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Abstract. We present a numerical approximation of Darcy's flow through a fractured porous
medium which employs discontinuous Galerkin methods on polytopic grids. For simplicity, we analyze
the case of a single fracture represented by a (d - 1)-dimensional interface between two d-dimensional
subdomains, d = 2, 3. We propose a discontinuous Galerkin finite element approximation for the flow
in the porous matrix which is coupled with a conforming finite element scheme for the flow in the
fracture. Suitable (physically consistent) coupling conditions complete the model. We theoretically
analyze the resulting formulation, prove its well-posedness, and derive optimal a priori error estimates
in a suitable (mesh-dependent) energy norm. Two-dimensional numerical experiments are reported
to assess the theoretical results.
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1. Introduction. Modeling flows in fractured porous media has received in-
creasing attention in the past decades, being fundamental for addressing many envi-
ronmental and energy problems, such as water resources management, oil migration
tracement, isolation of radioactive waste, and groundwater contamination. In these
applications the flow is strongly influenced by the presence of fractures, which can act
as preferential paths (when their permeability is higher than that of the surrounding
medium), or as barriers for the flow (when they are filled with low permeable ma-
terial). A fracture is typically characterized by a small aperture compared to both
its length and the size of the domain and with a different porous structure than the
surrounding medium. The task of effectively modeling the interaction between the
system of fractures and the porous matrix is particularly challenging. In the following,
let us briefly comment on a popular modeling choice to handle such a problem (see,
e.g., [42, 29, 6]), which consists in treating fractures as (d - 1)-dimensional interfaces
between d-dimensional porous matrices, d = 2, 3. The development of this kind of
reduced model, which can be justified in case of fractures with very small width, has
been addressed for single-phase flows in several works; see, e.g., [2, 1, 42, 37]. In this
paper we adopt the perspective of the single fracture model described in [42]; see also
[29, 6]. A first version of this model has been introduced in [1] and [2] under the
assumption of large permeability in the fracture. In [42] the model has been further
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generalized to handle also fractures with low permeability. Here, the flow in the porous
medium is assumed to be governed by Darcy's law, and a suitable reduced version
of this law is formulated on the surface modeling the fracture. Physically consistent
coupling conditions are added (in strong form) to account for the exchange of fluid
between the fracture and the porous medium. The extension of such a coupled model
to the case of two-phase flows has been addressed in [38] and [41], while a totally
immersed fracture has been considered in [3].

Various numerical methods have been employed in the literature for the approx-
imation of the resulting coupled bulk-fracture model. In this respect, one of the
main issues is the construction of the computational grid. Roughly speaking, numer-
ical methods can be classified depending on the interaction between the bulk and
the fracture meshes: The computational grid can be either conforming (i.e., match-
ing/aligned) or nonconforming (i.e., nonmatching/nonaligned) with the fracture net-
work. In more traditional approaches the bulk meshes are usually chosen to be aligned
with the fractures and to be made of simplicial elements. Some examples can be found
in [2, 37, 42], where mixed finite element schemes have been employed for the dis-
cretization. However, in realistic cases, the geometrical conformity of the bulk mesh
to the fracture can lead to either low-quality elements or very fine grids, and the pro-
cess of grid generation might become unaffordable from the computational viewpoint,
especially in three dimensions. Indeed, porous media are often characterized by com-
plicated geometries (i.e., large networks of fractures), which may also intersect with
small angles or be nearly coincident. An alternative strategy consists in the use of
nonconforming discretizations, where the fractures are allowed to arbitrarily cut the
bulk grid. This allows for the choice of a fairly regular mesh in the bulk. We mention
in particular [29, 38], where an approximation employing the extended finite element
method (XFEM) has been proposed (see [34] for a reference about XFEM and [36]
for a review).

A good compromise with respect to the above issues is represented by methods
based on computational meshes consisting of general polytopic elements (polygons in
two dimensions and polyhedra in three dimensions). First, a (possibly structured)
bulk grid is generated independently of the fracture networks; second, the elements
are cut according to the fracture geometry. The above approach leads to a grid that
(i) is aligned with the fracture network;
(ii) contains possibly arbitrarily shaped elements in the surrounding of fractures;
(iii) is regular far from fractures.
Beyond the simplicity of generating the computational grid based on employing the
previously described approach, one of the main advantages of polytopal decomposi-
tions over standard simplicial grids is that, even on relatively simple geometries, the
average number of elements needed to discretize complicated domains is lower [7, 8].
This advantage becomes even more evident whenever the domain presents complex
geometrical features (large number of fractures, fractures intersecting with small an-
gles, etc.) and the bulk grid is chosen to be matching with the interfaces. Recently, a
mixed approximation based on the use of conforming polygonal meshes and mimetic
finite differences has been explored in [6] and generalized to networks of fractures in
[45]. We also mention the framework for treating flows in discrete fracture networks
introduced in [19, 20, 18], based on either XFEM or virtual element methods (see
[16, 17]), and in [27], based on the hybrid high-order method (see [33, 32]).

The aim of this paper is to employ discontinuous Galerkin (DG) finite elements
on polytopic grids to discretize the coupled bulk-fracture problem stemming from
the modeling of flows in fractured porous media. The inherited flexibility of DG
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methods in handling arbitrarily shaped, nonnecessarily matching grids and element-
wise variable polynomial orders represents, in fact, the ideal setting to handle such
kinds of problems that typically feature a high level of geometrical complexity. DG,
methods were first introduced in the early 1970s (see, e.g., [43, 35, 13, 49, 10]) as
a technique to numerically solve partial differential equations. They have been suc-
cessfully developed and applied to hyperbolic, elliptic, and parabolic problems arising
from a wide range of applications: Various examples can be found, for example, in
[14, 26, 28, 21, 40, 44, 31]. We refer in particular to [11] for a unified presentation
and analysis of DG methods for elliptic problems.

More specifically, the choice of DG methods for addressing the problem of the flow
in a fractured porous medium arises quite spontaneously in view of the discontinuous
nature of the solution at the matrix-fracture interface. However, this is not the only
motivation to employ DG methods in this specific context. Indeed, our differential
model is based on the primal form of Darcy's equations for both the bulk and the
fracture flows, which are coupled with suitable conditions at the interface. These
coupling conditions can be naturally formulated using jump and average operators,
so that DG methods turn out to be a very natural and powerful tool for efficiently
handling the coupling of the two problems, which is indeed naturally embedded in
the variational formulation. In this paper we propose a discretization which combines
a DG approximation for the problem in the bulk with a conforming finite element
approximation in the fracture. The use of conforming finite elements to discretize the
equations in the fracture is made just for the sake of simplicity; other discretization
techniques can be employed, and our approach is general enough to take into account
straightforwardly also such cases. For the DG approximation of the problem in the
bulk, we will refer in particular to [25, 23, 4, 22], where an hp-version interior penalty
DG method is presented for the numerical solution of second-order elliptic partial
differential equations on polytopic grids; see also [24] for a review. This method is
characterized by a specific choice of the interior penalty parameter, which allows for
the use of polytopic meshes made of elements with edges/faces that may be in ar-
bitrary number (potentially unlimited) and whose measure may be arbitrarily small
[22]. Clearly, this is naturally well suited to handle complicated networks of frac-
tures. We analyze the resulting method and prove a priori error estimates, which we
numerically test in a two-dimensional setting.

The paper is structured as follows. In section 2 we introduce the governing equa-
tions for the coupled problem. The problem is then written in a weak form in section
3, where we also prove its well-posedness. In section 4 we introduce the DG discretiza-
tion on polytopic grids of the coupled problem. The main results in the analysis of the
method are included in section 5, where we state Theorem 5.2 about well-posedness
and Theorem 5.5 containing an a priori error estimate in a suitable (mesh-dependent)
norm. Section 6 is devoted to the presentation of a series of two-dimensional numeri-
cal experiments assessing both the validity of the theoretical error estimates and the
capability of the method of handling more complicated cases, including networks of
partially immersed fractures and networks of intersecting fractures. Finally, section 7
contains the proofs and technical details omitted from section 5.

2. Model problem. Throughout the paper we will employ the following no-
tation. For an open, bounded domain D \subset \BbbR d, d = 2, 3, we denote by Hs(D) the
standard Sobolev space of order s for a real number s \geq 0. For s = 0, we write L2(D)
in place of H0(D). The usual norm on Hs(D) is denoted by | | \cdot | | Hs(D) and the usual
seminorm by | \cdot | Hs(D). Furthermore, we will denote by \BbbP k(D) the space of polynomials
of total degree less than or equal to k \geq 1 on D. The symbol \lesssim (and \gtrsim ) will signify
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\Omega 1

\Omega 2

\Gamma 

\gamma 1

\gamma 2

n\Gamma 

Fig. 1. The subdomains \Omega 1 and \Omega 2 separated by the fracture \Gamma considered as an interface.

that the inequalities hold up to multiplicative constants which are independent of the
discretization parameters but might depend on the physical parameters.

In the following we present the governing equations for our model, which is a
variant of the model derived in [42], where the coupling conditions are imposed in a
weak sense. The flow of an incompressible fluid through a fractured d-dimensional
porous medium, d = 2, 3, can be described by the following three ingredients:

1. the governing equations for the flow in the porous medium;
2. the governing equations for the flow in the fractures;
3. a set of physically consistent conditions which couple the problems in the

bulk and fractures along their interfaces.
For simplicity, we will assume that there is only one fracture in the porous medium

and that the fracture cuts the domain exactly into two disjoint connected subregions
(see Figure 1 for a two-dimensional example), following the approach of [6] and [29].
The extension to a network of disjoint fractures can be treated analogously, while the
case of an immersed fracture is more complex to analyze [3] and will be the subject
of future research. Nevertheless, the capability of our method to deal with networks
of partially immersed fractures and with networks of intersecting fractures will be
explored via numerical experiments in section 6.5. Let \Omega \subset \BbbR d, d = 2, 3, be an open,
bounded, convex polygonal/polyhedral domain representing the porous matrix. We
suppose that the fracture is a (d  - 1)-dimensional \scrC \infty manifold with no curvature
\Gamma \subset \BbbR d - 1, d = 2, 3, whose measure satisfies | \Gamma | = \scrO (1), and assume that \Gamma separates
\Omega into two connected subdomains, which are disjoint, i.e., \Omega \setminus \Gamma = \Omega 1 \cup \Omega 2 with
\Omega 1\cap \Omega 2 = \emptyset . For i = 1, 2, we denote by \gamma i the part of boundary of \Omega i shared with the
boundary of \Omega , i.e., \gamma i = \partial \Omega i \cap \partial \Omega . We denote by ni, i = 1, 2 the unit normal vector
to \Gamma pointing outwards from \Omega i, and for a (regular enough) scalar-valued function v
and a (regular enough) vector-valued function \bfittau , we define the standard jump and
average operators across \Gamma as

(1)
\{ v\} =

1

2
(v1 + v2) JvK = v1n1 + v2n2,

\{ \bfittau \} =
1

2
(\bfittau 1 + \bfittau 2) J\bfittau K = \bfittau 1 \cdot n1 + \bfittau 2 \cdot n2,

where the subscript i = 1, 2 denotes the restriction to the subdomain \Omega i. Moreover,
we denote by n\Gamma the normal unit vector on \Gamma with a fixed orientation from \Omega 1 to \Omega 2,
so that we have n\Gamma = n1 =  - n2.

