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Abstract 31 

We investigate our ability to assess transfer of hexavalent chromium, Cr(VI), from 32 

the soil to surface runoff by considering the effect of coupling diverse adsorption 33 

models with a two-layer solute transfer model. Our analyses are grounded on a set of 34 

two experiments associated with soils characterized by diverse particle size 35 

distributions. Our study is motivated by the observation that Cr(VI) is receiving much 36 

attention for the assessment of environmental risks due to its high solubility, mobility, 37 

and toxicological significance. Adsorption of Cr(VI) is considered to be at equilibrium 38 

in the mixing layer under our experimental conditions. Four adsorption models, i.e., the 39 

Langmuir, Freundlich, Temkin, and the linear model, constitute our set of alternative 40 

(competing) mathematical formulations. Experimental results reveal that the soil 41 

samples characterized by the finest grain sizes is associated with the highest release of 42 

Cr(VI) to runoff. We compare the relative abilities of the four models to interpret 43 

experimental results through Maximum Likelihood model calibration and four model 44 

identification criteria (i.e., the information criteria AIC and AICC, and the Bayesian 45 

criteria BIC and KIC). Our study results enable us to rank the tested models on the basis 46 

of a set of posterior weights assigned to each of them. A classical variance-based global 47 

sensitivity analysis is then performed to assess the relative importance of the uncertain 48 

parameters associated with each of the models considered, within sub-regions of the 49 

parameter space. In this context, the modeling strategy resulting from coupling the 50 

Langmuir isotherm with a two-layer solute transfer model is then evaluated as the most 51 

skillful for the overall interpretation of both sets of experiments. Our results document 52 
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that (a) the depth of the mixing layer is the most influential factor for all models tested, 53 

with the exception of the Freundlich isotherm, and (b) that the total sensitivity of the 54 

adsorption parameters varies in time, with a trend to increase as time progresses for all 55 

of the models. These results suggest that adsorption has a significant effect on the 56 

uncertainty associated with the release of Cr(VI) from the soil to the surface runoff 57 

component. 58 

Keywords: Cr(VI) loss; surface runoff; model ranking; global sensitivity analysis  59 
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INTRODUCTION 60 

According to the soil assessment results of China nationwide Multi-Purpose 61 

Regional Geochemical Survey (MPRGS) project, considerable portions of lands used 62 

for agriculture purpose in China show pollution signatures by metals. Chemical transfer 63 

from the soil to surface runoff is a key process that contributes to non-point source 64 

pollution. Metals (e.g., Cd, Pb and Cr) originating from a contaminated soil can then 65 

contaminate surface water and groundwater, with a negative impact on human health 66 

and various compartments of the ecosystem (Krishna and Govil, 2008). Among these 67 

pollutants, Cr(VI) has received much attention because of its high solubility, mobility, 68 

and toxicological significance in the environment. 69 

Numerous studies focus on efficient methods (a) to reduce the amounts of Cr(VI) in 70 

the environment, (b) to investigate the fate of Cr(VI) in soil and groundwater, and (c) 71 

to monitor space-time distributions of Cr(VI) in surface runoff. He et al. (2004) 72 

monitored metal (i.e., Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn, Mn, and Mo) concentrations in 73 

surface runoff at 11 sites in Florida and documented a positive correlation between 74 

concentrations of the analyzed metals in runoff and soil. Ghosh et al. (2012) found that 75 

Cr(VI) could be successfully adsorbed onto the fine-grained soil used as a liner material 76 

in a landfill. Núñez-Delgado et al. (2015) found that both pine sawdust and oak wood 77 

ash could be used (as biosorbents) to reduce the concentration of Cr(VI) released from 78 

soil to water. 79 

Migration of Cr(VI) through a soil system is typically described by advection, 80 

dispersion, adsorption and reaction processes. Advection is controlled by the mean flow 81 

rate of water, and dispersion is characterized by molecular diffusion and mechanical 82 
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dispersion. Langmuir (1918), Freundlich (1907), and linear isotherm models are often 83 

used to simulate Cr(VI) adsorption experimental results under equilibrium assumption 84 

(e.g., Ghosh et al., 2012; Núñez-Delgado et al., 2015; Sangiumsak and Punrattanasin, 85 

2014; Mendonca et al., 2013; Fifi et al., 2013; Li et al., 2014). Gupta and Bahu (2009) 86 

successfully simulated breakthrough curves of Cr(VI) by combining the Langmuir 87 

model with a mathematical transport model. Chakraborty et al. (2015) embedded the 88 

Langmuir and linear isotherms, respectively, in a one-dimensional advection-89 

dispersion-reaction-equation to estimate Cr(VI) transport parameters. Such isotherms 90 

have also been integrated in well-known numerical codes (e.g., Hydrus-1D (Šimůnek 91 

et al., 2009) and MT3DMS (Zheng et al., 1998)) to simulate reactive solute migration. 92 

Transport of Cr(VI) is affected by the redox reaction of Cr, associated with Cr(III) 93 

and/or Cr(VI) in the environment. Based on thermodynamics, Cr(III) oxidation should 94 

be a spontaneous process. However, it needs to be catalyzed to take place in a natural 95 

system, due to its very slow kinetics (Apte et al., 2005). In this context, one can note 96 

that while chromium is highly mobile with flow in the hexavalent form, its migration 97 

would be strongly retarded in the trivalent form because of the typically strong 98 

adsorption capacity of soil to Cr(III). It is therefore worth noting that detectable 99 

amounts of chromium found in natural waters are usually in the hazardous hexavalent 100 

form, manganese oxides essentially being the materials that can oxidize Cr(III) to Cr(VI) 101 

in a natural system (Fendorf and Zasoski, 1992). Organic materials, such as sulfides, 102 

and ferrous iron, can reduce Cr(VI) to Cr(III) (Fendorf, 1995). We refer to Fendorf 103 

(1995) for a comprehensive review on this aspect. 104 
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Transfer of a chemical from soil to surface runoff is a complex process. Most of the 105 

experimental studies on this process are conducted at the laboratory scale (sand boxes). 106 

Various chemical transport models have been developed to explain experimental results. 107 

Modeling methods based on the diffusion (Wallach and van Genuchten, 1990) and the 108 

mixing-layer theory (Donigian et al., 1977) were the two approaches generally used to 109 

simulate the process. The diffusion theory assumes that chemical exchange between 110 

runoff and soil is controlled by an accelerated diffusion process. The theory has been 111 

used in a variety of studies (Ahuja et al., 1981, 1983; Sharpley et al., 1980), even though 112 

the function to describe the accelerated diffusion process is somewhat arbitrarily chosen 113 

(Gao et al., 2004). Note that using an accelerated diffusion coefficient in the simulations 114 

may aptly capture a set of experimental data, while providing no explanation to the 115 

physical mechanism of the diffusion process. Because the physical mechanism in the 116 

accelerated diffusion theory remains unclear, the diffusion theory has limited ability for 117 

prediction. 118 

The mixing-layer theory was first proposed by Donigian et al. (1977). It is based on 119 

the assumption that surface runoff water mixes entirely and instantaneously with soil 120 

water in a thin layer on the soil surface with no contribution from the soil below such a 121 

mixing layer. However, Zhang et al. (1997) found that the diffusion flux from the soil 122 

underlying the mixing layer could not be neglected under poor drainage conditions. 123 

Therefore, Zhang et al. (1999) used the convection-diffusion equation to simulate the 124 

diffusion flux from the underlying soil. 125 

A series of mechanistic models have been developed in recent years. Soil erosion 126 



