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Brain-inspired neural networks can process information with high efficiency, thus 

providing the solution of choice for pattern recognition and other artificial intelligent 

tasks. By adopting binary inputs/outputs, neural networks can be used to perform 

Boolean logic operations, thus potentially surpassing the complementary-metal-oxide-

semiconductor (CMOS) logic in terms of area efficiency, execution time and computing 

parallelism. Here we introduce the concept of a neural-network-based logic circuit 

consisting of resistive switches, which can perform all logic functions with the same 

network topology. The neural network relies on physical computing according to Ohm’s 

law, Kirchhoff’s law, and the ionic migration within an output switch serving as the 

highly nonlinear activation function in the McCulloch-Pitts neuron model. The input 

and output are both nonvolatile resistance states of devices, thus enabling stateful and 

cascadable logic operations. Applied voltages provide the synaptic weights, which 

enables the convenient reconfiguration of the same circuit to serve various logic 

functions. The neural network can solve all 2-input logic operations with just one step, 

except for the exclusive OR (XOR) needing 2 sequential steps. 1-bit full adder operation 

is shown to take place with just 2 steps and 5 resistive switches, thus highlighting the 

high efficiencies of space, time, and energy of logic computing with the stateful neural 

network.
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After more than 50 years of evolution, Moore’s law is approaching its end due to the 

inevitable technological and physical scaling limits of the CMOS transistors.[1] A key concern 

of the conventional von Neumann computer architecture is the round data transfer between 

physically-separated memory and computing units, which causes high energy-inefficiency 

and latency burdens.[2,3] In the era of big data, these major obstacles must be overcome to 

develop computing systems capable of processing a huge amount of data with high efficiency. 

A key concept to address these issues is in-memory computing, where logic operations are 

performed in situ within a memory unit, usually consisting of a crossbar array of resistive 

switching devices.[4-12] A  resistive switching device, also known as memristor, is a 2-terminal 

electronic device whose resistance can be electrically switched, and the behavior is 

nonvolatile.[4] In a typical resistive switch, known as the bipolar resistive random access 

memory (RRAM), application of a pulse with positive voltage above the set voltage (Vset) 

induces the transition to the low resistance state (LRS), which is due to the field-induced 

migration of defects that forms a conductive filament across a dielectric layer. Application of 

a pulse with negative voltage below the reset voltage (Vreset) causes the retraction of the 

conductive filament, thus inducing a transition to the high resistance state (HRS, see 

Figure S1 in Supporting Information).[13] Resistive switching devices have been used to 

implement Boolean logic operations,[5-9] where the LRS and HRS can be used as binary 

input/output states. In a typical RRAM logic gate, one or more RRAM act as input devices, 

while their resistance states conditionally imply ionic migration in an output device, causing a 

change of the resistance according to the truth table of a logic function, such as AND[8] or 

material implication (IMP).[5] However, more advanced functions, such as XOR, addition, and 

multiplication, require a relatively large number of RRAM and multiple operation steps, e.g., 

7 steps with 11 devices for a 1-bit full adder (FA).[8] Also, no universal theoretical framework 

has been developed so far to synthesize logic gates, in terms of circuit architecture and 

applied voltages to execute the computation. A sound theoretical basis is however essential to 
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developing electronic design automation (EDA) tools for future in-memory logic computing 

systems. 

In this scenario, the neural network concept can provide a universal architecture to implement 

various logic functions efficiently.[14] In a brain-inspired neural network, the neuron is the 

basic computing unit, providing addition of many input stimuli after proper weighting by 

synaptic junctions (Figure S2, Supporting Information). The possibility to perform logic 

computation within an artificial neuron has been recognized since the seminal model by 

McCulloch and Pitts,[15] later extended to the concept of threshold logic.[16,17] In a typical 

threshold logic circuit, input currents are summed to yield an internal state variable, which in 

turn triggers the output firing according to a highly nonlinear response, e.g., a step-like 

function. Here we introduce a neural network with resistive switches playing the roles of input 

states and an output artificial neuron, able to perform linearly-separable logic functions (all 2-

input Boolean functions except XOR and its complement), in just one step. Thanks to the 

nonvolatile nature of the logic variables, the circuit can be extended to the multi-layer neural 

network to realize linearly non-separable functions in multiple steps, such as XOR operation 

and 1-bit FA, in just 2 steps, thus paving the way to compact, fast, and energy-efficient 

stateful logic computing circuits based on resistive switches. 