2.1. Governing equations. According to the above discussion, we suppose that
the flow in the bulk is governed by Darcy's law. Let \bfitnu = \bfitnu (x) \in \BbbR d\times d be the bulk
permeability tensor, which satisfies the following regularity assumptions:

D
ow

nl
oa

de
d 

11
/2

2/
19

 to
 1

31
.1

75
.1

2.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG FOR FLOWS IN FRACTURED POROUS MEDIA A113

(i) \bfitnu is a symmetric, positive definite tensor whose entries are bounded, piecewise
continuous real-valued functions;

(ii) \bfitnu is uniformly bounded from below and above, i.e., xTx \lesssim xT\bfitnu x \lesssim xTx
\forall x \in \BbbR d.

Given a function f \in L2(\Omega ) representing a source term and g \in H1/2(\partial \Omega ), the motion
of an incompressible fluid in each domain \Omega i, i = 1, 2 with pressure pi is described
by:

 - \nabla \cdot (\bfitnu i\nabla pi) = fi in \Omega i, i = 1, 2,(2a)

pi = gi on \gamma i, i = 1, 2.(2b)

Here we have denoted by \bfitnu i and fi the restrictions of \bfitnu and f to \Omega i, i = 1, 2,
respectively, and by gi the restriction of g to \gamma i, i = 1, 2 (for simplicity, we have
imposed Dirichlet boundary conditions on both \gamma 1 and \gamma 2).

The second ingredient for the model is represented by the governing equations
for the fracture flow. In our model the fracture is treated as a (d  - 1)-dimensional
manifold immersed in a d-dimensional object. If we assume that the fractures are filled
by a porous medium with different porosity and permeability than the surroundings,
Darcy's law can be used also for modeling the flow along the fractures [15]. The
reduced model is then obtained through a process of averaging across the fracture:
In the beginning the fracture is treated as a d-dimensional subdomain of \Omega that
separates it into two disjoint subdomains. Then Darcy's equations are written on the
fracture in the normal and tangential components, and the tangential component is
integrated along the thickness \ell \Gamma > 0 of the fracture domain, which is typically some
orders of magnitude smaller than the size of the domain. We refer to [42] for a rigorous
derivation of the reduced mathematical model. Note that in [42] this averaging process
is carried out for the flow equations written in mixed form. Here, we consider the
corresponding model in primal form.

The fracture flow is then characterized by the fracture permeability tensor \bfitnu \Gamma ,
which is assumed to satisfy the same regularity assumptions as those satisfied by the
bulk permeability \bfitnu and to have a block-diagonal structure of the form

(3) \bfitnu \Gamma =

\biggl[ 
\nu n\Gamma 0
0 \bfitnu \tau 

\Gamma 

\biggr] 
when written in its normal and tangential components. Here, \bfitnu \tau 

\Gamma \in \BbbR (d - 1)\times (d - 1) is a
positive definite, uniformly bounded tensor (it reduces to a positive number for d = 2)
representing the tangential component of the permeability of the fracture.

Setting \partial \Gamma = \Gamma \cap \partial \Omega and denoting by p\Gamma the fracture pressure, the governing
equations for the fracture flow read as

 - \nabla \tau \cdot (\bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p\Gamma ) = f\Gamma + J - \bfitnu \nabla pK in \Gamma ,(4a)

p\Gamma = g\Gamma on \partial \Gamma ,(4b)

where f\Gamma \in L2(\Gamma ), g\Gamma \in H1/2(\partial \Gamma ) and \nabla \tau and \nabla \tau \cdot denote the tangential gradient
and divergence operators, respectively. Equation (4a) represents Darcy's law in the
direction tangential to the fracture, where a source term J - \bfitnu \nabla pK is introduced to
take into account the contribution of the subdomain flows to the fracture flow [42].
For the sake of simplicity, we impose Dirichlet boundary conditions at the boundary
\partial \Gamma of the fracture \Gamma .
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Finally, following [42], we provide the interface conditions to couple problems
(2a)--(2b) and (4a)--(4b). Let \xi be a positive real number, \xi \not = 1

2 , that will be chosen
later on. The coupling conditions are given by

 - \{ \bfitnu \nabla p\} \cdot n\Gamma = \beta \Gamma (p1  - p2) on \Gamma ,(5a)

 - J\bfitnu \nabla pK = \alpha \Gamma (\{ p\}  - p\Gamma ) on \Gamma ,(5b)

where

(6) \beta \Gamma =
1

2\eta \Gamma 
, \alpha \Gamma =

2

\eta \Gamma (2\xi  - 1)
,

and \eta \Gamma = \ell \Gamma 
\bfitnu n

\Gamma 
, \bfitnu n

\Gamma being the normal component of the fracture permeability tensor;

see (3). Note that the coupling conditions are formulated employing jump and av-
erage operators. This turns out to be convenient for employing DG methods in the
discretization.

In conclusion, the coupled model problem reads as

(7)

 - \nabla \cdot (\bfitnu i\nabla pi) = fi in \Omega i, i = 1, 2,

pi = gi on \gamma i, i = 1, 2,

 - \nabla \tau \cdot (\bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p\Gamma ) = f\Gamma + J - \bfitnu \nabla pK in \Gamma ,

p\Gamma = g\Gamma on \partial \Gamma ,

 - \{ \bfitnu \nabla p\} \cdot n\Gamma = \beta \Gamma (p1  - p2) on \Gamma ,

 - J\bfitnu \nabla pK = \alpha \Gamma (\{ p\}  - p\Gamma ) on \Gamma .

Note that the introduction of the parameter \xi yields a family of models; see [42]
for more details.

3. Weak formulation and its well-posedness. In this section we present a
weak formulation of our model problem (7) where the coupling conditions (5a)--(5b)
are imposed in a weak sense and prove its well-posedness. For the sake of simplicity
we will assume that homogeneous Dirichlet boundary conditions are imposed for both
the bulk and the fracture problems, i.e., gi = 0, i = 1, 2, and g\Gamma = 0. The extension
to the general nonhomogeneous case is straightforward. We introduce the following
spaces:

(8) V b = \{ p = (p1, p2) \in V b
1 \times V b

2 \} , V \Gamma = H1
0 (\Gamma ) \cap Hs(\Gamma ),

where we define, for i = 1, 2 and s \geq 1, V b
i = Hs(\Omega i) \cap H1

0,\gamma i
(\Omega i), with H1

0,\gamma i
(\Omega i) =

\{ q \in H1(\Omega i) s.t. q| \gamma i
= 0\} .

Next we introduce the bilinear forms \scrA b : V
b \times V b \rightarrow \BbbR , \scrA \Gamma : V \Gamma \times V \Gamma \rightarrow \BbbR and

\scrI : (V b \times V \Gamma )\times (V b \times V \Gamma ) \rightarrow \BbbR defined as

\scrA b(p, q) =

2\sum 
i=1

\int 
\Omega i

\bfitnu i\nabla pi \cdot \nabla qi, \scrA \Gamma (p\Gamma , q\Gamma ) =

\int 
\Gamma 

\bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p\Gamma \cdot \nabla \tau q\Gamma ,

\scrI ((p, p\Gamma ), (q, q\Gamma )) =
\int 
\Gamma 

\beta \Gamma JpK \cdot JqK +
\int 
\Gamma 

\alpha \Gamma (\{ p\}  - p\Gamma )(\{ q\}  - q\Gamma ),
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where \alpha \Gamma and \beta \Gamma are defined as in (6). Clearly, the bilinear forms \scrA b(\cdot , \cdot ) and \scrA \Gamma (\cdot , \cdot )
take into account the problems in the bulk and in the fracture, respectively, while
\scrI (\cdot , \cdot ) takes into account the interface conditions (5). We also introduce the linear

functional \scrL b : V b \rightarrow \BbbR defined as \scrL b(q) =
\sum 2

i=1

\int 
\Omega i

fqi and the linear functional

\scrL \Gamma : V \Gamma \rightarrow \BbbR defined as \scrL \Gamma (q\Gamma ) =
\int 
\Gamma 
f\Gamma q\Gamma , which represent the source terms in the

bulk and the fracture, respectively.
With the above notation, the weak formulation of our model problem reads as

follows. Find (p, p\Gamma ) \in V b \times V \Gamma such that for all (q, q\Gamma ) \in V b \times V \Gamma ,

(9) \scrA ((p, p\Gamma ), (q, q\Gamma )) = \scrL (q, q\Gamma ),

where \scrA : (V b\times V \Gamma )\times (V b\times V \Gamma ) \rightarrow \BbbR is defined as the sum of the bilinear forms just
introduced,

(10) \scrA ((p, p\Gamma ), (q, q\Gamma )) = \scrA b(p, q) +\scrA \Gamma (p\Gamma , q\Gamma ) + \scrI ((p, p\Gamma ), (q, q\Gamma )),

and the linear operator \scrL : V b \times V \Gamma \rightarrow \BbbR is defined as

(11) \scrL (q, q\Gamma ) = \scrL b(q) + \scrL \Gamma (q\Gamma ).

Next, we show that formulation (9) is well-posed. To this aim we introduce the
following norm on V b \times V \Gamma :

(12) | | (q, q\Gamma )| | 2\scrE =

2\sum 
i=1

| | \bfitnu 1/2
i \nabla qi| | 2L2(\Omega i)

+ | | (\bfitnu \tau 
\Gamma \ell \Gamma )

1/2\nabla \tau q\Gamma | | 2L2(\Gamma )

+ | | \beta 1/2
\Gamma JqK| | 2L2(\Gamma ) + | | \alpha 1/2

\Gamma (\{ q\}  - q\Gamma )| | 2L2(\Gamma ).

This is clearly a norm if \alpha \Gamma \geq 0. Since \alpha \Gamma = 2
\eta \Gamma (2\xi  - 1) (see (6)), from now on, we will

assume that \xi > 1/2. We remark that the same condition on the parameter \xi has
been found also in [6] and [42].

