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ABSTRACT 

 Geostatistical analysis has been introduced over half a century ago to allow quantifying 

seemingly random spatial variations in earth quantities such as rock mineral content or 

permeability. The traditional approach has been to view such quantities as multivariate Gaussian 

random functions characterized by one or a few well-defined spatial correlation scales. There is, 

however, mounting evidence that many spatially varying quantities exhibit non-Gaussian 

behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad 

picture of the subject and its treatment in the literature. Instead, we focus on very recent 

advances in the recognition and analysis of this ubiquitous phenomenon, which transcends 

hydrology and the Earth sciences, brought about largely by our own work. In particular, we use 

porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian 

behavior, describe a very recent theoretical model that (for the first time) captures all these 

behavioral aspects in a comprehensive manner, show how this allows generating random 

realizations of the quantity conditional on sampled values, point toward ways of incorporating 

scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, 

and list open questions requiring further research.  

 

SCALABLE NON-GAUSSIAN DISTRIBUTIONS 

 Flow and transport in geologic media are known to be affected strongly by medium 

heterogeneity. As heterogeneity is difficult to map out deterministically, it has become common 

to characterize it geostatistically (e.g., Journel and Huijbregts, 1978; Kitanidis, 1997) and solve 

problems of flow and transport in spatially varying hydraulic conductivity environments 

stochastically (e.g., Dagan, 1989; Zhang, 2002; Rubin, 2003). The traditional approach has been 
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to treat log hydraulic conductivity,  ln K x , where x  is position vector and K is hydraulic 

conductivity, as a multivariate (varying at multiple points x) Gaussian random function 

characterized by one or a few well-defined spatial correlation scales (such that values at points 

separated by distances much larger than these scale are uncorrelated and, in the Gaussian case, 

statistically independent). Yet many hydrological (as well as diverse earth, environmental, 

ecological, biological, physical, social, financial and other) quantities vary in space (and/or time) 

in manners more complex than is allowed by such a simple Gaussian model. Many such 

variables exhibit behaviors similar to those of neutron porosity data from a deep vertical 

borehole (e.g. Guadagnini et al., 2015, and Riva et al., 2015) that we adopt for illustration 

purposes below. 

Prior to describing this set of data, we note that our purpose here is not to provide a 

comprehensive review of statistical scaling and its treatment in the literature but rather to 

describe very recent advances brought about largely by our own work. We are motivated by the 

ubiquitous nature of the statistical scaling phenomena described in this minireview and by the 

fact that they transcend hydrology and Earth/environmental sciences. Our exposé assumes that 

the reader is comfortable with basic concepts and techniques of traditional statistical and 

geostatistical analyses as described, for example, in Journel and Huijbregts (1978) and Kitanidis 

(1997). 

 The data discussed below derive from a borehole drilled in the Maroon field of 

southwestern Iran within which oil and natural gas are produced. A total of N = 3,567 neutron 

porosity (P) data have been collected in the well at vertical intervals of 0.1524 mz  , ranging 

from 0 to 46.04% with mean 14.01% and standard deviation 6.40%. Figure 1 (top row, left) 

depicts the variation of deviations, aP P P   , from the data average, aP , with depth. The 



3 
 

deviations are seen to oscillate in an irregular manner with spurious peaks and valleys. This is 

reflected in their frequency distribution, plotted in Figure 1 (top row, right) on semi-logarithmic 

scale. The empirical frequency distribution exhibits a relatively sharp peak, asymmetry and slight 

bimodality which cannot be captured fully by a best (maximum likelihood, ML) fit of a Gaussian 

probability density function (pdf) to its empirical counterpart, depicted in the figure by a broken 

curve. Yet lack of Gaussianity becomes much more pronounced upon considering spatial 

increments    ( )P s P z s P z     of P where z is elevation and s the vertical distance 

(separation scale, lag) between any pair of P values. For convenience we consider integer-valued 

lags, /ns s z  , normalized by the vertical distance z  between contiguous data. Figure 1 

(rows 2 - 5, left) shows how increments  nP s  at four normalized lags ( ns  = 1, 8, 48, 256) vary 

with sequential (integer) vertical position in the borehole. Frequency distributions of  nP s  at 

the same four lags are plotted on semi-logarithmic scale in rows 2 - 5 (Figure 1, right) 

respectively. The empirical frequency distributions exhibit pronounced symmetry with sharp 

peaks and heavy tails that decay gradually toward Gaussian shapes as lags increase. In other 

words, increment frequency distributions are non-Gaussian at short lags and scale with 

separation distance. 