Figure 1a illustrates the RRAM circuit, consisting of 3 devices A, B, and C, connected to an 

internal node, and to 3 independent voltage supplies of voltage VA, VB and VC, respectively. A 

load resistor with conductance GL connects the internal node to ground. The current flowing 

through any RRAM device (or the load resistor) can be generally written as (Vi-Vint)Gi, where 

i is an index spanning A, B, C or L, with VL being generally connected to ground (VL = 0 V), 

and Gi being the conductance of the i-th RRAM (or the load resistor). By equating all currents 

at the internal node to zero according to Kirchhoff’s law, we get Si(Vi-Vint)Gi = 0, which 

allows to write the internal potential Vint as: 
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To operate the circuit as a logic gate, A and B serve as input data, with LRS and HRS 

corresponding to logic 1 and 0, respectively. In RRAM devices with high HRS/LRS 

resistance ratio, the LRS conductance and HRS conductance can be normalized 

approximately as the real numbers 1 and 0, respectively, which allows the logical value and 

device conductance to be used interchangeably. The element C is assigned the role of output 

RRAM, whose initial state is always off, i.e., GC = 0. For C to switch to the on state, the 

voltage VC-Vint must exceed the threshold voltage Vset, namely VC-Vint ≥ Vset. After substituting 

Eq. (1) in the previous expression, we get: 
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where the internal state variable Y = SiGi(VC-Vi-Vset) is an equivalent current whose sign 

controls the condition for C to switch to the on state (Y ≥ 0) or not (Y < 0). The state variable 

Y can be viewed as the weighted sum in a neural network, namely Y = SiGiwi where Gi values 

act as input variables, while the synaptic weights are given by: 

wi = VC-Vi-Vset.           (3) 

Therefore, the circuit can be viewed as a perceptron neural network[14] (Figure 1b), where 

input neurons A and B contribute their signals to the internal node potential Vint, while C 

serves as the output neuron. With input from A and B, the internal state variable Y controls the 

conditional transition of C to a new state C’, e.g., C’ = 1 for Y ≥ 0. The abrupt set transition in 

C plays the role of step-like activation function in the McCulloch-Pitts neuron model, thus 

realizing a multiple-addend integrate&fire operation in a nanoscale element via physical 

computing.[18,19] Note that the synaptic weights are determined by the applied voltages, 

therefore the neural network can be reconfigured directly by the analog voltages applied to the 

circuit. Although C appears among the input data in Eq. (2), it is always initialized in the HRS 
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(GC = 0), thus plays no role in the input signals. Similarly, the load resistance conductance GL 

can be considered as a constant analog bias in the network. 

By tuning the synaptic weights, i.e., applying different voltages Vi to the perceptron circuit in 

Figure 1a, all the linearly-separable logic functions such as NAND and NOR can be 

implemented in one step.[14] In fact, Boolean logic can be regarded as pattern classification 

problem, which is straightforwardly addressed by the perceptron. Figure 1c considers the case 

of a NAND function, showing the input/output characteristics, namely the final state of C as a 

function of A and B on axis x and y, respectively, and the corresponding truth table. In 

Figure 1c, the final C is always 1 (C’ = 1, labeled by full symbols) except for A = B = 1, 

where C’ = 0 (open symbol), i.e., unchanged with respect to the initial state. The decision 

boundary that separates the outputs of 1 and 0 gives the relationships between the weights and 

bias, from which the required voltages can be deduced for a specified load resistance, as 

shown at the bottom of the truth table. The set condition in Figure 1c can be described by the 

linear inequality: 

A+B £ 3/2,           (4) 

where the input states A and B are mapped by the RRAM conductance values, i.e., GA and GB, 

respectively, and the real number 3/2 is mapped to 3GLRS/2, where GLRS is the nominal LRS 

conductance, corresponding to the logical value 1. The decision boundary was chosen to 

maximize the tolerance with respect to the conductance variation of devices (Figure S3, 

Supporting Information), while it could be differently optimized in practical cases. By 

comparing Eq. (4) with the condition Y ≥ 0 in Eq. (2), we identify two conditions for 

parameters VA, VB, VC and GL, which help to dictate the applied voltages. For instance, 

assuming GL = 1.4GLRS and VA = 0.7Vset, with the identified conditions, we obtained VB = 

0.7Vset and VC = 1.35Vset, which configure a NAND logic gate in the circuit of Figure 1a. 

Details are explained in Figure S4 (Supporting Information), where the choice of the value of 

GL is also discussed. Similarly, from the boundary condition A+B £ 1/2 in the NOR 
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characteristics of Figure 1d, one can derive VA = VB = 0.5Vset and VC = 1.1Vset for the NOR 

logic gate (Figure S4, Supporting Information). The value of VA should be chosen within a 

certain range, to support the logic operations while preventing changes of the input states 

during the logic operation (Table S1, Supporting Information). To overcome the Vset variation 

of output device, VA should be chosen around the middle of the corresponding range. The 

same concept is applied to all other 12 linearly-separable 2-input Boolean logic functions 

(Table S1, Supporting Information). Therefore, the neural-network nature of the circuit in 

Figure 1a enables a versatile logic tile for universal design of generic linearly-separable 2-

input logic gates. 