Theorem 3.1. Let \xi > 1/2. Then problem (9) is well-posed.

Proof. We show that \scrA (\cdot , \cdot ) is continuous and coercive on V b\times V \Gamma equipped with
the norm (12), as well as \scrL (\cdot ) is continuous on V b\times V \Gamma with respect to the same norm.
Then the existence and uniqueness of the solution, as well as linear dependence on
the data, follow directly from Lax--Milgram's lemma. Coercivity is straightforward,
as we clearly have that \scrA ((q, q\Gamma ), (q, q\Gamma )) = | | (q, q\Gamma )| | 2\scrE for any (q, q\Gamma ) \in V b \times V \Gamma . On
the other hand, continuity is a direct consequence of the Cauchy--Schwarz inequality,
while continuity of \scrL (\cdot ) on V b \times V \Gamma is guaranteed by the regularity of the forcing
term f .

4. Numerical discretization. In this section we present a numerical discretiza-
tion of our problem which combines a DG approximation on general polytopic ele-
ments for the problem in the bulk, with a conforming finite element approximation in
the fracture (see Remark 4.2 below). DG methods are very convenient for handling
the discontinuity of the bulk pressure across the fracture as well as the coupling of
the bulk-fracture problems, which has been formulated using jump and average op-
erators. As a result, we can employ the tools offered by DG methods to prove the
well-posedness of our discrete method (see Proposition 5.2, below). In particular, we
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will adopt the techniques developed in [25, 23, 4, 22], where an hp-version interior
penalty DG method for the numerical solution of elliptic problems on polytopic meshes
has been proposed and analyzed. This method is characterized by a specific choice of
the interior penalty parameter, which allows for face-degeneration. In [25, 23, 4] it is
assumed that the number of edges/faces of each mesh element is uniformly bounded.
In [22, 9], this assumption is no longer required (i.e., elements with an arbitrary num-
ber of possibly degenerating faces/edges are admitted). However, this comes at the
cost of adding an assumption (see 7.1 below) that may be regarded as the natural gen-
eralization to polytopic grids of the classical shape-regularity assumption [24]. Here,
we work in the setting of [22, 9].

We start with the introduction of some useful notation. We consider a family of
meshes \scrT h made of disjoint open polygonal/polyhedral elements which are aligned with
the fracture \Gamma , so that any element E \in \scrT h cannot be cut by \Gamma . Note that, since \Omega 1

and \Omega 2 are disjoint, each element E belongs exactly to one of the two subdomains. In
order to admit hanging nodes, following [25, 23, 4], we introduce the concept of mesh
interfaces, which are defined to be the intersection of the (d  - 1)-dimensional facets
of neighboring elements. In the case when d = 2, the interfaces of an element E \in \scrT h
simply consists of line segments. For d = 3, we assume that it is possible to subdivide
each interface into a set of coplanar triangles. We then use the terminology ``face""(or
edge) to refer to a (d - 1)-dimensional simplex (line segment for d = 2 or triangle for
d = 3), which forms part of the interface of an element. Note that for d = 2, face and
interface of an element E \in \scrT h coincide. Following [25, 23, 4], for d = 3 we assume
that, for each mesh interface, a subtriangulation into faces is provided. Notice that
no limitation is imposed on either the number of faces of each polygon E \in \scrT h or the
relative size of element faces compared to its diameter.

Clearly each mesh \scrT h induces a subdivision of the fracture \Gamma into faces that we
will denote by \Gamma h. Moreover, we denote by \scrF h the set of all open interfaces of the
decomposition \scrT h if d = 2 and the union of all open triangles belonging to the sub-
triangulation of all mesh interfaces if d = 3 (so that \scrF h is always defined as a set
of (d  - 1)-dimensional simplices). Moreover, we write \scrF h = \scrF I

h \cup \scrF B
h \cup \Gamma h, where

\scrF B
h is the set of boundary faces and \scrF I

h is the set of interior faces not belonging to
the fracture. For each element E \in \scrT h, we denote by | E| its measure and by hE its
diameter, and we set h = maxE\in \scrT h

hE . Finally, given an element E \in \scrT h, for any
face/edge F \subset \partial E we define nF as the unit normal vector on F that points outside
E. We can then define the standard (see [11]) jump and average operators across an
edge F \in \scrF h for (regular enough) scalar and vector-valued functions similarly to (1).

Given a partition \scrT h of the domain, we denote by Hs(\scrT h), s \geq 1, the standard
broken Sobolev space.

With the aim of building a DG-conforming finite element approximation, we
choose to set the discrete problem in the finite-dimensional spaces:

V b
h = \{ qh \in L2(\Omega ) : qh| E \in \BbbP kE

(E) \forall E \in \scrT h\} , kE \geq 1 \forall E \in \scrT h
V \Gamma 
h = \{ q\Gamma h \in \scrC 0(\Gamma ) : q\Gamma h | F \in \BbbP k(F ) \forall F \in \Gamma h\} k \geq 1.

Note that to each element E \in \scrT h is associated the polynomial degree kE . We also
remark that the polynomial degrees in the bulk and fracture discrete spaces just
defined are chosen independently.
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Next, we introduce the bilinear forms \scrA DG
b : V b

h \times V b
h \rightarrow \BbbR and \scrI DG : (V b

h \times V \Gamma 
h )\times 

(V h
b \times V \Gamma 

h ) \rightarrow \BbbR , defined as follows:

\scrA DG
b (ph, qh) =

\sum 
E\in \scrT h

\int 
E

\bfitnu \nabla ph \cdot \nabla qh  - 
\sum 

F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \nabla ph\} \cdot JqhK

 - 
\sum 

F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \nabla qh\} \cdot JphK +
\sum 

F\in \scrF h\setminus \Gamma h

\int 
F

\sigma F JphK \cdot JqhK,

\scrI DG((ph, p
\Gamma 
h), (qh, q

\Gamma 
h)) =

\sum 
F\in \Gamma h

\int 
F

\beta \Gamma JphK \cdot JqhK +
\sum 
F\in \Gamma h

\int 
F

\alpha \Gamma (\{ ph\}  - p\Gamma h)(\{ qh\}  - q\Gamma h).

The nonnegative function \sigma \in L\infty (\scrF h\setminus \Gamma h) is the discontinuity penalization parameter
(\sigma F = \sigma | F for F \in \scrF h \setminus \Gamma h). The precise definition of \sigma will be presented in Definition
5.1 below. Finally we define the linear functional \scrL DG

b : V b
h \rightarrow \BbbR as

\scrL DG
b (qh) =

\sum 
E\in \scrT h

\int 
E

fqh.

Remark 4.1. Since we are imposing homogeneous boundary conditions, \scrL DG
b has

the same structure of the linear functional \scrL b previously defined. In general, for g \not = 0,
\scrL DG
b contains some additional terms:

\scrL DG
b (qh) =

\sum 
E\in \scrT h

\int 
E

fqh +
\sum 

F\in \scrF B
h

\int 
F

( - \bfitnu \nabla qh \cdot nF + \sigma F qh)g.

The DG discretization of problem (9) reads as follows. Find (ph, p
\Gamma 
h) \in V b

h \times V \Gamma 
h

such that

(13) \scrA h

\bigl( 
(ph, p

\Gamma 
h), (qh, q

\Gamma 
h)
\bigr) 
= \scrL h(qh, q

\Gamma 
h) \forall (qh, q\Gamma h) \in V b

h \times V \Gamma 
h ,

where \scrA h : (V b
h \times V \Gamma 

h )\times (V b
h \times V \Gamma 

h ) \rightarrow \BbbR is defined as

(14) \scrA h

\bigl( 
(ph, p

\Gamma 
h), (qh, q

\Gamma 
h)
\bigr) 
= \scrA DG

b (ph, qh) +\scrA \Gamma (p
\Gamma 
h, q

\Gamma 
h) + \scrI DG((ph, p

\Gamma 
h), (qh, q

\Gamma 
h))

and \scrL h : V b
h \times V \Gamma 

h \rightarrow \BbbR is defined as

(15) \scrL h(qh, q
\Gamma 
h) = \scrL DG

b (qh) + \scrL \Gamma (q
\Gamma 
h).

Note that the discrete bilinear form \scrA h has the same structure as the bilinear form
\scrA previously defined, being the sum of three different components, each representing
a specific part of the problem.

Remark 4.2. The choice of employing a conforming finite element approximation
for the flow in the fracture has been made only in order to keep the analysis of the
numerical method as clear as possible; cf. section 7. In this case, we need to make an
additional assumption for the fracture mesh \Gamma h to be made of shape-regular triangles.
However, we remark that the use of DG methods for the fracture problem as well
would make this assumption unnecessary, thus allowing for the use of very general
meshes. If DG methods are employed for the fracture as well, the discrete bilinear
form for the fracture problem becomes
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(16) \scrA DG
\Gamma (p\Gamma h, q

\Gamma 
h) =

\int 
\Gamma h

\bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p

\Gamma 
h \cdot \nabla \tau q

\Gamma 
h  - 

\sum 
e\in \scrE \Gamma ,h

\int 
e

\{ \bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p

\Gamma 
h\} \cdot Jq\Gamma hK

 - 
\sum 

e\in \scrE \Gamma ,h

\int 
e

\{ \bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau q

\Gamma 
h\} \cdot Jp\Gamma hK +

\sum 
e\in \scrE \Gamma ,h

\int 
e

\sigma eJp\Gamma hK \cdot Jq\Gamma hK,

where \scrE \Gamma ,h is the set of the fracture edges. Since the analysis of the numerical method
with a DG discretization for both the bulk and the fracture problems would require
additional technicalities, without giving any deeper understanding of the problem, we
omit it and only report the main convergence result (see Remark 5.6 below).

5. Well-posedness and approximation. In this section we state the main
results about stability and error analysis of formulation (13). We leave the details of
the proofs to section 7.

For simplicity, we suppose that the permeability tensors \bfitnu and \bfitnu \Gamma are piece-
wise constant on mesh elements, i.e., \bfitnu | E \in [\BbbP 0(E)]d\times d for all E \in \scrT h and \bfitnu \Gamma | F \in 
[\BbbP 0(F )](d - 1)\times (d - 1) for all F \in \Gamma h. In the following, we will employ the notation
\=\bfitnu E = | 

\sqrt{} 
\bfitnu | E | 22, where | \cdot | 2 denotes the l2-norm.

To complete the definition of our method, we need to specify the form of the
discontinuity penalization parameter \sigma . Taking as a reference [25, 23, 4, 22], we give
the following.

