This is the post peer-review accepted manuscript of:

Daniele Cattaneo, Antonio Di Bello, Stefano Cherubin, Federico Terraneo, Giovanni Agosta
Embedded Operating System Optimization through Floating to Fixed Point Compiler Transformation
Euromicro Conference on Digital System Design

Aug 2018, Prague, Czech Republic.

The published version is available online at: https://doi.org/10.1109/DSD.2018.00042

(©2018 ACM. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works.

Embedded Operating System Optimization through
Floating to Fixed Point Compiler Transformation

Daniele Cattaneo, Antonio Di Bello, Stefano Cherubin, Federico Terraneo and Giovanni Agosta
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
Milano, Italy
Email: daniele3.cattaneo@mail.polimi.it antonio.dibello@mail.polimi.it
stefano.cherubin @polimi.it federico.terraneo@polimi.it agosta@acm.org

Abstract—Architectures targeted at embedded systems often
have limited floating point computation capabilities, and in many
cases do not provide any hardware support. In this work, we pro-
pose a self-contained compiler transformation pass implemented
within LLVM to perform floating point to fixed point conversion.
This pass is used to optimize the scheduler of the MIOSIX!
embedded real-time operating system. We compare the proposed
approach with the original floating point implementation, a hand-
tuned fixed point one, and a solution based on a C++ library
for fixed-point arithmetic. Our solution achieves speedups with
respect to original floating point implementation up to 3.1 x.

Index Terms—Compilers, Fixed Point, Task Scheduler

I. INTRODUCTION

Due to area and power constraints, most embedded architec-
tures either do not provide hardware support for floating point
computation or provide limited support. The solution is to
convert floating point code to its fixed point equivalent, which
is however a time-consuming and error-prone task. Several
methodologies and tools to automate this conversion have
been proposed [1]-[4], but such tools usually carry the burden
of complex frameworks that are designed to support specific
architectures or programming languages — usually ANSI C.

However, the embedded system environment is evolving to
support a wider range of programming paradigms, driven by
changes including the Internet of Things and Industry 4.0.
Support for more modern native programming languages such
as C++ is already being provided by mainstream platforms
such as Arduino and MBED. As a result, an increasing number
of embedded applications make use of features and paradigms
not supported by ANSI C.

To overcome this limitation, we tackle the problem from
a language-independent point of view. Our solution is based
on the LLVM compiler framework [5], and performs the
floating to fixed point conversion at the LLVM-IR level. The
compiler frontend and backend are not changed, thus achieving
language and architecture independence.

As a case study for the proposed technique, we employ
the real time operating system MIOSIX. This OS is written
almost entirely in C++. It targets embedded systems, thus it
is a representative of the class of emerging embedded C++
codebases. Moreover, MIOSIX uses floating point code in the
scheduler. We can thus demonstrate the ability of our approach

Thttps://miosix.org

to support the case of converted code spanning across interrupt
service routines, a critical case for embedded systems.
This work provides the following main contributions:

1) An LLVM pass providing source language-independent,
target-independent floating- to fixed-point conversion;

2) An optimised version of the M10SIX task scheduler, and
its assessment on three ARM-based embedded develop-
ment platforms.

II. ANALYSIS OF THE CASE STUDY

MI0SIX is a real time OS targeting embedded system. The
kernel is used as a platform for academic research, such as to
design clock synchronization solutions [6] and schedulers.

Focusing on the scheduler, the kernel supports different
scheduling algorithms, one of which is based on control
theory [7] and uses floating point operations. This scheduler is
the subject of our optimization. The goal of the control-based
scheduler is to guarantee on average to each task the CPU
share the programmer assigned to it. Scheduling is performed
in rounds, at the end of which a control-theoretical regulator
is run to compute the next execution time for each task, using
the time previously used by tasks to provide feedback.

For each task, a floating point variable alfa represents its
CPU share set point. Two different operations involve compu-
tations on alfa. The IRQrecalculateAlfa () function
is called whenever the CPU distribution requirements change.
It partitions the scheduling round among threads. It gives a
higher share to those with higher priority whilst it keeps the
invariant), alfa; = 1 where T is the set of tasks to be
scheduled. The function TRQrunRegulator () is instead
called by the context switch interrupt service routine, and
implements the control theoretical regulator.

To be able to guarantee that no overflows will occur in
the fixed point computation, we perform a range analysis of
the algorithm. Figure 1 shows the analysis result, restricted to
the relevant part of the MIOSIX scheduler. Certain variables
such as the measured CPU time burst of each tasks have well
defined ranges, while for the maximum number of tasks and
priorities we set a limit to 64 for the fixed point conversion.