To directly demonstrate the aforementioned concept, RRAM devices with HfO2 dielectric 

layer were used as resistive switches in the circuit. Each RRAM device had a transistor 

connected in a one-transistor-one-resistor (1T1R) structure, to enable current limitation during 

the set transition thus preventing destructive breakdown, and to controllably tune the LRS 

conductance.[20] Figure 2a shows the experimental current-voltage (I-V) characteristic of the 

RRAM device under quasi-stationary conditions, indicating set transition for positive voltage 

above Vset (1.7 V), and reset transition for negative voltage. Figure 2b shows the set/reset 

transitions under pulsed conditions used in the logic operations. A load resistor with 

conductance GL = 1.4GLRS = 56 µS was adopted for both NAND and NOR logic gates. Before 

the logic operations, each RRAM was initialized to its desired state, then read with a low 

voltage pulse to avoid any disturbance. Voltages VA, VB and VC were applied simultaneously, 

although with different pulse-widths, namely 100 µs, 200 µs and 300 µs for VC, VB and VA, 

respectively, to better visualize the switching process. After the application of the pulses, 

conductance of each RRAM was read again to check the computing results. Figure 2c shows 

the applied voltages for read and NAND logic operation (top panel), the measured currents 

across each RRAM during the read phases, and the measured currents across the load resistor 

during the logic computing phase (bottom panel). Device C shows set transition according to 
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the NAND function of inputs A and B, i.e., for either A or B (or both) being initially in their 

LRS. In all cases, the input states are left unchanged after the logic operations. The same is 

shown in Figure 2d for the NOR logic operation, where C undergoes set transition only for A 

= B = 0, thus satisfying the input/output characteristics of Figure 1d. From a circuit viewpoint, 

the logic gates rely on the comparison between voltage across the output RRAM VC-Vint and 

the threshold Vset, as shown in Figure 2e and f for NAND and NOR, respectively. The NAND 

and NOR logic operations were also simulated by circuit simulations adopting an analytical 

model of RRAM,[21] and the results are reported in Figures S5 and S6 (Supporting 

Information), respectively. The agreement between the simulated and experimental 

characteristics confirms the solid understanding and prediction of the logic operations. 

Among the 2-input Boolean logic functions, the input/output characteristics of XOR operation 

shown in Figure 3a is not linearly separable,[14,22] thus cannot be represented by a single-layer 

perceptron as in Figure 1c and d. As linearly non-separable functions can be realized by a 2-

layer perceptron, the XOR gate is synthesized by sequentially-cascading 2 stateful logic 

operations in the same network as shown in Figure 3a. First, the material non-implication 

(NIMP) is executed to induce set transition for input A = 1 and B = 0, followed by the 

converse non-implication (C-NIMP) to induce set transition for A = 0 and B = 1. The opposite 

sequence might also be performed, as intermediate states are always stored in situ, and input 

states are never affected by the logic operations. Note that this approach benefits from the 

nonvolatile state of C, to cumulate the set transition in the first operation with output C’, and 

the second operation with output C’’, to yield a non-separable XOR output. Figure 3b depicts 

the 2-layer perceptron for the XOR function, where each layer has different synaptic weights 

corresponding to NIMP and C-NIMP operations, respectively. Figure 3c shows the 

corresponding truth table and the voltage values VA, VB and VC, to yield the correct weights 

for the two sequential operations. GL is equal to 0.5GLRS for both operations. As a reference, 

previous stateful XOR logic gates required at least 4 operations with more devices,[6,8,9] which 
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highlights the time/space efficiency of the present neural-network-based computing approach. 

Figure 3d shows the experimental results of the XOR operation, where the resistance states 

were read with low voltage pulses before and after each logic operation. Figure 3d also shows 

the voltage VC-Vint compared to Vset, showing that the set transition of C is possible only 

according to the truth tables of NIMP and C-NIMP. The XOR logic operation was simulated 

by using an analytical model of RRAM,[21] showing good accuracy of predicting the circuit 

operation for all configurations of input states (Figure S7, Supporting Information). 

As a neural network can have a large number of inputs, it also allows to implement 3-input 

logic operations, such as majority and FA functions. Generally, implementing these functions 

with conventional CMOS technology leads to a high transistor count and a correspondingly 

large area, e.g., 28 transistors for a CMOS 1-bit FA[23] and a corresponding area of few 

thousands of F2, where F is the minimum feature size in the microelectronic manufacturing 

process.[23,24] On the other hand, implementation of 3-input logic functions is a 

straightforward extension of the 2-input case with a neural network. For instance, Figure 4a 

shows the truth table of the 1-bit FA operation, including input data A, B and carry-in (Cin), 

and the outputs carry-out (Cout) and sum (S), with the latter corresponding respectively to the 

most significant bit and the least significant bit of the 1-bit summation of A, B, and Cin. Note 

that Cout and S can be viewed as the majority and parity functions of the input data, 

respectively,[25] which are shown in the input/output characteristics of Figure 4b. Since the 

majority function is linearly separable, Cout can be immediately calculated by single-layer 

perceptron in a single-step operation, as in Figure 1. On the other hand, Figure 4b shows that 

the 3-input parity function is not linearly separable in the (A, B, Cin) space, thus requiring a 

multi-step operation as in the XOR case in Figure 3. However, it can be shown that S 

becomes linearly separable in the (A, B, Cin, Cout) space,[26] i.e., Cout is also considered among 

the input variables (Figure S8, Supporting Information). In this approach, the 1-bit FA can be 
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implemented with only 5 resistive switches, one for each input/output variable, and 2 steps, to 

sequentially calculate Cout and S. 