 The reader may rightfully wonder whether the above phenomenon would be observable 

with a much smaller set of data. Our experience to date has shown it to be so for as few as 184 

log permeability values obtained from 1 m-scale packer tests in multiple boreholes at an 

unsaturated fractured rock site in Arizona (Riva et al., 2013c). 

 Three types of mathematical models have been shown capable of mimicking the widely-

observed scale-dependence of sharply-peaked, heavy-tailed non-Gaussian increment frequency 

distributions (and associated moments, as described below): multifractals (e.g., Mandelbrot, 
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1974; Monin and Yaglom, 1975; Lovejoy and Schertzer, 1995; Schertzer et al., 1997; Veneziano 

et al., 2006; Boffetta et al., 2008; Frisch, 2016), fractional Laplace (e.g. Meerschaert et al., 2004; 

Kozubowski et al., 2006, 2013) and sub-Gaussian representations (e.g. Samorodnitsky and 

Taqqu, 1994; Neuman, 2010; Guadagnini et al., 2012a; Riva et al., 2013). More about the first 

and the third later. Unfortunately, none of these three model types describe jointly, in a unified 

and comprehensive manner, statistical behaviors (in terms of probability distributions and/or 

moments) of a variable (in our case porosity) and its increments: instead, whereas multifractal 

and fractional Laplace models focus exclusively on increment statistics, the sub-Gaussian model 

can represent the statistics of either a function or its increments, but not of both. As such, these 

three models can neither characterize nor generate multiple realizations of a random function and 

its increments in a manner that is self-consistent and compatible with data. Remedying this 

fundamental deficiency of existing statistical frameworks has been one major motivation behind 

our very recent development (Riva et al., 2015a, 2015b) of the generalized sub-Gaussian (GSG) 

model on which we focus below. 

SCALABLE STATISTICAL MOMENTS 

 The GSG model is comprehensive and unique in that it captures simultaneously observed 

scaling behaviors of (a) the probability density distribution and (b) (statistical) moments of a 

random function and its increments. It does so by incorporating the concept of a truncated fractal 

introduced into the literature by Di Federico and Neuman (1997) and Di Federico et al. (1999). A 

truncated fractal is formed by a Gaussian random function with a truncated power variogram. 

The variogram  s  of a random function (where s is separation distance/scale or lag) is half the 

variance (semi-variance) of its increments. When the variogram is proportional to a power of the 

separation scale,   2Hs s   where 0 1H   is a so-called Hurst exponent, the function forms a 
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random fractal with fractal dimension defined in part by H. One of a fractal's most notable 

characteristics is the lack of a distinct (auto, spatial or temporal) correlation scale, there being 

instead a continuum of such scales ranging from zero to infinity. The concept was originally used 

by Neuman (1990, 1991, 1995) to help explain the widely observed dispersivity scale effect (for 

a recent discussion of this effect and its explanation see Neuman, 2017). Di Federico and 

Neuman (1997) and Di Federico et al. (1999) developed mathematical expressions for truncated 

power variograms representing a random fractal measured or resolved on a scale Ls  and sampled 

across a larger domain (sampling window) of scale Us . Their variogram closely approximates 

the power law   2Hs s   at lags intermediate between these cutoff scales, L Us s s  , but 

deviates from the power law near the lower and upper cutoff scales, Ls  and Us . As variograms of 

most data show power law scaling over a limited range of lags (at most 2 - 3 log cycles of s), 

they are represented much more closely by truncated than by traditional fractal models. The 

truncation idea allows one to bridge statistical information about a fluctuating quantity (function) 

across cutoff (data measurement/resolution and sampling domain/window) scales: once the 

variogram (most notably its Hurst exponent H) of such a quantity has been established by 

measuring/resolving and sampling the quantity on given lower and upper cutoff scales, Ls  and 

Us , it can immediately be down and/or upscaled to any other choices of these scales. The 

concept and its early hydrogeologic applications have been reviewed by Neuman and Di 

Federico (2003). Further developments and applications based on the same concept are described 

by Neuman (2003, 2008, 2009) and Neuman et al. (2008). 