Based on these assumptions it is possible to compute the
initial range of values for each of the involved variables.

https://miosix.org

priority #threads burst
=031 5Sbit [0:64] 6bit [0;8191113 bit
< 1
[1;,64] 6 bit [0;,524224] 19 bit

O00000N00000000000N000OCoCE O0D00000000OCNEN AREEEEEERE RRRRRE

alfa
[0;4096] 12 bit

O00000DO000O00OOOCCONNEEEEEERERE

[0;1048448] 20 bit

O0D0000DOOOCNARNEREEEEEEREERRRRE

[0;4294&43008] 32 bit

Fig. 1: Data flow analysis of the floating point values used in
a fragment of the M10SIX scheduler. For each node we report
the range and the minimum data width required.

III. PROPOSED SOLUTION

We propose a solution to transform a given portion of float-
ing point code into semantically equivalent code that exploits
fixed point computation. In this work we specifically target
the scheduler component of the MIOSIX operating system.

We rely on the LLVM compiler framework (version 4.0.0)
and on its front-end CLANG (same version). We aim at ap-
plying the floating point to fixed point transformation without
the need to customize the compiler. Our proposed solution
exploits only on the compiler middle-end APIs which can be
invoked through pluggable external modules called passes.

In this scenario, we ask the programmer to selectively
annotate the source code via custom annotate attributes
on floating point variables. This allows the programmer to
focus only performance-critical code, without affecting the
correctness of the rest of the program. Those attributes are
properly parsed by the vanilla compiler front-end. Our com-
piler pass collects those annotations in the middle-end and
properly propagates them to intermediate values. Then, it
creates instructions based on fixed point arithmetic which are
semantically equivalent to the original floating point code.
After the conversion, we compile the converted code for the
target architecture and we integrate the object code into the
MI0SIX build system.

A. Annotations of the Source Code

Annotations specify which floating point variables should
be converted to fixed point type, and provide hints to the later
stages about requirements on desired precision or data width.
These informations should be attached to a variable declaration
via the annotate attribute.

Listing 1 shows an example of annotation, indicating that
variables a and b should be represented with fixed point
numbers. Every instruction that uses them is transformed to an
equivalent sequence of instructions that uses fixed point num-
bers: namely, the assignment to a on line 5, the assignment to
b on line 6 and the addition on line 7. Moreover, the annotation

on b variable should be propagated also to all the floating point
uses in its data flow. As a result, the multiplication on line 6
is now transformed to a fixed point operation, whilst it was
left unchanged in the previous case on line 5.

1 float a _ attribute((annotate ("no_float")));

2 float b __ attribute(

3 (annotate ("force_no_float, 24, 8_unsigned")));
4 int c = 98;

5 a=c¢x* 2.0;

6 b=cx 2.0;

7 a += 10.0;

Listing 1: Example of annotated C code where the programmer
is asking to transform the variables a and b to a fixed
point representation using our solution. The c variable is
unaffected in the first multiplication, whilst in the second one
is transformed to perform a fixed point operation.

As shown in the example,
specify additional parameters to the conversion pass.
The "force_no_float" keyword, used instead of
"no_float", specifies that computations that are not part of
the data flow of the variable but whose result is used by the
annotated variable should be annotated as well. The number of
integer bits and the number of fractional bits to be used in the
fixed point representation can also be explicitly included in the
annotation. Finally, it is possible to use an unsigned fixed point
representation instead of the default signed representation.

In the annotation of the MIOSIX kernel control scheduler,
we exploit the propagation of annotations to limit the number
of manual annotations to six variables and three constants.

the programmer may

B. LLVM Conversion Pass

Our solution transforms the LLVM-IR as if a type change to
fixed point was performed in the original source code, and it
preserves the original semantic meaning of the code as much
as possible. First, we collect the set of instructions which need
to be transformed by the algorithm. Then, we perform a data
flow analysis to compute the minimum data width required
by each value. Finally, the transformation is performed by
generating fixed point code equivalent to the original floating
point one.

1) Annotation Propagation and Data Flow Analysis: In
this first step, we collect all the variables annotated by the
programmer. Then, we enqueue for transformation the LLVM
instructions that are part of the tree rooted in the instructions
which define the annotated variables. When it comes to forced
variables we also consider for conversion all the floating
point values whose floating point descendants are used by
the instructions in the aforementioned tree. Given the initial
annotations, we can derive through a data flow analysis the
data width required by each intermediate value.