Figure 4c shows the 1-bit FA circuit and the corresponding 2-layer perceptron, while 

Figure 4d shows the applied voltages and measured currents in the logic gate during read and 

compute phases. First, the majority operation Cout = majority(A, B, Cin) is completed by 

tuning the synaptic weights via the applied voltages, namely VA = VB = VCin = -Vset, and VCout = 

0.4Vset, while VS is left unbiased. The weights are designed such that the voltage difference 

VC-Vint increases linearly with the number of input RRAM in LRS, thus inducing a set 

transition across the output device when there are at least 2 input RRAM in LRS. In the 

second step, S is calculated by applying the same voltages as the preceding operation, with the 

additional VS = 0.52Vset. The load resistor is GL = 0.83GLRS during both steps. The 

experimental results in Figure 4d support the feasibility of the 1-bit FA operation in just 2 

computing steps. The FA circuit behavior can be accurately predicted by circuit simulations 

with the analytical model of RRAM (Figure S9, Supporting Information), thus supporting the 

controllability of the RRAM neural network for advanced logic operations. 

The proposed scheme of stateful neural network allows flexible logic computing, namely, all 

logic gates share the same basic structure, which can be viewed as a crossbar array with 

several resistive switches connected to separate column lines and the same row line. This 

allows carrying out logic computing tasks directly on a crossbar memory circuit,[27,28] without 

the need of data transfer between the memory and the computing units. Different logic 

functions can be implemented in the same circuit by adjusting the weights, which 

conveniently takes place by analog tuning of the applied voltages. The same load resistance 

can be employed for different logic operations, as demonstrated for NAND and NOR, and 

placing a transistor as a tunable load resistor would allow full flexibility for the logic gate 

design. More operations can be cascaded thanks to the coherence of input and output states 

being coded as the nonvolatile RRAM conductance.[5-10] As a comparison, some other in-
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memory computing strategies involve different logic variables for input and output,[29,30] such 

as input voltage and output resistance, which is not compatible with logic cascading, as it 

requires an additional transformation, e.g., from resistance to voltage, to be completed out of 

the memory circuit.[31] The voltage-based reconfigurability of the neural-network circuit and 

the nonvolatile devices allow minimizing the number of steps for completing logic operations 

with respect to other stateful logic approaches,[5-9,32-34] as summarized in Table 1 for XOR 

and 1-bit FA functions. 

Physical computing in the neural-network-based logic circuit takes place by 3 physical 

principles, namely (1) the Kirchhoff’s law of electrical current conservation, (2) the Ohm’s 

law relating potential and electrical current, and (3) the voltage-controlled drift of ionized 

defects within a dielectric material,[35-37] e.g., the HfO2 layer in the RRAM devices used in 

this work. Combined together, these 3 phenomena control the switching of the output switch 

subject to the condition of the VC-Vint overcoming the threshold Vset. The parameter Vset is 

indeed critical to determining the error probability in the logic operations. In particular, any 

stochastic variation of Vset from device to device, or even from cycle to cycle in the same 

device,[38] may cause unpredictable deviations and consequent failure of computing. The 

maximum variation of Vset which still ensure safe operations for all logic function can be 

estimated with respect to a maximum tolerated error rate, e.g., 10-6 in Figure S10 (Supporting 

Information). The maximum error depends on the required accuracy of the calculation, and 

the logic computing architecture.[39] The results indicate that different logic operations are 

differently tolerant to Vset variations, thus providing a guideline about how to select some 

functions instead of others to minimize computing errors. Improvement of Vset variability 

might also be achieved, e.g., via dispersion of metal nanodots within the dielectric switching 

layer,[40] or via engineering dislocations in a single-crystalline device.[41] On the other hand, 

the resistance variations represent a negligible concern, since the reported LRS variations, e.g., 
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generally a few percent when programmed with a relatively high compliance current,[38] are 

well within the allowed range (Figure S11, Supporting Information). 

Although the neural-network-based logic circuit is extremely attractive in terms of numbers of 

computing steps and switches, it should be recalled that operating a logic circuit in the 

memory requires specific periphery circuits.[42] These circuits include registers to store the 

addresses of data and the codes to be executed, the pulsed voltage generators and the 

multiplexers to distribute the voltage pulses to the rows/columns in the array. In addition, the 

circuit should be capable of programming/reading the memory elements as in a conventional 

memory array. In particular, with respect to previous approaches,[9] our concept makes 

extensive use of analog voltages needed to tune the synaptic weights in the stateful neural 

network. Generating and distributing these analog voltages impose an additional complexity 

to the periphery circuit. On the other hand, analog voltages are becoming increasingly used by 

in-memory computing architectures in recent works. Matrix-vector multiplication (MVM) in 

crosspoint arrays relies on the generation and conversion of analog voltages, thus enabling 

image processing,[43] sparse coding,[28] and deep learning accelerators.[44] In this scenario, the 

development of mixed analog/digital circuits for computing in memory arrays will further 

boost analog solutions like the one proposed in this work. 

