of cycles, the predictions are quickly updated in order 

to match the new dynamic behavior of the battery capacity, thus clearly showing the adaptation 

capabilities of the proposed MLP-PF filter. 

Finally, it is worth noting that the behaviors that are here assumed as “anomalies”, can be considered, 

as done in our tests, as the effects of some failures, but can be also the result of the changing boundary 

conditions experienced Li-ion batteries during their normal operation in real applications, i.e., as a 

representative example, when dealing with different discharge rates due to the different current levels 

required. For this reason, although the original data used in this work refer to capacity fades at 

constant currents, the tests of the algorithm with the artificial modifications show that the MLP-PF 

can possibly be applied to more general, realistic cases of varying operating conditions, by exploiting 

its significant adaptation capability. 

xxxxxxx 

 
Figure 4: Prognostic Center of Excellence at NASA Ames Research Center [29] and CALCE 

[30] Battery Group SOL datasets. 
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Figure 5: Estimate of the RUL of NASA 2: truth (grey, dashed), mean (red), ± 1 standard 

deviation (grey dotted) and 5th and 95th percentiles (green) of the RUL posterior pdf.  

 

 
Figure 6: Estimate of the RUL of NASA 1: truth (grey, dashed), mean (red), ± 1 standard 

deviation (grey dotted) and 5th and 95th percentiles (green) of the RUL posterior pdf. 
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Figure 7: Estimate of the RUL of CALCE: truth (grey, dashed), normalized NASA 2 true 

RUL (blue, dashed), mean (red), ±1 standard deviation (grey dotted) and 5th and 95th 

percentiles (green) of the RUL posterior pdf. 

 

 
Figure 8: (a) NASA 3 dataset with the artificial drop (5%) at cycle 120; (b) corresponding 

RUL estimate by the MLP-PF algorithm; (c) log-(mean) likelihood ratio 𝑳𝑳𝑳𝑳𝑳𝑳𝒌𝒌 (11); (d) 

anomaly index. 
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Figure 9: (a) NASA 3 dataset with the artificial slope change at cycle 120; (b) corresponding 

RUL estimate by the MLP-PF algorithm; (c) log-(mean) likelihood ratio 𝑳𝑳𝑳𝑳𝑳𝑳𝒌𝒌 (11); (d) 

anomaly index. 

 

 
Figure 10: (a) CALCE dataset with the artificial slope change at cycle 120; (b) corresponding 

RUL estimate by the MLP-PF algorithm; (c) log-(mean) likelihood ratio 𝑳𝑳𝑳𝑳𝑳𝑳𝒌𝒌 (11); (d) 

anomaly index. 

 

 

4. CONCLUSIONS 
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In this work an original adaptation of an algorithm introduced by some of the same authors for 

performing adaptive and on-line prognosis of the EOL of Li-Ion batteries and diagnosis of their SOH 

have been proposed.  

The use of a MLP neural network for approximating the observation equation significantly 

contributes to the adaptability of the prognostic/diagnostic tool adopted. As demonstrated by the 

results of this work, the advantage of this feature is twofold. First, the algorithm can be effectively 

applied to many different types of batteries, with very different degradation behaviors, with no need 

to derive ad hoc physics-based models for any possible application. Second, the algorithm is capable 

of automatically re-configuring itself in case a change of the degradation dynamics occurs, thus still 

guaranteeing the effectiveness of the prognostic and diagnostic tasks. At the same time, the on-line 

training strategy offered by the particle filter framework provides the neural network with the 

capability of automatically adapting to different degradation behaviors in real time, thus avoiding the 

need for gathering huge amounts of off-line experimental data to cover all possible operative/fault 

conditions. 

Finally, although no accurate physics-based models are used, the proposed LLR-based diagnostic 

index, along with a definition of a suitable adaptive detection threshold, have shown to be effective 

in detecting the cycle at which the degradation behavior undergoes changes in the dynamics, possibly 

due to faults and anomalies. 

A possible disadvantage related to the use of adaptive surrogate models lies, on the other hand, in the 

response times offered by the proposed algorithm (i.e., the number of cycles required to react to 

changes in the degradation dynamics), which, on average, tend to be larger than those required by 

similar methods relying on the use of physics-based models. Indeed, a choice must be made between 

the two types of approaches, mainly depending on the objectives of the application under analysis 

and the quantity of information available (observations, models, etc.). 

An important future activity is a systematic analysis of the relative importance of the different 

algorithm input parameters (often qualitatively identified in this work on the basis of trial and error 

procedures) in affecting the algorithm performances. Indeed, this would require to resort also to 

properly defined prognostic performance measures, in order to be able to quantify the effects of the 

different input parameters. On the basis of the available scientific literature and our experience, the 

process and measurement noise parameters would, most likely, be confirmed as the most critical for 

achieving satisfactory performances in both the diagnostic and prognostic tasks. 
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