It is worth noticing that an additional constraint in the
selection of the data width comes from dynamic structures.
Dynamically allocated structures are handled by choosing
fixed point representations having the same size of the cor-
responding floating point values. This allows us to preserve

the structure size. Then, we change the type of the pointers to
the dynamically allocated structure or arrays.

Figure 1 shows an example of the result of the data flow
analysis applied to the source code of MIOSIX, with the limit
of 32 bit data width for the representation of dynamically
allocated values.

2) Transformation: Once the queue has been created, every
instruction in it is converted to one or more new instructions
to use fixed point arguments and arithmetic.

When the pass meets an instruction with no known con-
version, to guarantee the semantic equivalence, it restores the
original data type and leaves the instruction unchanged. In the
scheduler code there are no unsupported instructions.

For the case study, there is no need to consider floating
point values which do not have a fixed point representation —
such as NaN and +inf — as the value range analysis ensures
they are not eligible values for any of the variables.

IV. EXPERIMENTAL EVALUATION

We compare our proposed solution against three other
alternatives: a fixed point C++ header library, a manual porting
of the algorithms from floating point to integer arithmetic, and
the original floating point implementation. In the rest of this
section we refer to our solution as the LLVM pass version.

We call reference version the implementation that exploits
floating point variables and arithmetic. Note that for architec-
tures without hardware floating point support, MIOSIX relies
on the default GCC software floating point emulation support.

We also generate a manually ported and optimized version
of the original algorithm, using only integer arithmetic. We
refer to this optimized version as the manual version.

Finally, we also convert the floating point code into fixed
point equivalent code by exploiting a template-based C++
library that provides an implementation of both signed and
unsigned fixed point data types. This is an open-source li-
brary 2 which is designed for approximate computing purposes
in HPC [8] as part of the ANTAREX project [9], [10]. We refer
to this version as the C++ [ib version.

All the aforementioned conversion approaches require the
software developer some effort to be applied. We quantify such
effort in terms of newly inserted or modified lines of code
(LOCs). The manual version requires a complete rework of the
scheduler component. It represents the most costly solution in
terms of LOCs to be modified. The C++ [lib solution requires
the insertion of 10 LOCs, and the modification of 6 LOCs.The
LLVM pass solution requires the insertion of attributes near the
floating point variables to characterize their initial value range.
This procedure costs 9 LOCs and represents the lowest-effort
solution.

A. Hardware Setup

We selected two representative off-the-shelf development
boards among those supported by M10SIX, one without float-
ing point hardware support, and one with single precision
floating point hardware support:

2source code available at https://github.com/skeru/fixedpoint

£207 An STM3220G-EVAL board featuring a 120MHz ARM
Cortex M3 microcontroller without hardware floating
point support. This board has 1 MByte of on-chip flash
memory from which code is executed, and 2 MByte of
off-chip SRAM used for the kernel and application data.

469 An STM32F4691-DISCO board featuring a 168MHz
ARM Cortex M4 microcontroller which has hardware
support for single precision floating point. This board has
2 MByte of on-chip flash memory from which code is
executed, and 16 MByte of off-chip SDRAM used for
the kernel and application data.

Ipc2138 A development board featuring a 59MHz
ARM7TDMI microcontroller without hardware floating
point support, using the ARM 32 bit instruction set
rather than the mixed 16/32 bit instruction encoding
Thumb?2 instruction set of the other two boards. The
board has 512 KB of on-chip flash memory from which
code is executed, and 32 KB of on-chip SRAM.

B. Software Setup

For each board we run two series of experiments. We run
all of the above mentioned versions of the scheduler with
the Hartstone uniprocessor benchmark suite [11] and with
benchmarks from the MiBench suite [12]. We rely on the
official compiler of the MIOSIX toolchain, which is GCC
4.7.3 with some minor patches to the standard library, and
on its default compiler optimization set enabled by the —03
optimization level. Our solution compiles only the scheduler
component via CLANG 4.0.0 with the same optimization level,
and it integrates the compiled scheduler within the original
MIos1iX compiler toolchain. To measure the time spent in
the scheduling functions that have been affected by the trans-
formation, we added a device driver that interfaces with a
hardware timer/counter. The counter was clocked at the max-
imum frequency possible, corresponding to a timestamping
resolution of two CPU clock cycles. To measure the execution
time of the whole benchmark, we instead relied on standard
C++ library APIs.

C. Result Analysis

In Section III we described how the LLVM pass solution
relies on the LLVM compiler framework and it uses CLANG as
compiler frontend for the C++ language. However, MIOSIX is
ordinarily compiled using a slightly customized GCC toolkit.
Thus, in Figure 2 we use the reference version compiled
with GCC as baseline to measure the speedup of the other
versions. On the other hand, as GCC and CLANG are different
compilers as for design and implementation, we use both of
them to compile the other versions to evaluate the performance
differences due solely to the compiler.