Another key concern for all in-memory computing systems is the energy efficiency of 

computation. Since in-memory logic computing relies on the conditional resistance switching 

in the output RRAM device, the stateful logic requires a larger energy compared to 

conventional CMOS logic gates.[42] The typical energy consumption for RRAM switching is 

about 0.1 pJ per operation,[45] which far exceeds the energy for dynamic switching in CMOS 

devices.[42] However, the evaluation of energy efficiency should not limit itself to the 

individual logic operation, rather it should cover the entire computing process, which in the 

case of CMOS logic involves also significant energy for data transfer between the memory 

and the processing units, and the energy for sustaining and refreshing the volatile bits in 
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CMOS memory and logic units. All these energy consumptions are suppressed in the stateful 

logic paradigm, thanks to the non-volatile nature of RRAM, and to the in situ computing with 

non-von Neumann architecture. The neural-network circuit proposed in this work reduces 

intensively the numbers of computing steps and devices, thus contributing to higher efficiency 

of stateful logic. 

In summary, we introduce a neural-network-based logic computing concept for a resistive 

switch circuit, which acts as a universal architecture to compute Boolean functions, for both 

linearly separable and non-separable operations. The universality and flexibility of neural 

network endow the circuit with significant advantages for logic design, e.g., one step for 

NAND, NOR and majority operations, and 2 steps for XOR operation and 1-bit FA, using the 

same circuit topology. Since the logic input and output variables are encoded in nonvolatile 

conductance states of resistive switches, i.e., HRS and LRS, the circuit enables stateful logic 

computing, thus eliminating the von Neumann bottleneck the plagues classic computers. The 

homogeneity of logic variables allows the operations to be directly cascaded, while the 

voltage-controlled synaptic weights enable function reconfiguration within the same circuit. 

The stateful neural network is thus promising as a flexible logic scheme for high-performance, 

high-density in-memory computing. 

 
 
Experimental Section 

Experimental Devices: The RRAM devices in this work consist of a stack of a thin layer 

(5 nm) of HfO2 deposited by e-beam evaporation on a confined bottom electrode of graphitic 

carbon. A thin film of Ti was deposited as top electrode on the HfO2 dielectric layer by e-

beam evaporation without breaking the vacuum. The deposited Ti has been reported to act as 

oxygen scavenger,[46] leading to an oxygen exchange layer of TiOx between Ti and HfO2. The 

oxygen exchange layer is instrumental in creating a local enhancement of oxygen vacancy 

concentration in HfO2, thus improving the leakage current in the pristine state, reducing the 
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forming voltage, and forcing a unidirectional switching behavior, where set and reset 

transitions take place under positive and negative voltages applied to the top electrode, 

respectively. Forming was operated in DC regime by applying a voltage sweep to the top 

electrode from 0 to 5 V, to induce a soft breakdown process of HfO2 which initiated the CF 

creation and the related resistive switching process. The RRAM bottom electrode was 

connected to an integrated transistor by a W plug. Integration of transistor and the RRAM 

devices on the same chip were obtained by conventional CMOS process. The DC conduction 

and switching characteristics of the RRAM were collected by an HP4155B Semiconductor 

Parameter Analyzer connected to the experimental device in a conventional probe station for 

electrical characterization. 

Experimental Measurements: The experiments were carried out in a probe station using a 4-

channels arbitrary waveform generator (Aim-TTi TGA12104) and an oscilloscope (LeCroy 

Waverunner 64Xi). During the logic operations, the source node of the transistors in the 1T1R 

structures were connected to an external load resistor, whose other node was connected to the 

oscilloscope to probe the total current. The gates of the integrated transistors were short-

circuited and connected to the waveform generator through pad-to-pad wire bonding. Before 

the logic operations, the load resistance was short-circuited and the input/output devices were 

prepared in their initial states and read individually at a low voltage (0.5 V). The devices were 

read again after the logic operation to detect any change of state in either input or output 

devices. For 2-input/1-output logic operations, such as NAND and NOR, the voltages were 

supplied by the arbitrary waveform generator to the top electrodes and gates. The voltage 

pulse widths were 100 µs, 200 µs and 300 µs for the output, input B and input A, respectively. 

For the majority operation (3-input/1-output), two input devices having the same voltage 

value shared the same channel of the waveform generator. A Keithley 707 Switching Matrix 

was adopted to independently access each device during the read phase. For the second 
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operation in the FA to obtain S (4-input/1-output), three input devices having the same 

voltage value shared the same channel of the waveform generator. 