7 
 

was characterized by the Rose model (Rose et al., 1994; Hairsine and Rose, 1991), and 127 

solute transfer between the runoff and the exchange layers was determined by the water 128 

transfer rate. Gao et al. (2004) assumed that the solute transfer from soil to surface 129 

runoff was affected by both drop-liquid and drop-liquid-solid interactions, and the 130 

process was conceptualized as the model of the three layers/compartments, i.e., a runoff, 131 

an exchange, and the underlying soil compartment. Tong et al. (2010) proposed a new 132 

model to integrate the runoff and the mixing layers into a unique mixing region. In the 133 

model, solute concentration in the runoff was calculated as wCα , where α  ( 0 1α< ≤ ) 134 

is an incomplete mixing coefficient and wC  is the aqueous-phase solute concentration 135 

in the mixing layer [M L-3]. The net chemical flux from the mixing layer to the 136 

underlying soil is calculated as wi Cγ , and i and γ  ( 0 1γ< ≤ ) are, respectively, the 137 

infiltration rate [L T-1] and another incomplete mixing coefficient. All of these models 138 

assume that the soil surface is (nearly) horizontal, the thickness of the mixing layer is 139 

regarded as stable or constant, and lateral and return flows in the soil are negligible. 140 

Dong and Wang (2013) considered an inclined soil surface and relied on the conceptual 141 

model of Gao et al. (2004). They assumed solute concentrations in the runoff and the 142 

mixing layer were to be identically affected by raindrop splash. In addition, the model 143 

allows the mixing layer to have a variable depth, and takes into account the effects of 144 

raindrop splash, lateral flow, and return flow. Notably, solute concentrations in the 145 

mixing and/or exchange layers are considered as uniform. 146 

The main considered factors affecting Cr(VI) transfer from soil to surface runoff in 147 

the above referenced models include rain intensity (Gao et al., 2004), ponding water 148 
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depth (Gao et al., 2004), soil characteristics (Tong et al., 2010), soil slope (Dong and 149 

Wang 2013), and drainage conditions (Walker et al., 2007; Zhang et al., 1999). 150 

Adsorption of a chemically active solute is another important factor that affects solute 151 

loss. Gao et al. (2004) integrated the linear adsorption model with a solute loss model 152 

to evaluate phosphorus concentrations in runoff. In this broad context, it is still lack of 153 

a detailed study on the influence of the adsorption model choice on Cr(VI) loss 154 

simulation from soil to surface runoff. 155 

An objective of our study is to evaluate the impact of a model selected from a set of 156 

differing adsorption models (i.e., the Langmuir, Freundlich, Temkin and linear models) 157 

on the Cr(VI) loss simulation. We do so by relying on a set of two experiments and 158 

grounding our study on rigorous model identification criteria (Neuman, 2003; Ye et al., 159 

2004, 2008; Neuman et al., 2012; Bianchi-Janetti et al., 2012). These enable us to (a) 160 

compare the ability of each of the tested models to interpret the target experimental 161 

results and (b) rank the models through the evaluation of probabilistic weights assigned 162 

to each of them. We then provide model-averaged estimates (and associated uncertainty 163 

bounds) of Cr(VI) concentrations in runoff by leveraging on the diverse interpretive 164 

skills of all models analyzed. Since each of the models is associated with a set of 165 

typically unknown/uncertain parameters, we also perform a classical variance-based 166 

global sensitivity analysis to assess the relative contribution of the uncertain parameters 167 

associated with each model to the variability of Cr(VI) released from the soil to surface 168 

runoff. 169 

The rest of the study is structured as follows. We first provide descriptions for the 170 
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experiments performed and for the modeling approaches. We then present and discuss 171 

our results, in terms of model ranking and multi-model analysis as well as global 172 

sensitivity analysis. We finally make our conclusions. 173 

 174 

MATERIALS AND METHODS 175 

Soil Chemical characteristics 176 

Representative silt soil samples obtained from the region surrounding the city of 177 

Wuhan, China, were dried, ground and passed through 2 mm and 1 mm sieves, to form 178 

the two subsamples, respectively termed soil sample 1 and 2, employed in our 179 

experimental investigations. Table 1 lists the main chemical characteristics of soil 2. 180 

The latter is seen to be characterized by a very low initial Cr(VI) concentration, the 181 

overall picture suggesting that the soil is oxic. As such, we do not consider Cr(VI) 182 

reduction in our experimental investigations. 183 

Experiments 184 

We leverage on the experimental set-up used by Tong et al. (2010), to which we refer 185 

for additional details. In summary, a steel sandbox (with length, width and depth 186 

respectively of 100, 30, and 40 cm) with rustproof paint and equipped with two drainage 187 

holes at the bottom was used (see Fig. 1). A 5-cm-thick layer of gravel is packed at the 188 

bottom of the sand box to allow for water drainage. The elevations of the drainage 189 

outlets can be modified to achieve diverse drainage conditions. The gravel layer is 190 

covered with a nylon screen to prevent loss of soil particles, the soil subject to the 191 

experiments being packed above the screen. A rectangular hatch that opens into a V-192 

shaped trench and located 30 cm above the bottom of the box is used to collect surface 193 
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runoff water. The height difference between the soil surface and the runoff hatch 194 

corresponds to the depth of ponded water. A rainfall simulator (formed by 8 hypodermic 195 

needles) is placed at an elevation of 120 cm above the soil layer. 196 

Both soil samples were purposely set at the same Cr(VI) concentration of 300 mg kg-197 

1 in both the liquid and soild phases, taking into account differences of their initial 198 

volumetric water contents (respectively equal to 0.28 and 0.30 for soil 1 and 2) and the 199 

preset saturated volumetric water contents (0.49 for both soils), the initial Cr(VI) 200 

concentrations (equal to 0 mg kg-1 for both soils), and the soil bulk density (1.35 g cm-201 

3). The soils were then packed gradually to a depth of 18.5 cm. The depth of the runoff 202 

layer was 1 cm for both experiments. The soil surfaces were covered with plastic films 203 

and allowed to incubate for 12 hours. During this time, the system was kept at a constant 204 

room temperature of 25 C° . Thus, evaporation from the soil surfaces were considered 205 

as negligible. Before the beginning of the rainfall simulation, the outlets of the drainage 206 

holes were set to a height of 0 cm for both experiments, i.e., both experiments were 207 

conducted under free drainage conditions. 208 

The simulated rainfall was set to an intensity of 0.092 cm min-1 and 0.100 cm min-1, 209 

respectively for experiments 1 (soil 1) and 2 (soil 2). We denote pt  as the time at which 210 

water began ponding on the surface of the soil, rt  and st  respectively as the times at 211 

which runoff first occurred and attained stationarity. Table 2 lists the key parameters 212 

characterizing the experimental conditions. Collection of runoff samples was initially 213 

performed at 4-10 minutes intervals, progressively longer sampling intervals being used 214 

as time elapsed. Dissolved Cr(VI) in the runoff samples were measured by the atomic 215 
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flame method using an atomic flame spectrophotometer. Minute quantities of sediments 216 

eventually found in the collected water samples were neglected. 217 

Two-layer mathematical model 218 

We rely on the two-layer model for its computational efficiency and because it is 219 

grounded on assumptions that are consistent with our experimental conditions. We 220 

briefly describe the main characteristics of the two-layer model used in this study, 221 

additional details being found in Tong et al. (2010). As shown in Fig. 2, the conceptual 222 

model comprised two vertical layers, i.e., the entire mixing zone, that includes the soil 223 

mixing layer and the runoff layer, and the underlying soil. 224 

Without considering adsorption, the dissolved chemical mass per unit area, wM  [M 225 