Definition 5.1. The discontinuity-penalization parameter \sigma : \scrF h \setminus \Gamma h \rightarrow \BbbR + is
defined facewise by

(17) \sigma (x) = \sigma 0

\left\{     
maxE\in \{ E+,E - \} 

\=\bfitnu E(kE+1)(kE+d)
hE

if x \in F \in \scrF I
h ,

\=F = \partial \=E+ \cap \partial \=E - 

\=\bfitnu E(kE+1)(kE+d)
hE

if x \in F \in \scrF B
h , \=F = \partial \=E \cap \partial \=\Omega ,

with \sigma 0 > 0 independent of kE, | E| , and | F | .
We can then state the following stability result.

Proposition 5.2. Let \sigma be defined as is (17). Then, if \sigma 0 is chosen sufficiently
large, problem (13) is well-posed.

Proof. See section 7.

Next, we provide an a priori error estimate for problem (13), proving that the
discrete solution (ph, p

\Gamma 
h) converges to the exact solution (p, p\Gamma ). To this aim, we equip

the space V b(h) = V b
h + V b with the following norm:

(18) | | (q, q\Gamma h)| | 2\scrE h
= | | q| | 2DG + | | q\Gamma h | | 2\Gamma + | | (q, q\Gamma h)| | 2\scrI ,

where

| | q| | 2DG =
\sum 
E\in \scrT h

| | \bfitnu 1/2\nabla q| | 2L2(E) +
\sum 

F\in \scrF h\setminus \Gamma h

| | \sigma 1/2
F JqK| | 2L2(F ),

| | q\Gamma h | | 2\Gamma =
\sum 
F\in \Gamma h

| | (\bfitnu \tau 
\Gamma \ell \Gamma )

1/2\nabla \tau q
\Gamma 
h | | 2L2(F ),

| | (q, q\Gamma h)| | 2\scrI =
\sum 
F\in \Gamma h

| | \beta 1/2
\Gamma JqK| | 2L2(F ) +

\sum 
F\in \Gamma h

| | \alpha 1/2
\Gamma (\{ q\}  - q\Gamma h)| | 2L2(F ).

It is easy to show that | | \cdot | | DG is a norm if \sigma F > 0 for all F \in \scrF h \setminus \Gamma h and that | | \cdot | | \scrE h

is a norm if \alpha \Gamma \geq 0 (that is, \xi > 1/2).
Further, we give the following definition.
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Definition 5.3. A covering \scrT \# = \{ TE\} related to the polytopic mesh \scrT h is a set
of shape-regular d-dimensional simplices TE such that for each E \in \scrT h, there exists a
TE \in \scrT \# such that E \subsetneq TE.

Finally, for i = 1, 2, we denote by Ei the classical continuous extension operator
(cf. [46]), Ei : Hs(\Omega i) \rightarrow Hs(\BbbR d) for s \in \BbbN 0, and make the following regularity
assumptions for the exact solution (p, p\Gamma ) of problem (9).

Assumption 5.4. We assume that the exact solution ((p1, p2), p\Gamma ) is such that
the following hold:

A1. for every E \in \scrT h, if E \subset \Omega i, it holds Eipi| TE
\in HrE (TE), with rE \geq 1 + d/2

and TE \in \scrT \# with E \subset TE. Moreover, we assume that the normal components
of the exact fluxes \bfitnu \nabla p are continuous across internal mesh interfaces, that
is, J\bfitnu \nabla pK = 0 on \scrF I

h.
A2. p\Gamma \in Hr(\Gamma ), with r \geq 1.

We can then state the following error estimate.

Theorem 5.5. Let \scrT \# = \{ TE\} denote the covering related to \scrT h consisting of
shape-regular simplexes as in Definition 5.3, satisfying Assumption 7.6 (see section
7 below). Let (p, p\Gamma ) be the solution of problem (9) and (ph, p

\Gamma 
h) \in V b

h \times V \Gamma 
h be its

approximation obtained with the method (13) with the penalization parameter given
by (17) and \sigma 0 sufficiently large. Moreover, suppose that the exact solution (p, p\Gamma )
satisfies the regularity Assumption 5.4. Then the following error bound holds:

| | (p, p\Gamma ) - (ph, p
\Gamma 
h)| | 2\scrE h

\lesssim 
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

Gb
E(hE , kE , \=\bfitnu E)| | E p| | 2HrE (TE)

+
\sum 
F\in \Gamma h

h2k
F

k2(r - 1)
| p\Gamma | 2Hr(F ),

where the E p is to be interpreted as E1p1 when E \subset \Omega 1 and as E2p2 when E \subset \Omega 2.
Moreover, sE = min(kE + 1, rE) and

Gb
E(hE , kE , \=\bfitnu E) = \=\bfitnu E + hEk

 - 1
E max

F\subset \partial E\setminus \Gamma 
\sigma F + (\alpha \Gamma + \beta \Gamma )hEk

 - 1
E

+ \=\bfitnu Eh
 - 1
E kE max

F\subset \partial E\setminus \Gamma 
\sigma  - 1
F + \=\bfitnu Eh

 - 1
E k2E max

F\subset \partial E\setminus \Gamma 
\sigma  - 1
F .

Proof. See section 7.

Remark 5.6. If we consider a DG approximation for the problem in the fracture
as in (16), using similar techniques, we can prove that the error satisfies the following
bounds:

| | (p, p\Gamma ) - (ph, p
\Gamma 
h)| | 2\scrE h

\lesssim 
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

Gb
E(hE , kE , \=\bfitnu E)| | E p| | 2HrE (TE)

+
\sum 
F\in \Gamma h

h
2(sF - 1)
F

k
2(rF - 1)
F

G\Gamma 
F (hF , kF , \=\bfitnu 

\tau 
F )| | E p\Gamma | | 2HrF (TF ),

where

G\Gamma 
F (hF , kF , \=\bfitnu 

\tau 
F ) = \=\bfitnu \tau 

F \ell \Gamma + hF k
 - 1
F max

e\subseteq \partial F
\sigma e + \alpha \Gamma h

2
F k

 - 2
F

+ (\=\bfitnu \tau 
F \ell \Gamma )

2h - 1
F kF max

e\subseteq \partial F
\sigma  - 1
e + (\=\bfitnu \tau 

F \ell \Gamma )
2h - 1

F k2F max
e\subseteq \partial F

\sigma  - 1
e .
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6. Numerical results. In this section we present some two-dimensional numer-
ical experiments to confirm the validity of the a priori error estimates that we have
derived for our method. The test cases have been chosen intentionally with increasing
complexity: We start with some academic numerical tests that aim at validating the
convergence properties of the method, we continue the section with a physical exper-
iment that investigates the effect of large and low permeability in the fracture to the
bulk flow, and we end the section with numerical experiments aiming at assessing
the capability of our method to deal with more complex geometrical configurations,
namely, partially immersed fractures and network of intersecting fractures.

The numerical results have been obtained in Matlab. For the generation of
polygonal meshes conforming to the fractures, we have suitably modified the Matlab
code PolyMesher developed by G.H. Paulino and collaborators [47].

6.1. Example 1. In this first test case we take \Omega = (0, 1)2, and choose as exact
solutions in the bulk and in the fracture \Gamma = \{ (x, y) \in \Omega : x+ y = 1\} as

p =

\Biggl\{ 
ex+y in \Omega 1,
ex+y

2 + ( 12 + 3\eta \Gamma \surd 
2
)e in \Omega 2,

p\Gamma = e(1 +
\surd 
2\eta \Gamma ).

It is easy to prove that p and p\Gamma satisfy the coupling conditions (5a)--(5b) with \xi = 1
and \bfitnu = I. Finally, we need to adjust the source terms for the bulk and fracture
problems accordingly:

f =

\Biggl\{ 
 - 2ex+y in \Omega 1,

 - ex+y in \Omega 2

f\Gamma =
e\surd 
2
.

Notice that on the fracture, the source term satisfies f\Gamma =  - \nabla \tau \cdot (\bfitnu \tau 
\Gamma \ell \Gamma \nabla \tau p\Gamma )+J\bfitnu \nabla pK,

and, since p\Gamma is constant, it holds that f\Gamma = J\bfitnu \nabla pK.
Figure 2 shows the computed errors | | p  - ph| | DG for the bulk problem and the

corresponding computed errors | | p\Gamma  - p\Gamma h| | \Gamma in the fracture. The results have been
obtained taking the polynomial degree k = 1 for both the bulk and the fracture
problems. As predicted from our theoretical error bounds, a convergence of order 1

Fig. 2. Example 1. (a) Computed errors in the bulk and in the fracture as a function of
the inverse of the mesh size (log-log scale) with polynomial degree k = 1. (b) Computed errors
| | p - ph| | DG in the bulk for polynomial degrees k = 1, 2, 3.
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is clearly observed for both | | p  - ph| | DG and | | p\Gamma  - p\Gamma h| | \Gamma . Moreover, from Figure 2
one can clearly see that also in this test case, one order of convergence is gained if we
compute the error | | p - ph| | L2(\Omega ). In Figure 2 we plot the computed errors in the bulk
| | p - ph| | DG for polynomial degrees kE = k = 1, 2, 3. They are in agreement with the
expected convergence rates of \scrO (hk).

6.2. Example 2. In this second example we consider the circular fracture \Gamma =
\{ (x, y) \in \Omega : x2 + y2 = R\} with R = 0.7 included in the domain \Omega = (0, 1)2. We
choose the exact solutions in the bulk and in the fracture as

p =

\Biggl\{ 
x2+y2

R2 in \Omega 1,
x2+y2

2R2 + 3
R\eta \Gamma + 1

2 in \Omega 2,
p\Gamma = 1 +

7

4

\eta \Gamma 
R

,

so that they satisfy the coupling conditions (5a)--(5b) with \xi = 3
4 and \bfitnu = I. The

source term is chosen as

f =

\Biggl\{ 
 - 4

R2 in \Omega 1,

 - 2
R2 in \Omega 2

f\Gamma =
1

R
.

Figure 3 shows an example of mesh grid employed in this set of experiments. One
can see that here the fracture is approximated by a polygonal line.

Fig. 3. Example 2. (a) Example of the polygonal mesh grid with circular fracture. (b) Computed
errors as a function of inverse of the mesh size (log-log scale) with polynomial degree k = 1.

In Figure 3 we report the computed errors | | p  - ph| | DG and | | p\Gamma  - p\Gamma h| | \Gamma as a
function of 1/h for kE = k = 1 (we disregard the variational crime coming from
the polygonal approximation of the circular fracture). The numerical experiments
validate the theoretical estimates, as a linear decay of the error is clearly observed.