Analytical Simulations: The simulations of logic operations were based on the analytical 

model for HfO2-based RRAM proposed in Ref. 21. In this model, the resistances in LRS and 

HRS are controlled by the filament diameter and gap length, respectively, and the set and 

reset transitions are described by filament growth and gap opening, respectively, which are 

activated by the local field and temperature. In the logic circuit, all the RRAM devices were 

simulated by the same model. For the logic operations, the initial RRAM state ‘0’, i.e., the 

HRS, is described by a ruptured filament with a gap of length 2.4 nm, while the initial state 

‘1’, i.e., the LRS, is described by a complete filament with a diameter 2.1 nm. When the 

external voltage pulses are applied, the voltage and current across each RRAM device are 

calculated based on Kirchhoff’s law and Ohm’s law, and the set and reset transitions arise as a 

result of the migration of ionized defects as described in the analytical model.[21] The 

employed parameters, including the applied voltages, pulse widths, load resistances and also 

the gate voltages of transistors, are all the same as the experimental ones. 
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Figure 1. Fundamental concept of the neural-network-based stateful logic circuit. a) RRAM 
circuit with 2 input devices A, B, one output device C, and the load resistor of conductance 
GL. b) Equivalent neural network model for the RRAM circuit, where conductance states of A 
and B serve as input variables, the conductance state of C serves as output variable, and the 
load resistor plays the role of bias in the neural network. Synaptic weights wA, wB, and wL are 
dictated by the applied voltages according to Eq. (3). If the internal state function Y is larger 
than 0, the output C switches to the final state C’ = 1 due to set transition. If Y is smaller than 
0, the output C remains in its initial state, thus C’ = 0. c,d) Input/output characteristics and 
truth table for NAND  operation (c) and NOR operation (d). Full symbols and open symbols 
correspond to the output state being 1 and 0, respectively. The boundary lines for linear 
separation of outputs, and the voltage values applied to A, B, and C, to tune the synaptic 
weights, are also shown. GL was chosen equal to 1.4GLRS for both logic operations. 
 



     

18 
 

 
Figure 2. Experimental demonstration of NAND and NOR operations. a) I-V characteristics 
of the HfO2 RRAM under quasi-stationary conditions and corresponding 1T1R structure of 
the device. The device show set and reset transitions at positive and negative voltages, 
respectively. b) Applied voltage (top) and current response of the RRAM device during set, 
reset and read operated by pulses of 100 µS width. c,d) Experimental demonstration of the 
NAND logic function (c) and NOR logic function (d), including applied voltages (top) and 
current response (bottom) for all configurations of input states. The sequence includes initial 
read, logic operation, and final read, for both input and output RRAM devices, the latter 
showing switching according to the truth table. During logic operations, the current through 
load resistor is collected. e,f) The internal potential Vint for NAND (e) and NOR (f) operations. 
The voltage across the output VC-Vint is also shown, with the condition VC-Vint > Vset 
controlling the conditional set (C’ = 1) in the output device. 
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Figure 3. XOR operation with the stateful neural network. a) Input/output characteristics of 
the linearly non-separable XOR operation, which is disassembled into the sequence of the 
linearly-separable NIMP and C-NIMP operations. b) Schematic of the 2-layer perceptron 
network. c) Truth table for the XOR operation, with sequential output states C’ and C’’ 
corresponding to the result of NIMP and C-NIMP operations. The truth table also includes the 
applied voltages to tune the synaptic weights in the network. A load resistor with conductance 
GL = 0.5GLRS is adopted in the network. d) Experimental demonstration of the XOR operation, 
showing the applied voltage and the current response for the 4 input configurations. e,f) The 
internal potential Vint for NIMP (e) and C-NIMP (f) operations, indicating set transition for 
VC-Vint > Vset. 
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Figure 4. 1-bit FA with the stateful neural network. a) Truth table of the 1-bit FA, where the 
carry-out (Cout) and sum (S) are majority and parity functions of three inputs (A, B, Cin), 
respectively. The applied voltages for computing Cout and S are also included. A load resistor 
of conductance GL = 0.83GLRS is used in the circuit. b) Input/output characteristics of linearly-
separable majority function (left) and linearly non-separable parity function (right). c) RRAM 
circuit and the corresponding equivalent 2-layer perceptron network for the 1-bit FA. d) 
Applied voltages (top) and current response (bottom) for all 8 configurations of input A, B, 
and Cin. 
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Table 1. Comparison of stateful XOR and 1-bit FA schemes. The table reports various options 
for XOR and 1-bit FA according to the literature, comparing the number of RRAM devices 
and computing steps. 
 