 Statistical moments of order q of absolute increments, designated here by 
q

NS  (N being 

the number of available increment data), are called structure functions; accordingly, a variogram 
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is a semi-structure function of order 2. Random fractals have power structure functions with 

exponents qH . Hence (a) plotting corresponding structure functions versus lag on log-log scale 

yields a straight line of slope qH  and (b) plotting structure function exponents versus q yields a 

straight line of slope H. Yet experience has shown (see review by Neuman, 2010a) that (a) 

power-law behavior of structure functions generally breaks down at small and large lags, and (b) 

log-log plots of structure function exponents versus q often delineate curves rather than straight 

lines. Prior to illustrating some of this with our porosity data P we note that, as documented by 

Neuman, the literature commonly attributes (a) power-law breakdown at small lags to sampling 

noise, similar breakdown at large lags to undersampling, and (b) nonlinear variation of structure 

function exponents with q (nonlinear power-law scaling) to multifractality of the fluctuating 

quantity being analyzed. A multifractal is a non-Gaussian fractal with Hurst exponent H that 

varies continuously with q. Nonlinear power-law scaling is also exhibited by fractional Laplace 

functions (Meerschaert et al., 2004; Kozubowski et al., 2006, 2013) such as those applied to 

sediment transport data by Ganti et al. (2009). Yet Neuman (2010) and Siena et al. (2012) were 

able to demonstrate theoretically and numerically that both breakdown in power-law scaling at 

small/large lags (seen most clearly in Figure A1 of Siena et al.) and nonlinear power-law scaling 

(most clearly evident in Figures 8 and 12 of Siena et al.) are exhibited by truncated Gaussian 

fractals regardless of noise or undersampling. The most important implication of this finding is 

that the widespread tendency of researchers in many fields (including hydrology) to interpret 

nonlinear power-law scaling as an unambiguous indication of multifractality is unjustified. 

 Even though power‐law scaling of structure functions is typically limited to intermediate 

ranges of lags, power-law scaling of structure functions ratios has been observed to hold in a 

wide variety of cases (for corroborating literature see Guadagnini et al., 2011, 2012b; Siena et 
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al., 2012) including turbulence, diffusion‐limited aggregates, natural images, kinetic surface 

roughening, fluvial turbulence, sand wave dynamics, river morphometry, gravel‐bed mobility, 

barometric pressure, low‐energy cosmic rays, Martian topography, cosmic microwave 

background radiation, metal‐insulator transition, irregularities in human heartbeat time series, 

turbulence in edge magnetized plasma of fusion devices and turbulent boundary layers of the 

Earth’s magnetosphere, air permeability in fractured and sedimentary rocks. In particular, 

plotting log qS  versus log rS  for any positive orders q and r yields a straight line at all lags. The 

phenomenon, referred to in the literature as extended self‐similarity (ESS), remained 

unexplained except for a relatively narrow class of functions satisfying a particular partial 

differential “Burger’s” equation (as shown by Chakraborty et al. (2010) in the context of 

turbulence at high Reynolds numbers) until 2012 when Siena et al. proved it to be theoretically 

consistent with Gaussian truncated fractals. Their theory shows that, in the case of such fractals, 

the slope of the straight line resulting from plotting log
qS  versus log

rS  (when q and s are 

positive integers) is equal to /q r  at all lags. We have seen that power-law scaling of structure 

functions, breakdown in such power-law scaling at small and large lags, and extended self-

similarity are theoretically consistent with Gaussian truncated fractals. To account additionally 

for observed non-Gaussian heavy-tailed behavior, we (Neuman, 2010a, 2010b, 2011; Guadagnini 

et al., 2011, 2012a, 2012b, 2013, 2014, 2015; Riva et al. 2013, 2013b, 2013c) have initially 

(prior to introducing GSG) adopted and applied to a variety of hydrogeological and pedological 

data a sub-Gaussian model. This initial model represented a random function such as porosity 

deviations from the mean, P , by P UG   where G  is a zero-mean Gaussian truncated fractal 

and U is a random variable (subordinator) totally skewed to the right of zero (hence non-

negative) and statistically independent of G . The model subordinates P  to G  through the 
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action of the subordinator U, rendering it a scale mixture of Gaussian truncated fractals with 

random variances proportional to 
2U . The scale mixture is non-Gaussian with distribution that 

depends on the choice of U (we have in the past considered U to be alpha-stable or log normal). 