6.3. Example 3. We consider the domain \Omega = (0, 1)2 and the fracture \Gamma =
\{ (x, y) \in \Omega : x = 0.5\} . Following [27], we choose the exact solutions in the bulk and
in the fracture as

p =

\Biggl\{ 
sin(4x) cos(\pi y) if x < 0.5,

cos(4x) cos(\pi y) if x > 0.5,
p\Gamma =

3

4
[cos(2) + sin(2)] cos(\pi y),

so that they satisfy the coupling conditions (5a)--(5b) with \xi = 3
4 and \bfitnu = I. We also

choose the fracture thickness to be equal to \ell \Gamma = 0.25 and the tangential and normal
components of the permeability tensor in the fracture to be \bfitnu \tau 

\Gamma = 1 and \nu n\Gamma = 1,

D
ow

nl
oa

de
d 

11
/2

2/
19

 to
 1

31
.1

75
.1

2.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A122 P. A. ANTONIETTI, C. FACCIOL\`A, A. RUSSO, AND M. VERANI

Fig. 4. Example 3. Exact solution in the bulk with the plane x = y = 0 (left) and computed
errors as a function of inverse of the mesh size (log-log scale) with polynomial degree k = 1 (right).

Fig. 5. Example 3. (a) Computed errors | | p  - ph| | DG in the bulk as a function of the inverse
of the mesh size (log-log scale) for polynomial degrees k = 1, 2, 3. (b) Computed errors in the bulk
with polynomial degree k = 3 and known fracture pressure.

respectively. We impose Dirichlet boundary conditions on the whole \partial \Omega and also on
\partial \Gamma . Finally, the source terms are chosen accordingly as

f=

\Biggl\{ 
sin(4x) cos(\pi y)(16+\pi 2) if x < 0.5,

cos(4x) cos(\pi y)(16+\pi 2) if x > 0.5,
f\Gamma = \ell \Gamma cos(\pi y)[cos(2) + sin(2)](4 +

3

16
\pi 2).

The exact solution in the bulk is shown in Figure 4. In Figure 4 we show the
computed errors in the bulk and in the fracture for polynomial degree equal to 1 for
both the bulk and the fracture problems. In Figure 5 we report the errors | | p - ph| | DG

obtained with polynomial degrees kE = 1, 2, 3 in the bulk and k = 1 in the fracture.
We observe that for kE = 3 the convergence rate is suboptimal. This is due to the
fact that the polynomial degree in the fracture is not accurate enough. In fact, if we
assume to know the exact solution p\Gamma in the fracture and we solve the problem in
the bulk, we recover the expected rates, as shown in Figure 5. This behavior did not
appear in the previous test cases, where the solution in the fracture was chosen to be
constant.
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6.4. Quarter five-spot problem. The quarter five-spot problem is often used
to validate numerical schemes for the approximation of Darcy's flow; see, for example,
[27, 39]. A five-spot is a standard technique used in petroleum engineering for oil
recovery, where four injection wells are located at the corner of a square and one
production well is located in its center. Fluid (typically water, steam, or gas) is
injected simultaneously through the four injection wells causing the displacement of
the oil toward the production well in the center. Since the problem is symmetric,
we can consider only a quarter of this injection pattern, represented by the domain
\Omega = (0, 1)2. The single injection well will be then located in (0, 0) and the production
well in (1, 1). Their presence is included in the model via the source term

f(x) = 10.1
\bigl[ 
tan(200(0.2 - 

\sqrt{} 
x2 + y2)) - tanh(200(0.2 - 

\sqrt{} 
(x - 1)2 + (y  - 1)2))

\bigr] 
.

Moreover, we enforce homogeneous Neumann and Dirichlet boundary conditions, re-
spectively, on \partial \Omega N = \{ x = 0 or y = 0\} and \partial \Omega D = \{ x = 1 or y = 1\} . We also assume
that the domain is cut by the fracture of equation \Gamma = \{ (x, y) \in \Omega : x+ y = 1\} with
thickness \ell \Gamma = 0.005, and we let f\Gamma = 0. Finally, we impose homogeneous Dirichlet
boundary conditions on \partial \Gamma . The domain configuration is reported in Figure 6(a) for
clarity. We aim, in particular, at investigating the effect of large and small perme-
ability in the fracture to the overall flow. We perform two numerical experiments:

1. Permeable fracture: We choose \nu n\Gamma = 1 and \bfitnu \tau 
\Gamma = 100.

2. Impermeable fracture: We choose \nu n\Gamma = 10 - 2 and \bfitnu \tau 
\Gamma = 1.

In both cases we let the bulk permeability tensor \bfitnu = I, and we solve the problem
choosing a polygonal mesh with h = 7.5 \cdot 10 - 2 and the polynomial degree kE = 2 in
the bulk and k = 1 in the fracture.

The bulk pressures obtained are shown in Figure 7. As expected, in both cases
the bulk pressure has a peak in correspondence of injection well, and it decreases
going toward the production well. In the permeable case, the decrease is continuous,
while in the impermeable case we can observe a clear jump of the pressure across the
fracture. This behavior is better captured in Figure 6(b), where we have plotted the
trend of the pressure along the line x = y in both cases. Our qualitative results are
in agreement with those obtained in [27].

\oplus 
\bfitnu \nabla p \cdot \bfn = 0 p\Gamma = 0

p = 0

\ominus 
p = 0p\Gamma = 0

\bfitnu \nabla p \cdot \bfn = 0

\Gamma 

\Omega 1

\Omega 2

(a) (b)

Fig. 6. Quarter five-spot. The subdomains \Omega 1 and \Omega 2 separated by the fracture \Gamma and boundary
conditions (left) and pressure in the bulk along the line x = y (right).
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(a) Permeable fracture (b) Impermeable fracture

Fig. 7. Quarter five-spot. Pressure in the bulk for the quarter-five spot problem with permeable
(left) and impermeable (right) fracture.

6.5. Immersed fractures. We now investigate the capability of our discretiza-
tion method to deal with immersed fractures. We take as a reference [3], where the
model developed in [42] has been extended to fully immersed fractures. In particular,
our set of equations (7) needs to be supplemented with a condition on the boundary
\partial \Gamma immersed in the porous medium. Following [3], we will assume that the mass
transfer across the immersed tip can be neglected, imposing the Neumann boundary
condition \bfitnu \tau 

\Gamma \nabla \tau p\Gamma \cdot \bfittau = 0 on \partial \Gamma . On the fracture tip intersecting the bulk boundary,
i.e., \partial \Gamma \cap \partial \Omega , we impose boundary conditions coincident with those imposed on \partial \Omega .

We perform two sets of numerical experiments that were already proposed in [3].
The aim is that of investigating the flow depending on the physical properties of the
fractures (permeable, impermeable), first in the case of a single fracture and then in
the more complex situation of a network of partially immersed fractures. Our results
are in perfect agreement with those obtained in [3], thus showing that our method
can be easily extended to the treatment of more complex and realistic situations.

For all the experiments we take as computational domain \Omega = (0, 1)2, and we
assume that the bulk permeability tensor is isotropic, i.e., \bfitnu = Id. Moreover, we take
the forcing terms f = f\Gamma = 0, so that the flow is only generated by boundary condi-
tions. Finally, we choose the parameter \xi = 0.55. Our results have been obtained with
cartesian grids with approximately the same number of elements as those employed
in [3]. Note that the grids are aligned with the fractures so that the immersed tips
coincide with one of the mesh vertices.

6.5.1. Single partially immersed fracture. In the first experiment we study
the case when the porous medium is cut by the fracture \Gamma = \{ (x, y) \in [0, 1]2 : x =
0.5, y \geq 0.5\} that is partially immersed in the domain and has constant aperture
\ell \Gamma = 0.01. We consider two different configurations where we vary the boundary
conditions and the permeability of the fracture:

1. Permeable fracture: We choose \nu n\Gamma = 100 and \bfitnu \tau 
\Gamma = 106 and impose Dirichlet

boundary condition on the whole \partial \Omega as described in Figure 8(a).
2. Impermeable fracture: We choose \nu n\Gamma = \bfitnu \tau 

\Gamma = 10 - 7 and impose mixed
boundary conditions on \partial \Omega as in Figure 8(b).

The results obtained with a mesh of 16, 128 elements are shown in Figure 9. In
both cases, on the left part of the figure, we show the pressure field in the bulk (where
the intensity of the color increases with the increasing of the pressure) together with
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p = 0

p = 2

p = 0

p = 1

y = 0.75

(a) Permeable fracture

\bfitnu \nabla p \cdot \bfn = 0

p = 1

\bfitnu \nabla p \cdot \bfn = 0

p = 0

(b) Impermeable fracture

Fig. 8. Single immersed fracture. Configurations and boundary conditions for the permeable
test case (left) with \bfitnu \tau 

\Gamma = 106, \nu n\Gamma = 102 and the impermeable test case (right) with \bfitnu \tau 
\Gamma = \nu n\Gamma = 10 - 7.

Pressure field and streamlines Pressure along y = 0.75 Pressure in the fracture

Fig. 9. Single immersed fracture. Permeable case (top) and impermeable case (bottom).

the streamlines of Darcy's velocity. In the middle, we report the behavior of the bulk
pressure along the line y = 0.75. Finally, on the right we plot the pressure field in
the fracture. As expected, in the impermeable case we can observe a clear jump of
the bulk pressure across the fracture that is not present in the permeable case. The
results presented in Figure 9 are in agreement with those of [3].

6.5.2. Network of partially immersed fractures. In the second experiment,
we consider a network of four partially immersed fractures of aperture \ell \Gamma = 0.01,
namely, \Gamma 1=\{ (x, y) \in [0, 1]2 : x \geq 0.3, y=0.2\} ,\Gamma 2=\{ (x, y) \in [0, 1]2 : x \leq 0.7, y=0.4\} ,
\Gamma 3 = \{ (x, y) \in [0, 1]2 : x \geq 0.3, y = 0.6\} , and \Gamma 4 = \{ (x, y) \in [0, 1]2 : x \leq 0.7, y = 0.8\} .
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p = 0

p = 1

\bfitnu 
\nabla 
p
\cdot \bfn 

=
0

\bfitnu 
\nabla 
p
\cdot \bfn 

=
0

x = 0.65

(a) Configuration 1: \bfitnu \tau 
\Gamma = 100 on \Gamma 1,\Gamma 3

p = (2x - 1)(3x - 1)

p = (2x - 1)(3x - 1)

p
=

2

p
=

1

x = 0.65

(b) Configuration 2: \bfitnu \tau 
\Gamma = 1 on \Gamma 1,\Gamma 3

Fig. 10. Network of immersed fractures. Configurations and boundary condition for the two
test cases.