We find that both CLANG and GCC produce code with
negligible performance differences, except in two cases. First,
the reference version is generally slower when compiled with
CLANG than with GCC due to the differences between the
architectural model used by LLVM and GCC. Second, the
IRQrecalculateAlfa function in the C++ [lib version is

https://github.com/skeru/fixedpoint

[469

304 3 f207
I Ipc2138
2.5
Q
3 204
he]
0]
(]
Q 1.5
»
1.0
0.5 4
0.0 -

clang clang clang gcc gce clang
reference ct++lib manual c++lib manual pass

version

3.5
[469

(a) Speedup of IRQrunRegulator during the MiBench benchmark.
30 I f207
BN Ipc2138

clang clang clang gce gce clang
reference ct++lib manual ct++lib manual pass

version
(c) Speedup of IRQrunRegulator during the Hartstone benchmark.

35

1 469
304 EE f207
B Ipc2138

g
=}
L

speedup
&

0.5

0.0 -

clang
reference

clang
c++lib

clang gce gce clang
manual c++lib manual pass

version
(b) Speedup of IRQrecalculateAlfa during the MiBench benchmark.

35
C 1469
304 EEE f207
BN Ipc2138

0.0 -

clang
reference

clang
c++lib

clang gce gce clang
manual ct++lib manual pass

version
(d) Speedup of IRQrecalculateAlfa during the Hartstone benchmark.

Fig. 2: Average speedup of the fixed point versions of the IRQrunRegulator and IRQrecalculateAlfa methods
compared to their reference version compiled with GCC, measured during the execution of the MiBench benchmark and the
execution of the Hartstone benchmark. The speedup has been computed as the average execution time of one call to each
non-reference version, divided by the average execution time of one call to the reference version.

slower when compiled with GCC with respect to the same code
when it is compiled using CLANG, because we observe differ-
ent machine-independent optimizations. In particular, the C++
lib version creates a multiplication with two 64 bit integers
operands. Those operands are 32 bit values which have been
sign-extended to avoid precision loss. CLANG optimizes this
pattern of multiplication to a 32 bit by 32 bit operation with
a 64 bit result, whilst GCC does not. Indeed, GCC produces
a 64 bit by 32 bit multiplication with a 64 bit result. Thus,
the use of CLANG over GCC gives a slight advantage in very
specific conditions while it becomes a disadvantage in other
conditions. For this reason we show data both for CLANG and
GCC.

When it comes to using the execution time as a qual-
ity indicator, the most important method to consider is
IRQrunRegulator, as it runs every scheduling round.The
IRQrecalculateAlfa method is run only once every
workload change. Thus, it has a minor impact on real-world

applications.

In Figure 2a and in Figure 2c we show the speedups mea-
sured on IRQrunRegulator. Values refer to the average
time spent while executing IRQrunRegulator. We run
each version 10 times and we report the speedup measured
on the median value. We observe the speedup achieved by the
fixed point representation is consistent across the two sets of
benchmarks. We get a slowdown on the £469 board as that
board has support for hardware floating point, and thus we
are effectively measuring the overhead intrinsic to fixed point
computations. On the £207 board, we measure a consistent
speedup of roughly 1.5 to 1.8 times for all fixed point versions.
Among the fixed point implementations, the C++ [ib version
and the pass version are equivalent, and they place only sightly
below the manual version. Finally, the 1pc2138 board is the
one which benefits of the highest speedup, roughly up to 3.3
times. This is due to the ARM7TDMI CPU architecture, which
features a more limited pipelining with respect to the Cortex

architecture.

In Figure 2b and in Figure 2d we show the speedups
measured on IRQrecalculateAlfa. Similarly to the pre-
vious case, the results are consistent across the two set of
benchmarks. On the £207 and 1pc2138 boards the fixed
point versions achieve speedups of roughly 1.2 times (for the
£207 board) and roughly 1.7 times (for the 1pc2138 board).
We also achieve small speedups for the £469 board, up to 1.1
times. The C++ [ib version compiled with GCC is an outlier
because of a missed optimization, as previously discussed.
Overall, the manual version always sightly exceeds both the
C++ lib version and the pass version, due to inter-procedural
optimization performed by hand.

The assembly code generated by the C++ [ib version
compiled with CLANG and the code generated by the LLVM
pass version are identical for all the boards, except for very
small optimizations. Performance-wise, the difference between
these two versions is always less than the timer resolution.