As such, it preserves the scaling properties of these fractals (as demonstrated theoretically for 

truncated power-law behavior by Neuman, 2010, and for extended self similarity by Guadagnini 

et al., 2012b and Neuman et al., 2013). The same is true about our more recent generalized sub-

Gaussian model. 

 To illustrate some of the above scaling behaviors, we plot in Figure 2 sample porosity 

structure functions  q

N nS s  of orders q = 0.5, 1.0 and 2.0 versus ns  on log-log scale. Log-log 

regression lines fitted to the data separately at vertical distance scales 10ns   and 12ns   

suggest, at relatively high levels of confidence (coefficients of determination, 2R , ranging from 

0.98 to 0.99 at 10ns   and from 0.89 to 0.99 at 12ns  ), that  q

N nS s  varies as a power of ns  in 

each of these two scale ranges. Power-law exponents are larger at small ( 10ns  ) than at large (

12ns  ) lags. We thus have a crossover between two diverse power-law regimes at distance 

scales 1.5 - 1.8 m delineated in Figure 2 by a dashed red line. Such dual scaling behavior is not 

characteristic of sub-Gaussian functions; it is to be viewed as an exception rather than the rule. 

We interpret the power-law scaling of  q

N nS s  at 10ns   as representative of variability within, 

and that at 12ns   as a reflection of variability between, sedimentary layers at the site. Similar 

dual-scaling behavior has been reported by Siena et al. (2014) vis-á-vis porosities and specific 

surface areas imaged using X-ray computer microtomography throughout a millimeter-scale 

block of Estaillades limestone, at a spatial resolution of 3.3 µm, as well as Lagrangian velocities 

computed by solving the Stokes equation in the rock sample pore space. Following an approach 
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outlined by Guadagnini et al. (2013, 2014) one can use the method of moments to obtain 

estimates, ˆ
wH  and ˆ

bH , of Hurst scaling exponents, wH  and bH , characterizing the within- and 

between-layers scaling behaviors of neutron porosity increments in the well. Consistent with our 

view of P  as a sub-Gaussian random function, ˆ
wH  and ˆ

bH  are set equal to the slopes, 0.86 and 

0.10, of regression lines fitted to  1

N nS s  on log-log scale at 10ns   and 12ns  , respectively. 

The relatively large value of ˆ
wH  suggests that intra-layer variability is persistent in that large 

values tend to follow large values and small values tend to follow small values; the relatively 

small value of bH  implies that inter-layer variability is strongly antipersistent, small and large 

values tending to alternate rapidly. The latter is likely a manifestation of strong variations in 

environments responsible for the deposition of alternating sedimentary layers. 

 As no theory other than ours (Siena et al., 2012; Guadagnini et al., 2012b; Neuman et al., 

2013) is known to explain extended self-similarity of variables that do not necessarily satisfy 

Burger’s equation (Chakraborty et al., 2010), demonstrating that the above porosity data satisfy 

ESS is akin to verifying that these data conform to our theoretical scaling framework. That this is 

indeed the case becomes evident upon examining the high-confidence ( 2R  = 0.91-0.99) straight-

line relationships between log  1q

N nS s  and log  q

N nS s , and corresponding power-law 

relationships between  1q

N nS s  and  q

N nS s , at 10ns   and 12ns   in Figure 3 for q = 1, 2 and 

3. According to Siena et al. (2012) the slopes    1log / logq q

N n N nS s S s  of the straight lines are 

equal to (1 + 1/q) in the purely Gaussian case. In the two non-Gaussian cases depicted in Figure 

3, the slopes correspondingly diminish from 1.97 through 1.47 to 1.31 when 10ns  , and from 

1.33 through 0.99 to 0.90 when 12ns  , as q increases from 1 through 2 to 3). 