The fractures \Gamma 2 and \Gamma 4 are impermeable (\bfitnu \tau 
\Gamma = \nu n\Gamma = 10 - 2), while \Gamma 1 and \Gamma 3 are

partially permeable (\nu n\Gamma = 10 - 2, \bfitnu \tau 
\Gamma \in \{ 100, 1\} ). We consider two different configura-

tions, varying the value of the permeability \bfitnu \tau 
\Gamma on the partially permeable fractures

\Gamma 1 and \Gamma 3 and the boundary conditions as illustrated in Figure 10.
In Figure 11, we show the results obtained for the two test cases with a mesh

of 26, 051 elements. In particular, we report the pressure field in the bulk with the

Pressure field and streamlines Pressure along y = 0.75 Pressure in the fracture

Fig. 11. Network of immersed fractures. First configuration (top) and second configuration
(bottom).
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\oplus 

\ominus 

p = 0

p = 0

p = 0 p = 0

Fig. 12. Network of intersecting fractures. Computational domanin and zoomed detail of the
polygonal mesh employed for the computations.

streamlines of the velocity (left), the value of the bulk pressure along the line x = 0.65
(middle), and the pressure field inside the four fractures (right). Again, we can see a
perfect agreement between our results and those obtained in [3].

6.6. Network of intersecting fractures. The aim of this section is to inves-
tigate the capability of our method to deal with networks of intersecting fractures.
To do so, we need to complete the mathematical model (7) with some conditions at
the intersection points. One possible choice is to impose pressure continuity and flux
conservation, as in [45, 18]. At the immersed tips we impose the no-flux condition
\bfitnu \tau 
\Gamma \nabla \tau p\Gamma \cdot \bfittau = 0 as above.

We reproduce the numerical experiments performed with mimetic finite differ-
ences in [6]. We consider the domain \Omega = (0, 1)2 containing 10 intersecting fractures.
The geometry of the problem is shown in Figure 12, where the fractures are high-
lighted with colored lines. We remark that for the computations we have employed a
mesh made of general polygonal elements, as shown in the zoomed detail reported in
Figure 12.

We impose homogeneous Dirichlet boundary conditions on the whole \partial \Omega and
define the source term as

f(x, y) =

\Biggl\{ 
10 if (x - 0.1)2 + (y  - 0.1)2 \leq 0.04,

 - 10 if (x - 0.9)2 + (y  - 0.9)2 \leq 0.04,

so that we have a source in the lower left corner of the domain and a sink in its top
right corner. The porous medium in the bulk is isotropic and homogeneous, i.e., \bfitnu =
Id. The fractures are isotropic, i.e., \bfitnu \tau 

\Gamma = \nu n\Gamma , with constant thickness \ell \Gamma = 0.01. We
consider three test cases:

1. No fractures are present in the porous medium.
2. Permeable network: All the fractures have high-permeability properties,

taking \bfitnu \tau 
\Gamma = \nu n\Gamma = 1000.

3. Impermeable network: All the fractures have blocking properties, taking
\bfitnu \tau 
\Gamma = \nu n\Gamma = 0.001.

In all the test cases, we take \xi = 0.75. The discrete pressures for the problem in the
bulk are reported in Figure 13. For the computation of the discrete solution we have
employed a DG scheme with polynomial degree k = 2 for the bulk problem and a DG
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(a) No fractures (b) Permeable (c) Impermeable

Fig. 13. Network of intersecting fractures. Discrete pressure in the bulk for the three test
cases: no fractures (left), permeable network \nu \tau \Gamma = \nu n\Gamma = 1000 (middle), and impermeable network
\nu \tau \Gamma = \nu n\Gamma = 0.001 (right).

scheme on each fracture problem with polynomial degree k\Gamma = 2. We observe that,
in all the cases, the results are consistent with those obtained in [45] with mimetic
finite differences. In the permeable case (see Figure 13(b)) the pressure is almost
continuous across the fractures, as expected. In agreement with [45], the maximum
and minimum values reached by the pressure are slightly lower than those of the non-
fractured case; see Figure 13(a). In the impermeable case, we observe clear jumps of
the bulk pressure across the fractures; see Figure 13(c). Once again, our results are
in good agreement with those obtained in [45].

7. Theoretical analysis. This section contains all the technical details needed
for the proof of the well-posedness of the descrete formulation (cf. Theorem 5.2) and
of the error estimates (cf. Theorem 5.5).

7.1. Stability analysis. We first consider well-posedness. Since our formulation
employs general polytopes, we will first introduce some technical results to treat such
kind of discretizations; cf. [25, 23, 4, 22, 9].

7.1.1. Trace inverse estimates. Trace inverse estimates bound the norm of
a polynomial on an element's face/edge by the norm on the element itself. They
are at the base of the stability and error analysis of DG methods. The use of grids
made of general polytopic elements presents challenges on a number of points. Indeed,
in contrast to the case when standard-shaped elements are employed, shape-regular
polytopes may admit an arbitrary number of faces/edges, and the measure of the
faces/edges may potentially be much smaller than the measure of the element itself.
In order to obtain an inverse estimate valid on polygons/polyhedra which is sharp with
respect to facet degeneration and holds true even when the number of faces/edges is
unbounded, taking as a reference [22], we make the following assumption on the mesh.

Assumption 7.1 ([22]). For any E \in \scrT h, there exists a set of nonoverlapping
(not necessarily shape-regular) d-dimensional simplices \{ Si

E\} 
nE
i=1 contained in E such

that \=F = \partial \=E \cap \=Si
E for any face F \subseteq \partial E and

(19) hE \lesssim 
d| Si

E | 
| F | 

, i = 1, . . . , nE .

Here, the hidden constant is independent of the discretization parameters, the number
of faces of the element nE, and the face measure.
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Note that this assumption does not give any restriction on the number of faces per
element or on the measure of the faces. We also underline that the union of simplices
Si
E does not have to cover, in general, the whole element E, that is,

(20) \cup nE
i=1

\=Si
E \subseteq \=E.

In the following, for simplicity and clarity we shall write SF
E instead of Si

E .
First, we recall a classical hp-version inverse estimate valid for generic simplices

[48].

Lemma 7.2. Let S \subset \BbbR d be a simplex, and let v \in \BbbP k(S). Then, for each F \subset \partial S,
we have

(21) | | v| | 2L2(F ) \leq 
(k + 1)(k + d)

d

| F | 
| S| 

| | v| | 2L2(S).

The inverse estimate for polytopic elements is then obtained using Assumption
7.1 as in [22, Lemma 4.1] and [9, 24]. The proof is reported here for completeness.

Lemma 7.3. Let E be a polygon/polyhedron satisfying Assumption 7.1, and let
v \in \BbbP kE

(E). Then we have

(22) | | v| | 2L2(\partial E) \lesssim 
k2E
hE

| | v| | 2L2(E),

where the hidden constant depends on the dimension d, but it is independent of the
discretization parameters and of the number of faces of the element.

Proof. The proof follows immediately if we apply Lemma 7.2 to each simplex
SF
E \subset E from Assumption 7.1, together with (19). More in detail, we have

| | v| | 2L2(\partial E) =
\sum 

F\subset \partial E

| | v| | 2L2(F ) \lesssim k2E
\sum 

F\subset \partial E

| F | 
| SF

E | 
| | v| | 2L2(SF

E ) \lesssim 
k2E
hE

| | v| | 2L2(
\bigcup 

F\subset \partial E SF
E )

\leq k2E
hE

| | v| | 2L2(E).

Note that the estimate bounds the L2-norm of the polynomial on the whole boundary
of E, not just on one of its edges/faces. This will be of fundamental importance in
the analysis.

7.1.2. Well-posedness of the discrete formulation. We can now proceed
with the stability analysis of our method. We recall that we are supposing that the
permeability tensors \bfitnu and \bfitnu \Gamma are piecewise constant on mesh elements.

Following [25, 23, 4, 22], we base our analysis on the introduction of an appropriate
inconsistent formulation for the problem in the bulk. This choice is determined by
the necessity of avoiding to make further (unnatural) regularity requirements for the
exact solution; cf. section 7.2.1 below. To this end we define the following extension
of the forms \scrA DG

b and \scrL DG
b :

D
ow

nl
oa

de
d 

11
/2

2/
19

 to
 1

31
.1

75
.1

2.
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A130 P. A. ANTONIETTI, C. FACCIOL\`A, A. RUSSO, AND M. VERANI

\~\scrA DG
b (p, q) =

\sum 
E\in \scrT h

\int 
E

\nu \nabla p \cdot \nabla q  - 
\sum 

F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \Pi 2(\nabla p)\} \cdot JqK

 - 
\sum 

F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \Pi 2(\nabla q)\} \cdot JpK +
\sum 

F\in \scrF h\setminus \Gamma h

\sigma F

\int 
F

JpK \cdot JqK,

\~\scrL DG
b (q) =

\sum 
E\in \scrT h

\int 
E

fq +

\left[  \sum 
F\in \scrF B

h

\int 
F

( - \bfitnu \Pi 2(\nabla q) \cdot nF + \sigma F q)g

\right]  ,

where the integral between square brackets vanishes if we consider homogeneous
boundary conditions. Here, \Pi 2 : [L2(\Omega )]d \rightarrow [V b

h ]
d denotes the orthogonal L2-

projection onto the bulk finite element space [V b
h ]

d. It follows that these forms are well
defined on the space V b(h) = V b

h + V b since the terms \{ \bfitnu \Pi 2(\nabla q)\} and \{ \bfitnu \Pi 2(\nabla p)\} 
are traces of elementwise polynomial functions. Moreover, it is clear that

\~\scrA DG
b (ph, qh) = \scrA DG

b (ph, qh) for all qh, ph \in V b
h

and
\~\scrL DG
b (qh) = \scrL DG

b (qh) for all qh \in V b
h .

Thereby, \~\scrA DG
b (\cdot , \cdot ) and \~\scrL DG

b (\cdot ) are extensions of\scrA DG
b (\cdot , \cdot ) and \scrL DG

b (\cdot ) to V b(h)\times V b(h)
and V b(h), respectively. Hence, we may rewrite our discrete problem (13) in the
following equivalent form.

Find (ph, p
\Gamma 
h) \in V b

h \times V \Gamma 
h such that

(23) \~\scrA h

\bigl( 
(ph, p

\Gamma 
h), (qh, q

\Gamma 
h)
\bigr) 
= \~\scrL h(qh, q

\Gamma 
h) \forall (qh, q\Gamma h) \in V b

h \times V \Gamma 
h ,

where \~\scrA h is obtained from \scrA h by replacing the bilinear form \scrA DG
b (\cdot , \cdot ) with its incon-

sistent version \~\scrA DG
b (\cdot , \cdot ) and \~\scrL h is obtained by replacing the linear operator \scrL DG

b (\cdot )
with \~\scrL DG

b (\cdot ). We remark that formulation (23) is no longer consistent due to the
discrete nature of the L2-projection operator \Pi 2.