L-2], is given by: 226 

( )w w w mix s mix sM C h h hα θ θ= − +    (1) 227 

Here, wC  is the aqueous-phase solute concentration in the mixing layer [M L-3]; α  228 

( 0< 1α ≤ ) is an incomplete mixing coefficient [-]; wh  is the net water depth across the 229 

entire mixing zone [L], mixh  is the mixing layer thickness [L], and sθ  is saturated 230 

volumetric water content in the soil system [L3 L-3]. 231 

In the presence of adsorption, Eq. (1) becomes: 232 

( ) [ ] w w mix s w mix s w bM h h C h C Sα θ θ ρ= − + +  (2) 233 

where S [M M-1] and bρ  [M L-3] respectively are the solute concentration adsorbed 234 

onto the soil and the soil bulk density. 235 

The dynamic behavior of the system can then be characterized as: 236 
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( ) ( ) ( )w
w w

d M t
iC t qC t

dt
γ α

   = − −  (3) 237 

where γ  ( 0< 1γ ≤ ) is an incomplete mixing coefficient [-] (different from α ); q [L 238 

T-1] and t [T] respectively denoting the specific discharge rate of the overland flow and 239 

time. 240 

Adsorption isotherm models 241 

We consider three nonlinear models (i.e., the Langmuir, Freundlich, and Temkin 242 

equations) and a linear model to interpret solute adsorption. Given the experimental 243 

setting, adsorption is assumed to take place under isothermal conditions. 244 

The Langmuir isothermal nonlinear equation (Langmuir et al., 1918) is: 245 

max 1
eq w

eq w

K C
S S

K C
=

+
 (4) 246 

where maxS  [M M-1] and eqK  [L3 M-1] are (typically unknown and uncertain) model 247 

parameters, respectively representing the theoretical maximum adsorption capacity of 248 

the soil and the equilibrium adsorption coefficient. 249 

Freundlich et al. (1906) proposed the following empirical nonlinear equation: 250 

1
n

f wS K C=  (5) 251 

model parameters being the adsorption coefficient fK  [L3/n M-1/n] and the exponent n 252 

[-]. When n = 1, Eq. (5) reduces to the linear model: 253 

d wS K C=  (6) 254 

where dK  [L3 M-1] is the adsorption coefficient. 255 

The Temkin isotherm model was first proposed by Temkin and Pyzhev (1940) and 256 

can be expressed in the form: 257 
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( )lne
w

RTS KC
f

=  (7) 258 

where R [J mol-1 K-1] is the universal gas constant, eT  [K] is absolute temperature, f [J 259 

mol-1] is the Temkin isotherm constant, and K [L3 M-1] is the Temkin isotherm 260 

equilibrium binding constant. 261 

Numerical modeling 262 

Embedding each of the adsorption isotherm models (4)-(7) into equations (2)-(3) 263 

leads to multiple mathematical models whose relative skill to interpret the observed 264 

system behavior is evaluated here. Hereinafter, we denote (a) Langmuir, (b) Freundlich, 265 

(c) linear adsorption, or (d) Temkin coupled models as the formulations respectively 266 

arising by coupling (2)-(3) with (4), (5), (6), or (7). The numerical solution of these 267 

solute transport models relies on direct observation of water flow characteristics from 268 

the experimental campaign. The observed flow dynamics are then used as input to each 269 

transport model and are characterized by segmenting the overall flow process onto the 270 

five sequential temporal windows described in the following, each corresponding to a 271 

well-defined hydrological manifestation. 272 

Period 0. It comprises observation times ranging from the beginning of the simulated 273 

rainfall to the saturation of the mixing layer. During this period, i.e., before the start of 274 

water ponding, the water infiltration rate upi  [L T-1] coincides with rainfall intensity, 275 

p, i.e., upi p=  (corresponding to i = 0, and q = 0). Infiltration from the mixing layer 276 

to the underlying soil is assumed to be negligible because the mixing layer is very thin 277 

and the time sat  required to attain saturation of the mixing layer can be approximated 278 

as: 279 
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( )0mix s
sa

up

h
t

i
θ θ−

=  (8) 280 

where 0θ  is the initial volumetric water content in the soil system [M3 M-3]. 281 

Period 1. During this period, ranging from saturation of the mixing layer 282 

(corresponding to time  given by Eq. (8)) to the onset of water ponding, water has 283 

not yet ponded on the soil surface, and the infiltration rate of soil equals the rainfall 284 

intensity, i.e.: 285 

w mix sh h θ= ; upi i p= = ; q = 0 (9) 286 

Hereinafter, we illustrate our derivations using the Langmuir isotherm as a test bed, the 287 

corresponding derivations associated with the other isotherm models being directly 288 

inferable from this. Considering Eqs. (2) and (4) leads to: 289 

( )   w
w w mix s w mix s w s

w

CM h h C h C
BC C

α θ θ ρ
 

= − + + + 
 (10) 290 

where max1/B S= , and ( )max1/ eqC K S= . The initial concentration of the solute in the 291 

mixing layer, ( )w saC t , is obtained from Eq. (10). Replacing Eq. (10) into Eq. (3) yields: 292 

( )
( )

( )
( )

( ) ( ) ( )

ln ln

 

w wmix s mix s
mix s

w sa w sa

mix s mix s
sa

w w sa

C t BC t Ch hh
C C t C BC t C

h h p t t
BC t C BC t C

ρ ρθ

ρ ρ γ

+ + − −  + 

+ = −
+ +

 (11) 293 

We solve Eq. (11) via a fourth-order Runge-Kutta method with a uniform time step of 294 

0.01 seconds. 295 

Period 2. During this window, spanning from the onset of water ponding to the 296 

beginning of runoff, respectively observed at experimental times pt   and rt  , the 297 

infiltration rate is assumed to decrease linearly in time according to 298 

sat

http://dict.cn/Runge-Kutta
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( ) ( )0 pi t p a t t= − −  , the value of 0 0a >   characterizing the rate of increase of the 299 

ponding depth and being evaluated via ( ) ( )0r r pi t p a t t= − − . As no surface runoff is 300 

observed, q = 0 during this period and the rate of ponding depth increase equals to 301 

( )p i t− . The temporal variation of the net water depth of the mixing zone can then be 302 

obtained as: 303 

( )2

0
1
2w p mix s p mix sh h h a t t hθ θ= + = − +  (12) 304 

where we recall that ph  is the depth of the ponding layer. Concentration ( )w pC t  of 305 

the solute in the mixing layer is calculated through Eq. (11) evaluated at time pt  . 306 

Combining Eqs. (12), (10), and (3), leads to the following equation describing ( )wC t  307 

across this time period: 308 

( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )

2

0 0

02

d d1
2 d d

d
 

d

w w
p w p mix s

wmix s
p w

w

C t C t
a t t a C t t t h

t t
C th C a t t p C t

tBC t C

α α θ

ρ γ

− + − + +

 = − − +  

 (13) 309 

Similar to Eq. (11), we solve Eq. (13) via a fourth-order Runge-Kutta method with a 310 

uniform time step of 0.01 seconds. 311 

Period 3. During this interval, ranging from the onset of runoff to its stabilization (at 312 

time st ), the temporal decrease of infiltration is approximated via: 313 

( ) ( ) ( )r ri t i t b t t= − − ; q p i= −  (14) 314 

where b is a parameter characterizing the infiltration decrease rate and is evaluated via 315 

( ) ( ) ( )s r s ri t i t b t t= − − . The initial solute concentration in the runoff fluid, ( )w rC tα , 316 

can be obtained from the solution of Eq. (13), evaluated at time t = rt . Substituting Eqs. 317 