Reference 
XOR 1-bit FA 

Logic basis 
Devices Steps Devices Steps 

[32] - - 8 89 

IMPLY & FALSE 
[33] - - 6 35 

[5],[34] 4 6 8 27 

[6] 5 13 6 29 

[7] - - 16 10 NOR & NOT 

[8] 4 5 11 7 IMPLY & AND 

[9] 4 4 9 10 NAND & AND 

This work 3 2 5 2 Neural network 
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The concept of stateful neural network is introduced based on a resistive memory circuit. 
Thanks to the universality and flexibility of neural network, the circuit enables one-step 
operation for all linearly-separable logic functions, thus extremely reducing the numbers of 
computing steps and devices for stateful logic computing, for instance, 2 steps and 5 devices 
for the 1-bit full adder. 
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Figure S1. Current-voltage characteristics showing bipolar resistive switching of RRAM 
device in quasi-stationary (DC) mode. The positive voltage sweep triggers set transition from 
the high resistance state (HRS) to the low resistance state (LRS), when the voltage reaches a 
time-dependent threshold value (Vset). During the set transition, a compliance current (IC = 
70 µA in the figure) is provided by the integrated select transistor to protect the device from 
destructive breakdown. The negative voltage sweep triggers the reset transition from LRS to 
HRS when the voltage exceeds Vreset. The reset transition of resistance is more gradual 
compared to the set transition, in line with other results in the literature.[1-6] The resistance 
ratio between HRS and LRS is around 100 for the device shown in the figure. 
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Figure S2. Sketch of a biological neuron (a) and of a neural network (b) within the 
McCulloch-Pitts model.[7] In the biological neuron, input signals reach the neuron soma from 
the synapses and dendrites. When the neuron fires, it sends an electrical spike through the 
axon and its terminals, thus stimulating other neurons. In the McCulloch-Pitts neuron, inputs 
are multiplied by synaptic weights wi, then summed in the summing junctions before being 
subject to the activation function. A spike y is originated by the nonlinear activation function 
when the sum reaches a threshold. 
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Figure S3. Input/output characteristics for various decision boundaries in NAND operation, 
comparing boundaries A + B = 3/2 (a) and 2A + B = 5/2 (b). The full symbols and open 
symbols represent output 1 and 0, respectively. In (a), the maximum conductance variation for 
an input device is allowed to be 50%, while in (b), the maximum variation is reduced to be 25% 
for input device A. The boundary line in (a) thus appears as the best choice to maximize the 
immunity to device variation. 
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Figure S4. Input/output characteristics and decision boundaries for NAND logic function (a) 
and NOR logic function (b). The full symbols and open symbols represent output 1 and 0, 
respectively.  
 

The domain of set transition for NAND function is A + B - 3/2 < 0, where the input states A 

and B are mapped by the conductance values GA and GB, respectively, and the real number 3/2 

is mapped to 3GLRS/2, where GLRS is the nominal LRS conductance, corresponding to a logical 

value of 1, thus leading to 

GA + GB – 3GLRS/2 < 0,        (S1) 

Following Eq. (2) in the main text, the internal state variable is given by the weighted sum: 

Y = SiGi(VC-Vi-Vset) = wAGA + wBGB + wLGL > 0     (S2) 

where the inequality gives the condition for the set transition in the output RRAM. Note that 

wCGC is neglected in Eq. (S2) since the output RRAM C is always prepared in HRS. 

Comparing Eqs. (S1) and (S2), we get: 

    wA = wB < 0      (S3) 

    wL = -3wA/(2GL/GLRS)     (S4) 

Following the weight definition in Eq. (3), we obtain: 

    VA = VB      (S5) 

    VC = VA/(1+2GL/(3GLRS)) + Vset   (S6) 

A possible solution is GL = 1.4GLRS, VA = VB = 0.7Vset and VC = 1.35Vset, which yields synaptic 

weights wA = wB = -0.35Vset, and wL = 0.35Vset. Note that wA and wB are negative, and wL is 

positive, consistent with the signs of inequalities in Eqs. (S1) and (S2) being opposite. 

The values of the internal node potential Vint and the state variable Y = SiGiwi for various input 

configurations of A and B are the following: 

Input (A,B) Vint/Vset Y/(GLRSVset) 

(0,0) 0 0.49 

(0,1), (1,0) 0.29 0.14 

(1,1) 0.41 -0.21 

Therefore, only for the case (1,1), the state variable Y is negative, while for all other cases, 
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there is Y > 0, thus inducing set transition with C’ = 1, which is consistent with the NAND 

operation. 

 

The domain of set transition for NOR function is A + B - 1/2 < 0, so 

GA + GB – GLRS/2 < 0,        (S7) 

Comparing Eqs. (S7) and (S2), we get: 

    wA = wB < 0      (S8) 

    wL = -wA/(2GL/GLRS)     (S9) 

Following the weight definition in Eq. (3), we obtain: 

    VA = VB      (S10) 

    VC = VA/(1+2GL/GLRS) + Vset    (S11) 

A possible solution is GL = 1.4GLRS, VA = VB = 0.5Vset and VC = 1.1Vset, which yields synaptic 

weights wA = wB = -0.4Vset, and wL = 0.1Vset. The load resistor is set as the same with NAND 

function for simplicity. Note that wA and wB are negative, and wL is positive, which are 

consistent with the signs of inequalities in Eqs. (S7) and (S2) being opposite. 

The values of the internal node potential Vint and the state variable Y = SiGiwi for various input 

configurations of A and B are the following: 

Input (A,B) Vint/Vset Y/(GLRSVset) 

(0,0) 0 0.14 

(0,1), (1,0) 0.21 -0.26 

(1,1) 0.29 -0.66 

Therefore, only for the case (0,0), the state variable Y is positive, thus inducing set transition 

with C’ = 1, which is consistent with the NOR operation. 

 

The following explains how we choose the conductance of load resistor for NAND operation. 