We also remark that well-posedness of the discrete problem (13) is guaranteed
if we show that, more in general, problem (23) extended to the space V b(h) \times V \Gamma 

h is
well-posed. The choice of proving this more general property is made for future use
in the error analysis.

Taking as a reference [25, 23, 4, 22], we state and prove the following result. Note
that for the proof, Assumption 7.1 will play a fundamental role as well as the choice
of the discontinuity-penalization parameter \sigma .

Lemma 7.4. Let \sigma : \scrF h \setminus \Gamma h \rightarrow \BbbR + be defined as in (17). Then, if Assumption
7.1 holds, the bilinear form \~\scrA DG

b (\cdot , \cdot ) is continuous on V b(h) \times V b(h), and, provided
that \sigma 0 is sufficiently large, it is also coercive on V b(h)\times V b(h), i.e.,

(24) \~\scrA DG
b (p, q) \lesssim | | q| | DG| | p| | DG, \~\scrA DG

b (q, q) \gtrsim | | q| | 2DG,

for any q, p \in V b(h).

Proof. For the proof we follow [22] and [25]. We start with coercivity. For any
q \in V b(h),

\~\scrA DG
b (q, q) = | | q| | 2DG  - 2

\sum 
F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \Pi 2(\nabla q)\} \cdot JqK

= I + II.
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In order to bound term II, we employ Cauchy--Schwarz's triangular and Young's in-
equalities to obtain\sum 
F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \Pi 2(\nabla q)\} \cdot JqK \lesssim 
\Bigl( \sum 

F\in \scrF h\setminus \Gamma h

| | \sigma  - 1/2
F \bfitnu (\Pi 2(\nabla q+) + \Pi 2(\nabla q - ))| | 2L2(F )

\Bigr) 1/2

\times 
\Bigl( \sum 

F\in \scrF h\setminus \Gamma h

| | \sigma 1/2
F JqK| | 2L2(F )

\Bigr) 1/2

\lesssim \varepsilon 
\sum 

F\in \scrF h\setminus \Gamma h

\Bigl( 
\=\bfitnu E+\sigma F | | \Pi 2(\nabla q+)| | 2L2(F )

+ \=\bfitnu E - \sigma F | | \Pi 2(\nabla q - )| | 2L2(F )

\Bigr) 
+

1

4\varepsilon 
| | \sigma 1/2

F JqK| | 2L2(F ).

Employing the inverse inequality (7.2) over the simplices SF
E and the definition of the

interior penalty parameter \sigma , we have\sum 
F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu \Pi 2(\nabla q)\} \cdot JqK \lesssim \varepsilon 

\sigma 0

\sum 
E\in \scrT h

\sum 
F\in \partial E

hE | F | 
d| SF

E | 
| | \Pi 2(\nabla q)| | 2L2(SF

E )

+
1

4\varepsilon 

\sum 
F\in \scrF h\setminus \Gamma h

| | \sigma 1/2
F JqK| | 2L2(F )

\lesssim 
\varepsilon 

\sigma 0

\sum 
E\in \scrT h

| | \bfitnu 1/2\nabla q| | 2L(E) +
1

4\varepsilon 

\sum 
F\in \scrF h\setminus \Gamma h

| | \sigma 1/2
F JqK| | 2L2(F ),

where we have used Assumption 7.1 and the bound (19), together with the L2-stability
of the projector \Pi 2 and the boundedness of tensor \bfitnu . In conclusion, using Assumption
7.1, we proved that

\~\scrA DG
b (q, q) \gtrsim | | q| | 2DG for all q \in V b(h)

for an appropriate choice of the constant \varepsilon and for \sigma 0 large enough. The proof of
continuity can be obtained employing analogous arguments.

Lemma 7.5. The bilinear form \scrA \Gamma (\cdot , \cdot ) is coercive and continuous on V \Gamma 
h \times V \Gamma 

h

with respect to the norm | | \cdot | | \Gamma .
Proof. Since \scrA \Gamma (q

\Gamma 
h , q

\Gamma 
h) = | | q\Gamma h | | 2\Gamma for any q\Gamma h \in V \Gamma 

h , \scrA \Gamma (\cdot , \cdot ) is clearly coercive.
Continuity follows directly from the Cauchy--Schwarz inequality.

Employing Lemmas 7.4 and 7.5, we can easily prove the well-posedness of the
discrete problem (13).

Proof of Theorem 5.2. We have \scrI DG((qh, q
\Gamma 
h), (q, q

\Gamma 
h)) = | | (q, q\Gamma h)| | 2\scrI . Moreover,

from Lemmas 7.4 and 7.5, we know that \~\scrA DG
b (q, q) \gtrsim | | q| | 2DG and \scrA \Gamma (q

\Gamma 
h , q

\Gamma 
h) = | | q\Gamma h | | 2\Gamma ,

respectively. Therefore,

(25) \~\scrA h

\bigl( 
(q, q\Gamma h), (q, q

\Gamma 
h)
\bigr) 
\gtrsim | | (q, q\Gamma h)| | 2\scrE h

\forall (q, q\Gamma h) \in V b(h)\times V \Gamma 
h .

Next we prove continuity. Let (q, q\Gamma h), (w,w
\Gamma 
h) \in V b(h) \times V \Gamma 

h . Then, from Lemmas
7.4 and 7.5,

\~\scrA DG
b (q, w) \lesssim | | q| | DG| | w| | DG \lesssim | | (q, q\Gamma h)| | \scrE h

| | (w,w\Gamma 
h)| | \scrE h

,

\scrA \Gamma (q
\Gamma 
h , w

\Gamma 
h) \lesssim | | q\Gamma h | | \Gamma | | w\Gamma 

h | | \Gamma \lesssim | | (qh, q\Gamma h)| | \scrE h
| | (wh, w

\Gamma 
h)| | \scrE h

.
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Finally, from the Cauchy--Schwarz inequality, we get

\scrI DG((q, q\Gamma h), (w,w
\Gamma 
h)) \leq 

\sum 
F\in \Gamma h

| | \beta 1/2
\Gamma JqK| | 2L2(F )| | \beta 

1/2
\Gamma JwK| | 2L2(F )

+
\sum 
F\in \Gamma h

| | \alpha 1/2
\Gamma (\{ q\}  - q\Gamma h)| | 2L2(F )| | \alpha 

1/2
\Gamma (\{ w\}  - w\Gamma 

h)| | 2L2(F )

\leq | | (q, q\Gamma h)| | \scrE h
| | (w,w\Gamma 

h)| | \scrE h
.

The continuity of \~\scrL h(\cdot ) on V b(h)\times V \Gamma 
h can be easily proved using the Cauchy--Schwarz

inequality thanks to the regularity assumptions on the forcing terms f and f\Gamma .

7.2. Error estimates. In this section we prove that the discrete solution (ph, p
\Gamma 
h)

to problem (13) (or, equivalently, to problem (23)) converges to the exact solution
(p, p\Gamma ).

7.2.1. Approximation results. In [25, 23, 4] standard results on simplices
are extended to polytopic elements, considering appropriate coverings and submeshes
made of d-dimensional simplices (where standard results can be applied) and using
appropriate extension operators. In [22] these results are restated in order to be
successfully applied also in the case when the number of edges/faces is unbounded.
Here we summarize the results contained in [25, 23, 4, 22].

Assumption 7.6 ([25, 23]). There exists a covering \scrT \# of \scrT h (see Definition
5.3) and a positive constant O\Omega , independent of the mesh parameters such that

max
E\in \scrT h

OE \leq O\Omega ,

where, for E \in \scrT h, OE = card\{ E\prime \in \scrT h : E\prime \cap TE \not = \emptyset , TE \in \scrT \# s.t. E \subset TE\} .
Let E be the classical continuous extension operator, cf. [46]. We can then state

the following approximation result.

Lemma 7.7 ([25, 23, 4, 22]). Let E \in \scrT h, F \subset \partial E denote one of its faces and
TE \in \scrT \# denote the corresponding simplex such that E \subset TE (see Definition 5.3).
Suppose that v \in L2(\Omega ) is such that E v| TE

\in HrE (TE) for some rE \geq 0. Then, if

Assumptions 7.1 and 7.6 are satisfied, there exists \widetilde \Pi v such that \widetilde \Pi v| E \in \BbbP kE
(E), and

the following bound holds:

(26) | | v  - \widetilde \Pi v| | Hq(E) \lesssim 
hsE - q
E

krE - q
E

| | E v| | HrE (TE), 0 \leq q \leq rE .

Moreover, if rE > 1/2,

(27) | | v  - \widetilde \Pi v| | L2(\partial E) \lesssim 
h
sE - 1/2
E

k
rE - 1/2
E

| | E v| | HrE (TE).

Here, sE = min(kE + 1, rE), and the hidden constants depend on the shape-regularity
of TE but are independent of v, hE, kE and the number of faces per element.

Proof. See [25] for a detailed proof of (26) and [22] for the proof of (27).

Note that the fact that estimate (27) holds on the whole boundary \partial E is funda-
mental for treating the case when the number of faces/edges is not uniformly bounded.
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Finally, for future use, we recall that, using classical interpolation estimates [12],
for any p\Gamma \in Hr(\Gamma h), r \geq 1, there exists pI\Gamma \in V \Gamma 

h such that

(28) | | p\Gamma  - pI\Gamma | | \Gamma \lesssim 
\sum 
F\in \Gamma h

hs
F

kr - 1
| p\Gamma | Hr(F )

with s = min\{ k + 1, r\} .

7.2.2. Error analysis. Now we have all the ingredients to prove Theorem 5.5.
We point out that Galerkin's orthogonality does not hold true due to the inconsistency
of the bilinear form \~\scrA h. Thereby, the error bound will be derived starting from
Strang's second lemma. From Proposition 5.2 and Strang's second lemma we directly
obtain the following abstract error bound on the error.

Lemma 7.8. Assuming that the hypotheses of Proposition 5.2 are satisfied, it holds
that

(29)

| | (p, p\Gamma ) - (ph, p
\Gamma 
h)| | \scrE h

\lesssim inf
(qh,q\Gamma h)\in V b

h\times V \Gamma 
h

| | (p, p\Gamma ) - (qh, q
\Gamma 
h)| | \scrE h

+ sup
(wh,w\Gamma 

h)\in V b
h\times V \Gamma 

h

| \scrR h((p, p\Gamma ), (wh, w
\Gamma 
h))| 

| | (wh, w\Gamma 
h)| | \scrE h

,

where the residual \scrR h is defined as

\scrR h((p, p\Gamma ), (wh, w
\Gamma 
h)) =

\~\scrA h((p, p\Gamma ), (wh, w
\Gamma 
h)) - \scrL h(wh, w

\Gamma 
h).