10 
 

 At this stage one can compute functional relationships between power exponents  w q

and  b q , and the order q, of P  structure functions that scale as powers of lag. In the method 

of moments these powers are the slopes of regression lines fitted to log-log plots of  q

N nS s  

versus ns , such as those depicted in Figure 2. In the case of ESS we use  1w q   and  1b q  , 

determined by the method of moments, as reference values for the sequential computation of 

 w q  and  b q  at q > 1 based on known power-law relationships between  1q

N nS s  and 

 q

N nS s , such as those given in Figure 3. Corresponding plots of  w q  and  b q  as functions 

of q, evaluated by the method of moments and ESS at 10ns   and 12ns  , are presented in 

Figure 4. Results obtained by the two methods are, for the most part, very similar. In both cases 

 w q  and  b q  delineate convex functions that fall below straight lines having slopes ˆ
wH  and 

ˆ
bH , respectively, which pass through the origin. As already noted, tradition has it that whereas 

such straight lines are characteristic of monofractal random fields, nonlinear variations of power 

exponents such as those exhibited by  w q  and  b q  in Figure 4 are symptomatic of 

multifractals (or, as some might suggest, fractional Laplace functions). Yet we have seen that 

similar behavior is characteristic of random fields subordinated to truncated monofractals. For 

reasons described below, we believe that this is also the case with P . 

GENERALIZED SUB-GAUSSIAN MODEL 

 We noted earlier that no statistical framework known to us prior to 2015 (most notably 

multifractals, fractional Laplace functions, or the sub-Gaussian model) was able to capture 

jointly, in a unified and self-consistent manner, statistical scaling behaviors of a variable and its 

increments. The standard sub-Gaussian model fails to do so consistently because (a) multiplying 
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any one realization of G by a random number U renders all realizations of P  and P  Gaussian, 

rendering it impossible to generate more realistic non-Gaussian realizations, and (b) setting 

P U G    where U is a random constant fails to ensure that both ensemble and sample 

distributions of P  scale with lag in the aforementioned manner. We likewise noted that without 

the ability to reconcile the statistical behaviors of a random function and its increments, one can 

neither characterize them consistently by sampling the function, its increments or both, nor 

generate random realizations of either the function or its increments consistent with each other 

and with available data samples. 

 The difficulty has been overcome by us (Riva et al., 2015a, 2015b) very recently through 

the development of a new generalized sub-Gaussian (GSG) model, which captures the behaviors 

of both a function and its increments jointly in a comprehensive and consistent manner. Our new 

model is written as 

     ' 'P U Gx x x  (1) 

where  'G x  is a zero-mean Gaussian random function characterized by standard deviation G  

and correlation function G . This GSG model differs from its sub-Gaussian precursor in that U 

is now a non-negative random function rather than a random variable. Values of  U x  at any 

two points in space (or time) are statistically independent of each other. This notwithstanding, 

the fact that U now varies spatially makes the consistent generation of non-Gaussian realizations 

possible. Starting with a log-normal subordinator  U x , we were able to (a) derive analytical 

expressions for bivariate and marginal distributions of a random function and marginal 

distributions of its increments, (b) propose new approaches to infer parameters characterizing the 

GSG model based on samples of one or (more importantly and reliably) both of these variables, 
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(c) develop a multidimensional algorithm to generate statistically isotropic and anisotropic 

realizations of the function (which in turn allows generating corresponding realizations of its 

increments), and (d) demonstrate the accuracy of this generation algorithm by comparing 

ensemble statistics of the function and its increments (such as, mean, variance, variogram and 

probability density function) with those of Monte Carlo generated realizations. Figure 5 is a 

flowchart illustrating the 9 steps one would follow to detect GSG signatures in a given set of 

data, to estimate the parameters of one or more corresponding GSG model(s), generate random 

equally likely (conditional or unconditional) GSG realizations, and use these as inputs into 

stochastic process (e.g. flow, transport) models. The steps are described below. Though their 

illustration focuses on one-dimensional porosity data, similar steps apply (with slight 

modifications) to multidimensional (and statistically anisotropic) data sets (e.g., Riva et al., 

2015b). 

Steps 1 - 3. One starts by analyzing the frequency distributions of available data (P, 

Step1) and space (or time) increments, P  (Step 2). If values of P  are available 

at a sufficiently wide range of small to large separation scales, one examines (Step 

3) whether or not increment frequency distributions vary with lag, as they do in 

the right column of Figure 1. If they do, analysis by means of a GSG model is 

indicated and one proceeds to Step 4. If they do not, the data may be amenable to 

analysis by classical methods of geostatistics. 