(14) and (10) into Eq. (3) yields: 318 

http://dict.cn/Runge-Kutta
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( )
( )

( )
( )

( )
( ) ( )

( ) ( ) ( ){ } ( )( )2 2

ln ln ln

   
2

w w wmix s mix s mix s
p mix s

w r w r w r w

mix s
r r r r

w r

C t C t BC t Ch h hh h
C t C t BC t C BC t C

h bi t bxt p t t t
C

C

B t

C

t
C

ρ ρ ρα θ

ρ α γ α α γ

+
 + + − − +  + +

= − + − − − − −  +

(15)  319 

A fourth-order Runge-Kutta method is employed to solve Eq. (15) with the same time 320 

step as in the previous time periods. 321 

Period 4. The infiltration rate is stationary during this last period and can be obtained 322 

by evaluating Eq. (14) at time t = st  . The initial concentration of the runoff fluid, 323 

( )w sC tα , is obtained by evaluating Eq. (15) at time t = st . The resulting format of Eq. 324 

(3), i.e.: 325 

( )
( )

( )
( )

( )
( )

( ) ( ) ( )( ) ( )

ln ln ln

 

w w wmix s mix s
p mix s

w r w r w r

mix s mix s
s s

w w r

C t C t BC t Ch hh h
C t C t BC t C

h h i t p t t
BC t C B

C

t

C

C C

ρ ρα θ

ρ ρ α γ α

+
 + + − −  +

+ = − − −  + +

 (16) 326 

is then solved by a fourth order Runge-Kutta method, as described above. 327 

For brevity, the solute transport models obtained by considering the Langmuir, 328 

Freundlich, Temkin and linear adsorption models are respectively denoted as L, F, T 329 

and H models. 330 

Maximum Likelihood Model calibration 331 

We consider the vector * * * *
(1) (2) ( )=[ , , , ]

CNY Y YY    collecting CN   measurements of 332 

dissolved Cr(VI) concentration observed in surface the runoff at sampling time i = 1, 333 

2, ..., CN . The general relationship expressing Cr(VI) concentration in runoff through 334 

a mathematical model (.)f   associated with the vector 1 2[ , , , ]
pNx x xX =    of PN  335 

unknown parameters is here represented as ( )fY X , vector (1) (2) ( )[ , , , ]
CNY Y YY    336 

including CN  simulated Cr(VI) concentration values in the runoff at time i = 1, 2, ..., 337 

http://dict.cn/Runge-Kutta
http://dict.cn/Runge-Kutta
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CN . Experimental measurement errors are considered to be independent (e.g., Carrera 338 

and Neuman, 1986; Bianchi-Janetti et al., 2012), the corresponding error covariance 339 

matrix, CB  , being diagonal, 2
iσ   (i = 1, 2, ..., CN  ) representing observation error 340 

variance. The Maximum Likelihood (ML) estimate X̂   of the vector of the PN  341 

uncertain model parameters can be obtained by minimizing with respect to X   the 342 

negative log likelihood criterion (e.g., Carrera and Neuman 1986): 343 

*
( ) ( )

C2
=1

ˆ
NLL ln ln(2 )

CN
i i

C
i i

Y Y
N π

σ
−

= + +∑ B  (17) 344 

where ( )
ˆ

iY  is the output provided by a given interpretive model at the ith observation 345 

time. We note that minimizing Eq. (17) corresponds to minimization of the least square 346 

criterion (Carrera and Neuman, 1986; Bianchi-Janetti et al., 2012 and references 347 

therein): 348 

*
( ) ( )

2
=1

ˆCN
i i

i i

Y Y
J

σ
−

=∑  (18) 349 

Here, minimization of (18) is obtained upon relying on the iterative Levenberg-350 

Marquardt algorithm as embedded in the well documented computational framework 351 

PEST (Doherty, 2002). We consider minimizing Eq. (18) with uniform (and generally 352 

unknown) measurement error variance, i.e., 2 2
iσ σ=  for i = 1, 2, ..., CN  (see, e.g., 353 

Bianchi-Janetti et al., 2012).  354 

Model Identification Criteria 355 

To evaluate the performance of the four alternative models considered (i.e., L, F, T 356 

and H), we rely on the four criteria: 357 

AIC NLL 2 PN= +  (19) 358 
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 (20) 359 

BIC NLL ln( )P CN N= +  (21) 360 

KIC NLL ln ln
2

C
P

NN
π

 = + − 
 

Q  (22) 361 

where Q represents the Cramer-Rao lower-bound approximation for the covariance 362 

matrix of the parameter estimates, i.e., the inverse expected Fisher information matrix, 363 

which renders a quantitative appraisal of the quality of parameter estimates and of the 364 

information content carried by data about model parameters (see, e.g., Ye et al., 2008 365 

for details). Here, Eq. (19) is proposed by Akaike (1974), Eq. (20) by Hurvich and Tsai 366 

(1989), Eq. (21) by Schwartz (1978) and Eq. (22) by Kashyap (1982). It is noted that 367 

the lowest value of a given model identification criterion indicates the most favored 368 

model (according to the criterion itself) at the expense of the other ones. 369 

Maximum Likelihood Bayesian Modeling averaging 370 

The discrimination criteria (19)-(22) can also be considered to assign posterior 371 

probability weights quantifying uncertainty associated with each of the tested isotherm 372 

models. The posterior probability linked to model Mk (k = 1, 2, ..., NM, NM, which is 373 

equal to 4 in our study, being the number of interpreting models assessed) is evaluated 374 

as (Ye et al., 2008): 375 

( )
( ) ( )

( ) ( )

min
*

min

1exp
2|

1exp
2

M

k k

k N

k k
k

IC IC P M
P M

IC IC P M
Y

 − − 
 =
 − − 
 

∑
 (23) 376 

where kIC  is either AIC (19), AICC (20), BIC (21), or KIC (22), ICmin = min{ICk} 377 

being its minimum value calculated across the set of the four models examined; and 378 
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( )kP M  is the prior probability associated with the thk  alternative model. Because no 379 

prior information is available, we set ( )kP M  = 1/ MN . 380 

Averaging across the moments provided by all alternative models renders the 381 

following (Bayesian-averaged) expressions for the leading moments (Draper, 1995; 382 

Hoeting et al., 1999): 383 

( ) ( ) ( )* * *

1
| | , |

MN

k k
k

E E M P M
=

=∑Y Y Y Y Y  (24) 384 

( ) ( ) ( )

( ) ( )( ) ( )

* * *

1

2* * *

1

| | , |

                      | , | |

M

M

N

k k
k

N

k k
k

V Var M P M

E M E P M

=

=

= +

−

∑

∑

Y Y Y Y Y

Y Y Y Y Y
 (25) 385 

Here, ( )*|E Y Y   and ( )*|V Y Y   respectively are model-averaged estimate and 386 

variance of Y conditional on the set of Cr(VI) observations collected in *Y  ; and 387 

( )*| , kE MY Y   and ( )*| , kV MY Y   respectively are the mean and variance of Y 388 

conditional on *Y  and model kM . 389 

 390 

RESULTS AND DISCUSSION 391 

Here, we start by illustrating the available Cr(VI) observations and discuss the results 392 

of ML-based calibration of the four models analyzed. We then quantify posterior model 393 

weights according to the selection criteria considered and use these to (a) rank the 394 

models in terms of their relative skill to interpret the available data and (b) compute 395 

model-averaged estimates and corresponding uncertainty bounds. We resort to a 396 

classical variance-based global sensitivity analysis (GSA) to quantify the relative 397 

contribution of the uncertain parameters characterizing each of the models tested to the 398 
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variability of Cr(VI) concentration in the runoff water. We then discuss the implication 399 

of adsorption function by relying on the most skillful amongst the models tested to 400 

characterize Cr(VI) loss from soil to surface runoff. 401 

Model ranking 402 

Observed Cr(VI) concentrations in the runoff for experiments 1 and 2 are 403 

respectively depicted in Fig. 3a and 3b. These figures depict the corresponding 404 

concentration values obtained after ML model calibration for the four models analyzed. 405 