We can now proceed with the proof of Theorem 5.5.

Proof of Theorem 5.5. From Lemma 7.8 we know that the error satisfies the fol-
lowing bound:

(30) | | (p, p\Gamma ) - (ph, p
\Gamma 
h)| | \scrE h

\lesssim inf
(qh,q\Gamma h)\in V b

h\times V \Gamma 
h

| | (p, p\Gamma ) - (qh, q
\Gamma 
h)| | \scrE h\underbrace{}  \underbrace{}  

I

+ sup
(wh,w\Gamma 

h)\in V b
h\times V \Gamma 

h

| \scrR h((p, p\Gamma ), (wh, w
\Gamma 
h))| 

| | (wh, w\Gamma 
h)| | \scrE h\underbrace{}  \underbrace{}  

II

.

We bound the two terms on the right-hand side of (30) separately. We can rewrite
term I as

I = inf
qh\in V b

h

| | p - qh| | 2DG\underbrace{}  \underbrace{}  
(a)

+ inf
q\Gamma h\in V \Gamma 

h

| | p\Gamma  - q\Gamma h | | 2\Gamma \underbrace{}  \underbrace{}  
(b)

+ inf
(qh,q\Gamma h)\in V b

h\times V \Gamma 
h

| | (p - qh, p\Gamma  - q\Gamma h)| | 2\scrI \underbrace{}  \underbrace{}  
(c)

.

Again we consider each of the three terms separately. To bound term (a), we exploit
the two approximation results stated in Lemma 7.7; we obtain that
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(a) \leq | | p - \widetilde \Pi p| | 2DG =
\sum 
E\in \scrT h

| | \bfitnu 1/2\nabla (p - \widetilde \Pi p)| | 2L2(E) +
\sum 

F\in \scrF h\setminus \Gamma h

\sigma F | | Jp - \widetilde \Pi pK| | 2L2(F )

\lesssim 
\sum 
E\in \scrT h

\Bigl[ 
\=\bfitnu E | p - \widetilde \Pi p| 2H1(E) + ( max

F\subset \partial E\setminus \Gamma 
\sigma F )| | p - \widetilde \Pi p| | 2L2(\partial E\setminus \Gamma )

\Bigr] 
\lesssim 

\sum 
E\in \scrT h

\Bigl[ h2(sE - 1)
E

k
2(rE - 1)
E

\=\bfitnu E | | E p| | 2HrE (TE) +
h
2(sE - 1/2)
E

k
2(rE - 1/2)
E

( max
F\subset \partial E\setminus \Gamma 

\sigma F )| | E p| | 2HrE (TE)

\Bigr] 
=

\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

| | E p| | 2HrE (TE)

\Bigl( 
\=\bfitnu E +

hE

kE
( max
F\subset \partial E\setminus \Gamma 

\sigma F )
\Bigr) 
.

Using classical interpolation estimates (see (28)) we can bound term (b) as follows:

(b) \leq | | p\Gamma  - pI\Gamma | | 2\Gamma \lesssim 
\sum 
F\in \Gamma h

h2k
F

k2(r - 1)
| p\Gamma | 2Hr(F ).

Finally, for term (c), we have

(c) \leq | | (p - \widetilde \Pi p, p\Gamma  - pI\Gamma )| | 2\scrI \lesssim \beta \Gamma 

\sum 
F\in \Gamma h

| | Jp - \widetilde \Pi pK| | 2L2(F ) + \alpha \Gamma 

\sum 
F\in \Gamma h

| | \{ p - \widetilde \Pi p\} | | 2L2(F )

+ \alpha \Gamma 

\sum 
F\in \Gamma h

| | p\Gamma  - pI\Gamma | | 2L2(F ).

Exploiting the approximation result (27), we obtain

\beta \Gamma 

\sum 
F\in \Gamma h

| | Jp - \widetilde \Pi pK| | 2L2(F ) \leq \beta \Gamma 

\sum 
E\in \scrT h

\partial E\cap \Gamma \not =\emptyset 

| | p - \widetilde \Pi p| | 2L2(\partial E) \lesssim \beta \Gamma 

\sum 
E\in \scrT h

\partial E\cap \Gamma \not =\emptyset 

h
2(sE - 1

2 )

E

k
2(rE - 1

2 )

E

| | E p| | 2HrE (TE)

= \beta \Gamma 

\sum 
E\in \scrT h

\partial E\cap \Gamma \not =\emptyset 

h
2(sE - 1)
E

k
2(rE - 1)
E

| | E p| | 2HrE (TE)

hE

kE
.

Similarly, we have

\alpha \Gamma 

\sum 
F\in \Gamma h

| | \{ p - \widetilde \Pi p\} | | 2L2(F ) \lesssim \alpha \Gamma 

\sum 
E\in \scrT h

\partial E\cap \Gamma \not =\emptyset 

h
2(sE - 1)
E

k
2(rE - 1)
E

hE

kE
| | E p| | 2HrE (TE).

Finally, using again classical interpolation estimates, we deduce that

\alpha \Gamma 

\sum 
F\in \Gamma h

| | p\Gamma  - pI\Gamma | | 2L2(F ) \lesssim \alpha \Gamma 

\sum 
F\in \Gamma h

h2k
F

k2(r - 1)
| p\Gamma | 2Hr(F ).

In conclusion, combining all the previous estimates, we can bound the term I on the
right-hand side of (30) as follows:

(31) I \lesssim 
\sum 
F\in \Gamma h

h2k
F | p\Gamma | 2Hk+1(F )

+
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

| | E p| | 2HrE (TE)

\Bigl[ 
\=\bfitnu E + hEk

 - 1
E ( max

F\subset \partial E\setminus \Gamma 
\sigma F ) + (\alpha \Gamma + \beta \Gamma )hEk

 - 1
E

\Bigr] 
.
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Next, we derive a bound on the term II on the right-hand side of (30). First, we note
that integrating by parts elementwise and using that the couple (p, p\Gamma ) satisfies (9)
as well as the regularity assumption 5.4, we can rewrite the residual \scrR h as

\scrR h((p, p\Gamma ), (wh, w
\Gamma 
h)) =

\sum 
F\in \scrF h\setminus \Gamma h

\int 
F

\{ \bfitnu (\nabla p - \Pi 2(\nabla p))\} \cdot JwhK.

Employing the Cauchy--Schwarz inequality and the definition of the norm | | \cdot | | \scrE h
, we

then obtain

II \leq 

\left(  \sum 
F\in \scrF h\setminus \Gamma h

\sigma  - 1
F

\int 
F

| \{ \bfitnu (\nabla p - \Pi 2(\nabla p))\} | 2
\right)  1/2

.

If we still denote by \widetilde \Pi the vector-valued generalization of the projection operator \widetilde \Pi 
defined in Lemma 7.7, we observe that\sum 

F\in \scrF h\setminus \Gamma h

\sigma  - 1
F

\int 
F

| \{ \bfitnu (\nabla p - \Pi 2(\nabla p))\} | 2 \lesssim 
\sum 

F\in \scrF h\setminus \Gamma h

\sigma  - 1
F

\int 
F

| \{ \bfitnu (\nabla p - \widetilde \Pi (\nabla p))\} | 2

+
\sum 

F\in \scrF h\setminus \Gamma h

\sigma  - 1
F

\int 
F

| \{ \bfitnu \Pi 2(\nabla p - \widetilde \Pi (\nabla p))\} | 2

\equiv (1) + (2).

To bound term (1), we proceed as above, employing the approximation result stated
in Lemma 7.7. We obtain

(1) \lesssim 
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

\bigl( 
\=\bfitnu E( max

F\subset \partial E\setminus \Gamma 
\sigma  - 1
F )

h - 1
E

k - 1
E

\bigr) 
| | E p| | 2HrE (TE).

Exploiting, in order, the boundedness of the permeability tensor \bfitnu , the inverse in-
equality (22), the L2-stability of the projector \Pi 2, and the approximation results
stated in Lemma 7.7, we can bound term (2) as follows:

(2) \lesssim 
\sum 
E\in \scrT h

( max
F\subset \partial E\setminus \Gamma 

\sigma  - 1
F )\=\bfitnu E | | \Pi 2(\widetilde \Pi (\nabla p) - \nabla p)| | 2L2(\partial E\setminus \Gamma )

\lesssim 
\sum 
E\in \scrT h

( max
F\subset \partial E\setminus \Gamma 

\sigma  - 1
F )\=\bfitnu E

k2E
hE

| | \widetilde \Pi (\nabla p) - \nabla p| | 2L2(E)

\lesssim 
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

| | E p| | 2HrE (TE)

\Bigl( 
\=\bfitnu E

k2E
hE

( max
F\subset \partial E\setminus \Gamma 

\sigma  - 1
F )

\Bigr) 
.

Hence, term II on the right-hand side of (30) may be bounded as

(32) II \lesssim 
\sum 
E\in \scrT h

h
2(sE - 1)
E

k
2(rE - 1)
E

| | E p| | 2HrE (TE)

\Bigl[ 
\=\bfitnu E( max

F\subset \partial E\setminus \Gamma 
\sigma  - 1
F )h - 1

E kE

+ \=\bfitnu E( max
F\subset \partial E\setminus \Gamma 

\sigma  - 1
F )h - 1

E k2E

\Bigr] 
.

Finally, substituting (31) and (32) into (30) leads to the thesis.
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8. Concluding remarks. In this work we have presented a DG approxima-
tion on polytopic grids of Darcy's flow through a fractured porous medium. For the
analysis we have assumed the medium to be cut by a single nonimmersed fracture,
and we have obtained a priori error estimates. These estimates have been validated
through numerical tests. Moreover, we have shown that our approach is also robust in
more complex geometric configurations, performing numerical experiments involving
networks of partially immersed fractures and networks of intersecting fractures.

Future extensions include the analysis of the case of a network of (partially im-
mersed) fractures intersecting each other. As already pointed out in section 6.6, to
deal with this case, we need to complete our model with suitable physical conditions
at the intersection points, imposing, for example, the continuity of pressure and flux
conservation as in [45, 18]. From the DG-discretization point of view, the key point
is the generalization of the concepts of jump and average at the intersection points,
similarly to what has been done for linear DG approximation of elliptic PDEs on
surfaces in [30] and then extended to high order in [5]. The aforementioned works
will also be taken as a reference for an extension of our numerical model to the case
of curved fractures.
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