Steps 4 - 6. Step 4 consists of selecting a GSG subordinator  U x . To date, we have 

worked solely with a log-normal subordinator (Riva et al., 2015b), but other 

choices are possible. Start by assuming that U is lognormally distributed 

according to   2
ln 0, 2N   where 0 <   ≤  2 is a parameter. The GSG model 
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is then characterized by two constant parameters,  and G , and one lag-

dependent parameter, G . One way to estimate these parameters is to first 

compute the sample variance 2

PM  of P’ and the sample variance and kurtosis 

2

PM 
 and 4

PM 
, respectively, of P  (Step 5), then evaluate the parameters (Step 

6) according to 
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to frequency distributions of P  at all available lags by Maximum Likelihood 

(ML) while setting the variance of P’ equal to its sample value counterpart, 2

PM . 

Riva et al. (2015) have shown that both options yield similar parameter estimates 

though the second is computationally much more demanding than the first.  

Step 7. Once GSG parameters have been estimated, one is in a position to verify (Step 7) 

that (a) corresponding GSG pdfs of both P’ and P  (at all considered lags) 

provide adequate representations of corresponding empirical frequency 

distributions (as is seen to happen on the right hand side of Figure 1) and (b) 

estimates of  and G  show no systematic variations with lag (as is the case, in 

the context of our porosity data, in Figs. 12 and 13 of Riva et al., 2015a). 
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Otherwise one may in principle (as we have not yet done so) repeat Steps 4 - 6 

with a different subordinator  U x  (note however that Eqs. (2) - (3) would 

change accordingly) as indicated by the dashed box in Figure 5. 

Step 8. Once a suitable GSG model has thus been established, one can generate scalable, 

non-Gaussian, equally likely unconditional (Riva et al., 2015b) or conditional 

(Panzeri et al., 2016) Monte Carlo realizations of corresponding GSG functions. 

Unconditional realizations are obtained by (i) generating a zero-mean stationary 

Gaussian random function,  G x , on a grid and (ii) multiplying each discrete 

value of  G x  by a (non-negative) random draw of U(x). Generating realizations 

conditioned on noisy measurements remains a partially resolved challenge 

(Panzeri et al., 2016). The reason is that we do not presently have a closed-form 

expression for the conditional pdf of GSG, rendering its evaluation for more than 

just a few conditioning points computationally infeasible. Though Panzeri et al. 

were able to come up with two approximate, computationally less demanding 

ways to partially overcome this constraint, the efficient generation of conditional 

GSG realizations remains an open challenge. 

Step 9. Random GSG functions generated in the above manner can be used in Step 9 to 

conduct Monte Carlo simulations of associated processes such as flow and 

transport in randomly heterogeneous, scale-variable non-Gaussian environments. 

Potential applications, such as those concerning environmental risk assessment 

and management, are virtually endless. An early step in this direction was taken 

by Riva et al. (2017) who had explored analytically lead-order effects that non-

Gaussian log hydraulic conductivity described by a GSG model could have on the 
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stochastic description of subsurface flow and transport. Libera et al. (2017) 

presented a numerical Monte Carlo study assessing the influence of a GSG 

structure of log-transmissivities on uncertainty associated with concentrations of 

nonreactive solutes detected at a pumping well operating under transient flow 

conditions in a simplified two-dimensional system. 

Just like its sub-Gaussian precursor, our GSG model retains all scaling properties of 

statistical moments discussed in the previous section. Remarkably, GSG structure functions 

exhibit a nugget effect that renders them nonzero at zero lag, 0s  . The variogram of P is given 

by 

 
2

22 2 1
2

P G U G

P
U   


    
 

 (4) 

where 2

U  is the variance of U. The nugget effect, 2 2

G U  , disappears when U is a constant (as in 

the Gaussian case). This suggests to us that the widely-observed nugget effect, commonly 

attributed in the geostatistical literature to unresolved fluctuations and/or noise in measured 

values of a function P , may in fact be wholly or in part due to (and thus indicative of) the 

generalized non-Gaussian nature of P . 

 We noted earlier that G , a truncated Gaussian fractal, exhibits a breakdown in power-

law scaling of structure functions caused by lower and upper cutoff scales, Ls  and Us . An upper 

cutoff causes structure functions of G , and correspondingly of GSG functions P , to flatten at 

Us s . Such flattening is widely observed and nicely illustrated on cloud radiance and daily 

runoff accumulation data by Tessier et al. (1993). Neuman et al. (2008) demonstrated 

theoretically and illustrated on log hydraulic conductivity data that it may cause misinterpretation 

of G  and/or P  as stationary random fields. A lower cutoff causes structure functions of G , 
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and correspondingly of P , to steepen at Ls s  as illustrated theoretically for G  in Figure A1 

of Siena et al. (2012), and exemplified by river runoff data reported by Koscielny-Bunde et al. 