Table 3 lists ML parameter estimates together with the associated standard deviation 406 

(SD). 407 

Simulated concentrations are generally in good agreement with experimental 408 

evidences, a remarkable exception being model T in experiment 1. The high values of 409 

the estimated standard deviations listed in Table 3 can be partially due to linearity 410 

assumptions upon which the employed parameter optimization strategy is implemented 411 

and/or a trade-off between the information content associated with data and the number 412 

and nature of model parameters considered (Doherty 2002). The latter observation is 413 

consistent with the observed high values of the entries of the cross-correlation matrix 414 

associated with parameter estimates. These are listed in Table 4 and suggest that the 415 

available data are not conducive to unique estimates of model parameters. 416 

Model calibration results indicate that the soil used in experiment 2 has a higher 417 

adsorption capacity than the soil in experiment 1. This result is consistent with the 418 

experimental setting, which comprises a finer soil texture in experiment 2. One can also 419 

note that experiment 2 is associated by a higher depth of the mixing layer than 420 

experiment 1. This finding is consistent with our experiment setting, according to which 421 



21 
 

soil 1 can form a much stronger shield (Heilig et al., 2001) against rain drop erosion on 422 

surface soil 1 than soil 2, because of its sedimentological composition. This partially 423 

supports the higher Cr(VI) concentrations obtained for experiment 2, which are 424 

consistent with the observation that the depth of the mixing layer directly influences 425 

the total mass of solute that can be transferred from soil to surface runoff. One should 426 

also notice that a higher infiltration rate occurs in experiment 1 than in experiment 2, 427 

thus indirectly suggesting that less Cr(VI) mass is lost in the mixing layer through 428 

surface runoff in the former set-up than in the latter. 429 

Calculated values for each of the model identification criteria considered are listed 430 

in Table 5. We can see that AIC, AICC and BIC values are close, because of their similar 431 

structures. For experiment 1, the lowest AIC, AICC, BIC and KIC values are -140.79, -432 

137.46, -134.90, and -156.22, respectively, their corresponding counterparts for 433 

experiment 2 being -36.04, -30.79, -29.23, and -61.81, respectively. Posterior model 434 

weights of the alternative models analyzed are listed in Table 6. For experiment 1, the 435 

highest AIC-, AICC- and BIC-based posterior model weights are 47.09%, 66.54% and 436 

61.60%, respectively, all of them being associated with the H model. Otherwise, the 437 

highest KIC-based posterior model weight (i.e., 53.97%) is linked to the L model. For 438 

experiment 2, the highest AIC-, AICC- and BIC-based posterior model weights are 439 

90.39%, 90.30% and 90.34%, respectively, all of them being connected to the L model. 440 

The highest KIC-based posterior model weight is 77.87% and is linked to the T model. 441 

One can then conclude that the H and/or L model are identified as the most skillful ones 442 

for experiment 1, respectively according to the BIC- and/or KIC-based posterior model 443 
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weights, the L and/or T models being favored to the interpretation of experiment 2. 444 

According to Ye et al. (2008), AIC and AICC are based on the premise that the true 445 

model is comprised in the set of alternative models tested, a constraint which is not 446 

shared by BIC or KIC. Additionally, it can be noted that KIC imbues a balancing effect 447 

between expected value of information and model parsimony. At the same time, it has 448 

been observed that KIC tends to favor models which can lead to potentially 449 

controversial results, due to the effect of Q (e.g., Tsai and Li, 2008; Li and Tsai, 2009). 450 

On the basis of this discussion, and for the purpose of our application, we base our 451 

model selections on KIC. By further noting that the T model displays an unsatisfactory 452 

pattern in the interpretation of experiment 1 (see Fig. 3a), we conclude that the L model 453 

can be considered as the most skillful amongst the alternatives considered for the 454 

purpose of the overall interpretation of both experimental datasets. 455 

We now illustrate the results of the MLBMA multi-model analysis. The latter is 456 

performed through a numerical Monte Carlo (MC) framework structured according to 457 

the following steps: (a) N = 100,000 MC samples of each uncertain model parameter 458 

ix   ( 1, 2, , Pi N=   ) are randomly generated for each candidate model kM  459 

( 1,2, , Mk N=  ) through the Latin Hypercube sampling technique considering each 460 

ix  as independent and identically distributed (i.i.d.) random variables, uniformly 461 

distributed within the support [ ]ˆ ˆ ˆ ˆ30% , +30%i i ix x x x− , with mean value equal to ˆix  462 

(i.e., the ML-based parameter estimate); (b) calculating N MC realizations of dissolved 463 

Cr(VI) concentrations in the surface runoff (collected in vector Y) via each candidate 464 

model kM  ; (c) computing (ensemble) mean ( )*| , kE MY Y   and variance 465 
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( )*| , kV MY Y  ; (d) and evaluating model-averaged estimates ( )*|E Y Y   and 466 

( )*|Var Y Y  through (25) and (26). 467 

Fig. 4 depicts scatterplots of model-averaged estimates ( )*|E Y Y   and 468 

corresponding uncertainty bounds (of width equal to ( )*|V± Y Y ) versus Y  469 

measurements for experiment 1 on the basis of IC = AIC (Fig. 4a), AICC (Fig. 4b), BIC 470 

(Fig. 4c), and KIC (Fig. 4d). For completeness, each subplot also depicts 471 

( )*| , kE MY Y    and ( ) ( )* *| , | ,k kE M V M±Y Y Y Y   , as computed by the most 472 

skillful model, kM  , identified by the corresponding IC. Maximum Likelihood 473 

estimates of Y  obtained through model kM  (with corresponding model parameter 474 

set X̂ ) are also depicted. Values of the highest posterior model weights, ( )*ˆ |kP M Y , 475 

are also included in each subplot. Corresponding depictions for experiment 2 are shown 476 

in Fig. 5. 477 

These results suggest that: (i) ( )*|E Y Y   and ( ) ( )* *| |E V±Y Y Y Y   are 478 

respectively very close to ( )*| , kE MY Y    and ( ) ( )* *| , | ,k kE M V M±Y Y Y Y   479 

when ( )*ˆ | 90%kP M ≥Y  (see Fig. 5); (ii) ( )*|E Y Y   can provide better estimates 480 

than ( )*| , kE MY Y    when the individual models of the set considered yield very 481 

different results (see Fig. 4); (iii) the KIC-based ( )*| , kVar MY Y   is always smaller 482 

than its counterparts based on the other IC considered for a given experiment (see Figs. 483 

4 and 5). These results are consistent with observations by Ranaee et al. (2016), who 484 

noted that model-averaged estimates were virtually coinciding with those associated 485 

with the most skillful model in their study when the latter was characterized by 486 