For NAND logic gate, the two input RRAM are applied with the same voltage, VA = VB. For 

input of (01) or (10), Vint = VAGLRS/(GL + GLRS), while for input of (11), Vint = 2VAGLRS/(GL + 

2GLRS). For a specified VA, to maximize the difference between the two Vint is to find out the 

maximum for the function below 

 (S12) 

Differentiating the equation, the maximum is found to locate at  

 

Therefore, the conductance of load resistor for NAND function is set as GL = 1.4GLRS.

( ) 2 1
2 1

f x
x x

= -
+ +

max 2 1.4x = »
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Table S1. Summary of the 14 linearly separable Boolean logic functions which can be 
realized in one step with the neural network concept, and also (from left to right) their 
input/output characteristics, the overall number of input/output resistive switching devices, 
the voltage values to tune the synaptic weight according to the decision boundaries, and the 
VA range which prevents unwanted changes of the input state. The true and false logic 
functions correspond to the set and reset operations, respectively, thus only one device is 
needed. The 2 propositions and the 2 negations each involve 2 devices, one for the input, and 
the other for the output. The other 8 logic functions involve 3 devices, namely 2 for the input 
and 1 for the output. Specific voltages are provided based on the decision boundary for each 
function. It is defined that gL = GL/GLRS, where GLRS is the conductance of LRS. The range of 
VA is calculated to enable correct logic operations while preventing changes in the input states 
during logic operations. Approximately, the VA range is (0, Vset) for logic operations of NOT, 
NAND, NOR, IMP and C-NIMP, and (Vreset, 0) for proposition, AND, OR, C-IMP and NIMP. 
To comply with the Vset variation of the output device, VA should be chosen around the middle 
of the corresponding range. 
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Figure S5. a) Experimental demonstration of the NAND operation. b) Simulation results 
obtained with an analytical model for RRAM devices.[3] The simulation parameters, including 
the values of the applied voltage during read and during the logic operation, the pulse widths, 
the load resistor conductance, are consistent with the experimental values. Very similar output 
states and currents are seen in the simulations and the experiments. 
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Figure S6. Same as Figure S5, but for the NOR operation. 
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Figure S7. Same as Figures S5 and S6, but for the XOR operation. The linearly non-separable 
XOR was conducted by NIMP and following C-NIMP on the input RRAM A and B. The 
simulation results for the current response during the read and logic operations match the 
experimental data very well. 
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Figure S8. Calculated Y = SiGi(VC-Vi-Vint) as a function of the configuration of the 4 input 
values (A, B, Cin, Cout) in computing sum (S) in the 1-bit FA. The full symbols and open 
symbols represent the output S being 1 and 0, respectively. Note that Y is larger than 0 for all 
configurations where the output S should be 1, which is marked as a full symbol in the figure, 
thus evidencing that S is a linearly-separable function of the inputs. The weights for each 
input is wA = wB = wCin = 0.52Vset, wCout = -0.88Vset. The load resistor has a conductance GL = 
0.83GLRS, leading to a weight wL = -0.48Vset. The corresponding voltages are VA = VB = VCin = 
-Vset, VCout = 0.4Vset, and VS = 0.52Vset. 
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Figure S9. Same as Figure S7, but for the 1-bit FA operation. The 2 output variables are 
computed in 2 steps, namely Cout = majority (A, B, Cin) in the first step, followed by S in the 
second. The linearly-separable function to compute S is reported in Figure S8. The simulation 
results for the current response during the read and logic operations match the experimental 
data very well. 
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Figure S10. Calculated maximum Vset variation as a function of the load resistor conductance 
GL normalized to GLRS, for all logic operations demonstrated in this work. To calculate the 
maximum Vset variation, we assumed a resistance ratio between HRS and LRS of 100 (Figure 
S1). For a set of voltages Vi applied to the input devices and a specified load resistor GL, the 
range of voltage on the output device that guarantees the correct operation without switching 
at the input RRAM was calculated. Half of the voltage range was taken as the maximum Vset 
variation for the given voltages and load resistance. For different load resistances 
(0.1<GL/GLRS<5), a curve of maximum Vset variations as a function of load resistance can be 
obtained. For different sets of voltages applied on input devices, different curves will be 
obtained, with the representative results reported in the figure. 
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Figure S11. Calculated maximum LRS variation as a function of the load resistor 
conductance GL normalized to GLRS, for all logic operations demonstrated in this work. The 
maximum variation dRLRS/RLRS is calculated by determining the LRS resistance range (RLRS-
dRLRS, RLRS+dRLRS), in which the logic operations for all input configurations are correct for 
any LRS resistance value. For a set of voltages Vi applied to the input devices and a specified 
load resistor GL, the maximum LRS variation was calculated. For different load resistances 
(0.1<GL/GLRS<5), a curve of maximum LRS variations as a function of load resistance can be 
obtained. For different sets of voltages applied on input devices, different curves will be 
obtained, with the representative results reported in the figure. For NOR operation, the LRS 
variation can be very large, but only for the positive direction. 
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