(2006). Yet many data (e.g., those of Tessier et al., 1993) show a flattening rather than a 

steepening of structure functions at Ls s . The flattening is caused by a nugget effect, which 

we saw earlier characterizes GSG functions regardless of data resolution or noise. The question 

whether GSG structure functions steepen or flatten at Ls s  is thus seen to depend on an 

interplay between the steepening effect of Ls  and the flattening effect of a nugget. 

  

SUMMARY 

 Following is a brief summary of our main points: 

1. Many hydrologic and a wide variety of other randomly fluctuating quantities exhibit scalable 

non-Gaussian behaviors. Commonly observed features of this behavior include (a) non-

Gaussian distribution of the quantity with mild or sharp peaks, light tails, some asymmetry 

and bimodality, (b) symmetric distributions of increments with sharp peaks and heavy tails 

that decay (scale) toward Gaussian shapes with increasing lags, (c) power law scaling of 

structure functions (statistical moments of absolute increments) in midranges of lags, (d) 

breakdown in power-law scaling manifested by steepening or flattening of structure functions 

at small lags and flattening at large lags, (e) extended power law scaling (linear relations 

between log structure functions of diverse orders) at all lags, and (f) nonlinear scaling of 

power-law exponents with order of structure function. 

2. On one hand, the tendency of increment distributions toward Gaussian shapes at all but short 

lags, and the flattening of structure functions at large lags, explain why many scalable non-

Gaussian quantities appear and are often interpreted to be monoscale Gaussian. On the other 
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hand, nonlinear scaling of power-law exponents is often interpreted to imply multifractality. 

These two interpretations are mutually exclusive. 

3. No statistical framework known to us prior to 2015 (e.g., multifractals, fractional Laplace 

functions, sub-Gaussian representations) has been able to capture jointly, in a self-consistent 

and comprehensive manner, scalable non-Gaussian behaviors of a random function and its 

increments. To our knowledge, the generalized sub-Gaussian (GSG) model proposed by us in 

2015 is the first to do so. 

4. The most important novel feature of our GSG model is its unique ability to reconcile the 

statistical behaviors of a scalable non-Gaussian random function and its increments. This, for 

the first time, allows one to (a) characterize both the function and its increments jointly and 

consistently by sampling one or both, as we have illustrated here, and (b) generate random 

realizations of both in a manner consistent with data and each other. Doing so is a prerequisite 

for the proper embedding of scalable non-Gaussian quantities, such as porosity and log 

hydraulic conductivity, in stochastic models of phenomena such as subsurface flow and 

transport. Our motivation in writing this minireview is to alert the hydrologic and broader 

scientific communities to (a) the need for a new geostatistical framework to account for 

ubiquitous non-Gaussian scaling behaviors of random functions and their increments and (b) 

to describe and illustrate a very recent framework that does so in a unified and comprehensive 

manner. 

5. Open issues awaiting future research and development include (a) the effect on GSG of 

subordinators other than log-normal, (b) GSG based statistical characterization of diverse 

hydrologic and other quantities exhibiting scalable non-Gaussian behaviors in 

multidimensional space and/or time, (c) computationally efficient generation of 
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multidimensional and/or temporal GSG realizations conditional on sampled data, and (d) 

analytical and/or computational solution of stochastic problems involving GSG functions. 
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Figure 1 Left column: P  and  nP s  versus sequential (integer) vertical position. Right column: 

frequency distributions (sample pdfs) of P  and  nP s . Also shown are ML fits of Gaussian 

(dashed) and GSG (solid red) pdfs 
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Figure 2 
q

NS  versus ns  for q = 0.5, 1.0, 2.0. Red dashed line demarcates breaks in power-law 

scaling regimes.  

 

 

Figure 3 
1q

NS 
 versus 

q

NS  for q = 1.0 (), 2.0 (), 3.0 (+) for 10ns   (black symbols) and 12ns   

(red symbols).  
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Figure 4 
w  (black) and 

b  (red) versus q evaluated by the method of moments () and ESS (). 
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Figure 5 Flowchart illustrating the 9 steps followed to detect and model GSG signatures in a given data set, generate random (conditional or 

unconditional) GSG realizations, and use these as inputs into stochastic process (e.g. flow, transport) models. 
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