( )*ˆ | 95%kP M ≥Y . They are also consistent with the results of Winter and Nychka 487 
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(2010), who note that a model average can only be more skillful than the model 488 

identified as best solely when the individual models in the collection produce very 489 

different forecasts.  490 

Figs. 6 and 7 complement the results illustrated above by depicting the Monte Carlo 491 

based probability density functions (pdfs) of Cr(VI) concentration in the water runoff 492 

evaluated through the candidate models, respectively for experiments 1 and 2. Results 493 

are illustrated for early ( 1T ), median ( 2T ), and late ( 3T ) simulation times, respectively 494 

corresponding to sampling times when observations *
( )iY  (i = 1, 5, and 23) are collected. 495 

One can see that the densities calculated by the L model generally peak at a value 496 

closely corresponding to the measured Cr(VI) concentration, an exception being given 497 

by the late times results of Fig. 6c, where the pdfs associated with the H and L models 498 

resemble a Delta function. The pdfs associated with F and H models generally show 499 

higher skewness and heavier tails, which partially indicate increased probability of 500 

extreme values, in comparison with L and T models.  501 

Variance-based global sensitivity analysis 502 

We provide further insights on the way that model uncertain parameters can 503 

contribute to the variability of model responses through a sensitivity analysis. In this 504 

context, local sensitivity analysis approaches (i) quantify the sensitivity of a model 505 

output to small perturbations of parameter values and (ii) provide an appraisal of the 506 

behavior of the modeled system in regions of the parameter space close to the perturbed 507 

value of the parameter (e.g., Razavi and Gupta, 2015 and references therein). GSA 508 

techniques enable us to evaluate sensitivities of model outputs across the overall 509 
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support defining the space of variability of model parameters (e.g., Formaggia et al., 510 

2013; Ciriello et al., 2013, 2015; Riva et al., 2015; Razavi and Gupta, 2015, Dell’Oca 511 

et al., 2017 and references therein). The latter is based on the evaluation of the Sobol’ 512 

indices, which are based on a classical decomposition of variance and provide 513 

information on the relative contribution of each uncertain model parameter to the 514 

variance of a target model output. Here, we apply the variance-based GSA approach 515 

(Saltelli et al., 2008; 2010). 516 

Evaluation of the variance-based sensitivity indices is performed by considering 517 

uncertain model parameters as independently random variables, within the space of 518 

variability described above. The total sensitivity indices for the thi  model parameter 519 

(or factor) corresponding to the thj  Cr(VI) measurement in the runoff is evaluated as 520 

(Saltelli et al., 2008, 2010) 521 

( ) 1 2 1 1
( )

( )

( ) 1 2 1 1

( )

( ( | , , , , , , ))
1

( )
( ( | , , , , , , ))

         =
( )

P

P

j i i N
T ij

j

j i i N

j

V E Y x x x x x
S

V Y
E V Y x x x x x

V Y

 

 

 
 

 

 (25) 522 

Here, ( )( )jV Y  is the variance of model response at the time corresponding to the thj  523 

Cr(VI) observation in the runoff; ( ) 1 2 1 1( ( | , , , , , , ))
Pj i i NV E Y x x x x x    represents the 524 

variance of model responses expectation conditioned to all factors, excluding factor xi; 525 

( ) 1 2 1 1( ( | , , , , , , ))
Pj i i NE V Y x x x x x     = 1 − ( ) 1 2 1 1( ( | , , , , , , ))

Pj i i NV E Y x x x x x     is 526 

the expected variance conditioned on all factors, excluding factor xi. In our study, 527 

( ) 1 2 1 1( ( | , , , , , , ))
Pj i i NE V Y x x x x x     is evaluated through Eq. (19) in Saltelli et al. 528 

(2010). We note that Sobol’ total sensitivity indices are informative of the relative 529 

importance of each model input to the variance of model output and are not amenable 530 
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to interpretations leading to ranking of the relative interpretive skill of the collection of 531 

models considered. 532 

We illustrate our results of GSA for the setting of experiment 2. Figs. 8-11 depict the 533 

temporal pattern displayed by ( )T ijS  as a function of the size, N, of the collection of 534 

random parameter values for the models tested. These results suggest that N = 5000 535 

samples yields sufficiently stable results. 536 

Fig. 12 depicts the temporal variation of the contribution (quantified by 537 

( ) ( )
1

/ 100
PN

T ij T ij
i

S S
=

×∑ %) of each input factor to model output for all candidate models. 538 

These results indicate that model output Y is most sensitive to mixh  for all alternative 539 

models, and are consistent with the observation that the depth of the mixing layer 540 

directly determines the mass of Cr(VI) that could be transported from soil to surface 541 

runoff. An exception to this pattern is given by model F whose model output is very 542 

sensitive to parameter n, which is mainly due to the importance of n to drive the power 543 

law behavior in Eq. (5). Results in Fig. 12 suggest that the sum of the contributions 544 

associated with the adsorption parameters consistently increases as simulation time 545 

progresses for all models. Considering model L as an example, the contributions of 546 

eqK   and maxS   are respectively 0.47% and 1.38% at the beginning simulation, and 547 

increase up to 6.61% and 24.02% at the end of simulation. This corresponds to an 548 

increase of the combined total contributions of eqK  and maxS  to 2
Yσ  from 1.85% to 549 

30.63% during the simulation period and denote the significant effect of the adsorption 550 

process on Cr(VI) loss from soil to the surface runoff, especially at late times. 551 

Fig. 12 also suggests that the parameters with the lowest (in an average sense) 552 



27 
 

contribution to 2
Yσ  are eqK  (for model L), α  (for models F and H), and tK  (for 553 

model T). We denote here as ( )eqT KC  = 5.41%, 
F( )TC α  = 2.33%, 

H( )TC α  = 10.41%, 554 

and ( )tT KC  = 0.00%, the average of the temporal contributions evaluated for each of 555 

these parameters over the set of 23 observation times in experiment 2. It is interesting 556 

to note that the ranking ( )tT KC <
F( )TC α < ( )eqT KC <

H( )TC α  is somehow consistent with the 557 

ranking of posterior model weights based on KIC (i.e., 77.87%, 17.76%, 4.37% and 558 

0.00%, respectively for models T, F, L and H; see Table 6).  559 

As a complement to these results, Fig. 13 depicts the temporal variation of the 560 

quantity ( ) ( )1
1

1 pN

T ij ij
ip

S S
N =

−∑ , representing the mean of absolute difference between the 561 

total ( ( )T ijS ) and first-order ( ( )1 ijS ) sensitivity indices. As a remark, one can see that low 562 

values of this quantity typically correspond to high KIC-based posterior model weights, 563 

with the exception of model T in experiment 1. This finding might be considered as an 564 

indication that low values of ( ) ( )1
1

1 pN

T ij ij
ip

S S
N =

−∑   can be consistent with the low 565 

expected Fisher information. Additional theoretical developments are needed to fully 566 

explore possible implications of these results and will be the subject of future 567 

investigations. 568 

Effect of adsorption on Cr(VI) loss from soil to surface runoff 569 

While global sensitivity analyses of the kind we illustrate provide global measures 570 

quantifying the contribution of uncertain input parameters to the variance of a model 571 

output pdf across the entire investigated parameter space, they do not yield a 572 

straightforward assessment of (a) the actual values attained by model outputs within 573 
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the parameter space or (b) the direction of variation of model results as a function of 574 

parameter variation. These features can be readily visualized through a scatterplot 575 

analysis. We illustrate the results of the latter by considering the L model, which has 576 

been ranked as best in our prior analyses. 577 

Figs. 14 and 15 depict the data clouds associated with the scatterplots of Cr(VI) 578 

concentrations in the water runoff resulting from the L model at sampling times 579 

respectively corresponding to the collection of the first and last concentration 580 

measurement (i.e., *
1Y  and *

CNY ) in experiment 2. Linear regression curves are also 581 

depicted for completeness. 582 

These results generally indicate that Y is positively correlated to α  and negatively 583 

correlated to γ  . They are consistent with the definition of wY Cα=   and with the 584 

observation that a strong incomplete mixing (associated with high values of the mixing 585 

coefficient γ  ) results in decreased values of Cr(VI) in the water runoff (i.e., an 586 

increased transfer of Cr(VI) from the mixing layer to the underlying soil). The positive 587 

correlation of Y with the depth of the mixing layer mixh  (Figs. 14e, and 15e) stems 588 

from the physical effects of the mixing layer. 589 

The correlation between Y and the adsorption parameter maxS   changes from 590 

negative to positive with elapsing time (compare Figs. 14d and 15d). At the beginning 591 

of the simulation period, high values of maxS  tend to increase the total Cr(VI) mass 592 

adsorbed onto the solid phase with a decrease of the mass released to runoff. As time 593 

progresses, the dissolved Cr(VI) concentration in the mixing layer decreases, promoting 594 

desorption from the solid and subsequent transfer to runoff. These results are also 595 
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consistent with the tailing observed for the breakthrough curve of Cr(VI) for experiment 596 

1. 597 

 598 

CONCLUSIONS 599 

The results from two experiments are used to investigate Cr(VI) losses from soils 600 

with diverse grain sizes to water runoff. Four solute transport models (denoted as L, F, 601 

T and H), coupling a two-layer solute transfer model, respectively, with Langmuir, 602 

Freundlich, Temkin, and linear adsorption isotherms, are assessed to simulate Cr(VI) 603 

transfer from soil to surface runoff. Each of the analyzed models is calibrated against 604 

experimental data through Maximum Likelihood (ML) parameter estimation. Four 605 

model identification criteria (i.e., AIC, AICC, BIC and KIC) are evaluated, and posterior 606 

probabilistic weights are then calculated to identify the most skillful model to interpret 607 

the available data. The classical variance-based global sensitivity and scatterplot 608 

sensitivity analyses are then performed in the context of both experimental settings. Our 609 

study leads to the following key conclusions. 610 

(1) Cr(VI) concentrations in the runoff are much higher in experiment 2 than in 611 

experiment 1. The most significant difference between the two experimental 612 

scenarios is the soil grain size (i.e., soils were sieved through 2 mm and 1 mm sieves 613 

for experiments 1 and 2, respectively). This result can be explained by two 614 

mechanisms: (a) larger grain sizes would increase infiltration rates; and (b) a mixing 615 

layer depth tends to be decreased in a soil with larger grain size, resulting in a 616 
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decreased Cr(VI) loss through runoff. 617 

(2) For experiment 1, the largest AIC, AICC and BIC-based posterior model weights 618 

are associated with model H, respectively with values of 47.09%, 66.54% and 619 

61.60%. Model L is ranked highest by KIC, with a posterior weight of 53.97%. For 620 

experiment 2, the highest AIC, AICC and BIC-based posterior model weights are 621 

90.39%, 90.30% and 90.34%, respectively, and are linked to model L; Model T is 622 

favored by KIC, with a posterior weight equal to 77.87%. Model L is then evaluated 623 

as the most skillful for the overall interpretation of both experimental results. 624 

(3) Variance-based global sensitivity results suggest that the thickness of the mixing 625 

layer, mixh , is the most sensitive parameter for all models, an exception being the 626 

Freundlich model, where n is the uncertain parameter with the highest contribution 627 

to the model output variance. The total sensitivity of the adsorption parameters 628 

tends to increase with simulation time. For example, in the case of model L the sum 629 

of the eqK   and maxS  contributions (see Fig. 12b) to model output variance 630 

increases from 1.85% to 30.63% across the temporal window spanned in 631 

experiment 2. This result suggests that adsorption has a significant effect on the 632 

uncertainty of prediction for Cr(VI) loss from soil to runoff. 633 

(4) The scatterplot analysis results from model L suggest that the incomplete mixing 634 

coefficient (α ) and the depth of mixing layer ( mixh ) are positively correlated with 635 

Cr(VI) concentration in the runoff, and the incomplete mixing coefficient (γ ) and 636 

Cr(VI) concentration are negatively correlated. The correlation between Cr(VI) 637 

concentration in the runoff and the maximum adsorption capacity ( maxS ) changes 638 
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from negative to positive during the simulation process. These results are obtained 639 

from the finding that (a) large values of maxS  tend to increase the total Cr(VI) mass 640 

adsorbed onto the solid phase at the beginning of the simulation period; and (b) the 641 

dissolved Cr(VI) concentration in the mixing layer decreases as time progresses, 642 

promoting Cr(VI) transfer from soil to runoff. 643 

It is remarked that the mathematical formulation for the adsorption process plays a 644 

significant role on prediction of solute loss from soil to surface water runoff, and the 645 

equilibrium adsorption assumption is not accurate in some field scenarios. Non-646 

equilibrium adsorption models should be further explored in future studies when they 647 

are used in the two-layer model to describe chemical transport from soil to water runoff. 648 

Additional elements of future study should also include the use of global sensitivity 649 

techniques that allow exploring the relative importance of each uncertain model 650 

parameter through the evaluation of (statistical) Moment-based Metrics of the kind 651 

proposed by Dell’Oca et al. (2017). The latter are not confined to a description of the 652 

feedback between uncertain model inputs and outputs via variance-based metrics (such 653 

as the Sobol’ indices) and aim at providing a comprehensive picture, quantifying the 654 

impact of model parameter uncertainties on the statistical moments driving the main 655 

features of the probability density function of model outputs. 656 
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Tables 1 

 2 

Table 1. Main chemical characteristics of soil sample 2 used in the experiments. 3 

Cr(VI) Fe2O3 Al2O3 MnO Eh pH 

≤0.015 (mg kg-1) 0.0377 (g kg-1) 0.0094 (g kg-1) 0.0051 (g kg-1) 497.31 (mV) 7.6 

 4 

Table 2. Key parameters and quantities characterizing the experimental conditions. 5 

Experiment 
Rainfall 

intensity, p 

/(cm min-1) 

Stable 

infiltration rate, 

is /(cm min-1) 

The time start to 

produce ponding 

water, tp /(min) 

The time 

runoff 

occur, tr 

/(min) 

The time of 

infiltration rate 

reached stable, ts 

/(min) 

1 0.092 0.028 6.5 27 40 

2 0.100 0.024 5.75 28.7 39 

 6 



 

 7 

Table 3. Maximum Likelihood model parameter estimates and associated standard deviation (SD). 8 

model L F 

parameter α γ Keq Smax hmix α γ Kf n hmix 

Experiment 

1 

estimate 0.28 0.78 0.02 69.00 0.37 0.40 0.69 6.61 1.31 0.13 

SD 34.34 12.89 0.44 2753.87 5.61 162.21 96.57 1162.71 5.19 2.84 

Experiment 

2 

estimate 0.15 0.21 0.51 111.00 0.46 0.22 1.0 17.50 2.89 0.88 

SD 10.87 2.16 12.81 1722.21 11.74 76.13 18.52 590.91 50.92 28.85 

model T H 

parameter α γ K f hmix α γ Kd hmix 

Experiment 

1 

estimate 0.19 0.70 1.13 291.64 0.35 0.13 0.66 0.45 0.38 

SD 3749 988.1 295223.64 1542530.39 1863.25 359.57 69.39 424.10 1.81 

Experiment 

2 

estimate 0.28 0.92 0.004 124.41 0.67 0.035 0.52 0.82 0.70 

SD 98.29 31.00 4.30 13784.77 73.28 390.06 25.67 843.01 5.57 

 9 



 

 10 

Table 4. Correlation coefficients between model parameters 11 

 L model  F model  

 α   γ   eqK  maxS  mixh    α  γ  K  n  mixh  

α  1 0.99 0.61 0.77 0.65  α  1 1 0.99 -0.99 0.98 

γ  0.99 1 0.62 0.76 0.64  γ  0.99 1 0.99 -0.99 0.97 

eqK  -0.99 -0.99 1 -0.02 -0.19  K  -0.99 -0.98 1 -0.99 0.97 

maxS  0.98 0.98 -0.97 1 0.98  n  -0.95 -0.97 0.95 1 -0.95 

mixh  0.99 0.99 -0.99 0.99 1  mixh  0.97 0.95 -0.97 -0.87 1 

             

 T model   H model  

 α  γ  
tK  f  mixh    α  γ  

dK  mixh   

α  1 1 0.99 1 1  α  1 1 1 -0.97  

γ  0.99 1 0.99 1 1  γ  0.99 1 1 -0.97  

tK  0.91 0.94 1 1 1  dK  0.99 1 1 -0.97  

f  0.98 0.99 0.96 1 1  mixh  -0.43 -0.44 -0.44 1  

mixh  0.99 0.99 0.95 0.99 1        

             

Note: the upper and lower triangular regions respectively represent correlation coefficients for experiment 1 12 
and 2. 13 
  14 



 

Table 5. Results of model identification criteria for both experiments. 15 

Model L F 

Index AIC AICC BIC KIC AIC AICC BIC KIC 

Experiment 1 -139.29 -134.34 -132.22 -156.22 -139.94 -135.00 -132.87 -155.78 

Experiment 2 -36.04 -30.79 -29.23 -56.05 -30.38 -25.13 -23.57 -58.85 

Model T H 

Index AIC AICC BIC KIC AIC AICC BIC KIC 

Experiment 1 -80.22 -75.27 -73.15 -135.52 -140.79 -137.46 -134.90 -150.26 

Experiment 2 -29.92 -24.67 -23.10 -61.81 -21.71 -18.18 -16.03 -38.45 

 16 

 17 

Table 6. Posterior model weights (%) for the set of alterative models tested. 18 

Note: PMW 1 (or 2) denotes posterior model weights for experiment 1 (or 2) 19 

Model L F 

Index AIC AICC BIC KIC AIC AICC BIC KIC 

PMW 1 22.18 14.03 16.10 53.97 30.7 19.43 22.30 43.29 

PMW 2 90.39 90.30 90.34 4.37 5.32 5.32 5.32 17.76 

Model T H 

Index AIC AICC BIC KIC AIC AICC BIC KIC 

PMW 1 0.00 0.00 0.00 0.00 47.09 66.54 61.60 2.74 

PMW 2 4.22 4.22 4.22 77.87 0.07 0.16 0.12 0.00 



 

Figures 1 

 2 

Figure 1. Sketch of the experimental set-up 3 

 4 

 5 

Figure 2. Conceptual depiction of the two-layer model. Notations are: the rainfall 6 

intensity p; the specfic discharege rate of overland flow q; the depth of the 7 

ponding layer hp; the depth of the mixing layer hmix; infiltration rate i; the solute 8 

concentration in the mixing layer Cw; the solute concentration in the ponding layer 9 

/the runoff layer wCα ; the solute concentration in the underlying soil wCγ . 10 

 11 



 

 12 

Figure 3. Temporal variation of measured Cr(VI) concentrations in the runoff together 13 

with their simulated counterparts based on optimized parameters (L, F, T and H 14 

models) for experiments (a) 1 and (b) 2. 15 

 16 

Figure 4. Scatterplots of estimates of Cr(VI) concentration in the surface runoff 17 

(collected in vector Y) versus data (collected in vector Y*) of experiment 1. When 18 



 

used, posterior model weights are evaluated through model identification criterion (a) 19 

AIC, (b) AICC, (c) BIC, and (d) KIC; kM  represents the most skillful model, as 20 

identified by the corresponding criterion. 21 

 22 

Figure 5. Scatterplots of estimates of Cr(VI) concentration in the surface runoff 23 

(collected in vector Y) versus data (collected in vector Y*) of experiment 2. When 24 

used, posterior model weights are evaluated through model identification criterion (a) 25 

AIC, (b) AICC, (c) BIC, and (d) KIC; kM  represents the most skillful model, as 26 

identified by the corresponding criterion. 27 

 28 

  29 



 

 30 

 31 

Figure 6. Sample probability density functions (pdfs) of Cr(IV) in runoff water (Y) 32 

based on the Monte Carlo simulations performed for each model at (a) early ( 1T ), (b) 33 

median ( 2T ), and (c) late ( 3T ) simulation times, respectively corresponding to 34 

sampling times where observations *
( )iY  (i = 1, 5, and 23), are collected in experiment 35 

1. Vertical lines correspond to measured values *
( )iY . 36 

 37 

 38 

Figure 7. Sample probability density functions (pdfs) of Cr(IV) in runoff water (Y) 39 

based on the Monte Carlo simulations performed for each model at (a) early ( 1T ), (b) 40 

median ( 2T ), and (c) late ( 3T ) simulation times, respectively corresponding to 41 

sampling times where observations *
( )iY  (i = 1, 5, and 23), are collected in experiment 42 

2. Vertical lines correspond to measured values *
( )iY . 43 
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 45 

 46 

Figure 8. Total sensitivity indices of L model versus time and for diverse sample size, 47 

i.e., N = (a) 500, (b) 1000, (c) 2000, (d) 5000, (e) 10,000, and (f) 100,000. 48 

 49 

 50 

Figure 9. Total sensitivity indices of F model versus time and for diverse sample size, 51 

i.e., N = (a) 500, (b) 1000, (c) 2000, (d) 5000, (e) 10,000, and (f) 100,000. 52 



 

 53 

Figure 10. Total sensitivity indices of T model versus time and for diverse sample size, 54 

i.e., N = (a) 500, (b) 1000, (c) 2000, (d) 5000, (e) 10,000, and (f) 100,000. 55 

 56 

 57 

Figure 11. Total sensitivity indices of H model versus time and for diverse sample size, 58 

i.e., N = (a) 500, (b) 1000, (c) 2000, (d) 5000, (e) 10,000, and (f) 100,000.  59 



 

 60 

Figure 12. Contributions of each input factor to variation of Cr(VI) in surface runoff 61 

versus time for experiment 2 according to model (a) L, (b) F, (c) T, and (d) H. 62 
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 64 

Figure 13. Temporal variation of the mean of the absolute difference between the total 65 

( ( )T ijS ) and first-order ( ( )1 ijS ) sensitivity indices for experiment (a) 1 and (b) 2; the 66 

order of model ranking according to the KIC-based posterior model weights are 67 

indicated. 68 
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 71 

 72 
Figure 14. Scatterplots depicting the dependence of model output Y and parameters (a) 73 
α , (b) γ , (c) eqK , (d) maxS , and (e) mixh  of the Langmuir coupled tow-layer (L) 74 

for experiment 2 at observation time corresponding to the first sampling time. Linear 75 

regression curves (solid lines) are included. 76 
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 79 

 80 
Figure 15. Scatterplots depicting the dependence of model output Y and parameters (a) 81 
α , (b) γ , (c) eqK , (d) maxS , and (e) mixh  of the Langmuir coupled tow-layer (L) 82 

for experiment 2 at observation time corresponding to the last sampling time. Linear 83 

regression curves (solid lines) are included. 84 

 85 
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