Finally, we evaluate the fixed point based solutions over the
functional properties of the scheduler being discussed, which
must not be invalidated. To this end we compare the quality
metrics reported by the Hartstone benchmark, which represent
the number of iterations before at least one thread misses a
deadline. These indicators are consistent with the reference
version for every fixed point version.

V. RELATED WORKS

The conversion of code designed for embedded system from
floating point to a fixed point equivalent version is a long-
established problem. A method to convert floating point ANSI
C code into equivalent fixed point code are described in [2]
and [4], but neither approach supports C++ code.

The ID.Fix plugin [13] of the GeCoS framework [1] has
also been employed to provide a proof of concept for the
case of co-optimization of fixed point data type width and
SIMD operation when converting floating to fixed point arith-
metic [14]. GeCoS, howeyver, is primarily an interactive design
environment targeting custom hardware, rather than a full
compiler. As such, it is not easy to use in the context of
embedded software development.

Compared to the tools reported above, ours relies on a state-
of-the-art compiler framework — LLVM— which makes it more
suitable for adoption in real-world applications.

VI. CONCLUSIONS

In this work, we present a source language-independent
and target-independent method for performing floating to
fixed point conversion through a compiler pass, and exert the
resulting toolchain to optimise the performance of the task
scheduler of the MIOSIX real time operating system.

As a result, we achieve a reduction of the overhead imposed
by the operating system for task scheduling operations by up to
3.1 times when compared with the original floating point im-
plementation, and an overhead of less than 9% when compared
to a manually optimized fixed point implementation of the
same algorithm. Our solution reaches the same performance

of the language-dependent library version — which represents
the most common approach adopted in the state of the art —
with less effort from the programmer and better precision over
constant propagation.

Future directions include the design of a more comprehen-
sive dataflow analysis allowing the estimation of error, and an
early estimation of performance improvements.

ACKNOWLEDGEMENTS

This work is partially supported by the European Union’s
Horizon 2020 research and innovation program under Grant
agreements No.671623 FET-HPC ANTAREX and No 671668
FET-HPC MANGO. Authors would like to thank STMicro-
electronics which provided the boards f207 and f469.

REFERENCES

[11 A.Floc’h et al., “GeCoS: A framework for prototyping custom hardware
design flows,” in 2013 IEEE 13th Int’l Working Conf on Source Code
Analysis and Manipulation (SCAM), Sept 2013, pp. 100-105.

[2] M. Willems, V. Biirsgens, H. Keding, T. Grotker, and H. Meyr, “System
level fixed-point design based on an interpolative approach,” in Proceed-
ings of the 34th Annual Design Automation Conference, ser. DAC "97.
New York, NY, USA: ACM, 1997, pp. 293-298.

[3] R. Nobre, L. Reis, J. a. Bispo, T. Carvalho, J. a. M. P. Cardoso,
S. Cherubin, and G. Agosta, “Aspect-driven mixed-precision tuning
targeting gpus,” in PARMA-DITAM 2018, Jan 2018.

[4] K.-I. Kum, J. Kang, and W. Sung, “Autoscaler for c: an optimizing
floating-point to integer ¢ program converter for fixed-point digital signal
processors,” IEEE Transactions on Circuits and Systems 1I: Analog and
Digital Signal Processing, vol. 47, no. 9, pp. 840-848, Sep 2000.

[5] C. Lattner and V. S. Adve, “LLVvM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in CGO, 2004, pp. 75—
88.

[6] F. Terraneo, A. Leva, S. Seva, M. Maggio, and A. V. Papadopoulos,
“Reverse flooding: Exploiting radio interference for efficient propagation
delay compensation in WSN clock synchronization,” in 2015 IEEE
Real-Time Systems Symposium, RTSS 2015, San Antonio, Texas, USA,
December 1-4, 2015, 2015, pp. 175-184.

[71 M. Maggio, F. Terraneo, and A. Leva, “Task scheduling: a control-
theoretical viewpoint for a general and flexible solution,” Transactions
on Embedded Computing Systems, vol. 13, no. 4, pp. 1-22, 2014.

[8] S. Cherubin, G. Agosta, I. Lasri, E. Rohou, and O. Sentieys, “Implica-
tions of Reduced-Precision Computations in HPC: Performance, Energy
and Error,” in Int’l Conf on Parallel Computing (ParCo), Sep 2017.

[9] C. Silvano, G. Agosta, S. Cherubin et al., “The antarex approach to au-

totuning and adaptivity for energy efficient hpc systems,” in Proceedings

of the ACM International Conference on Computing Frontiers, ser. CF

’16. New York, NY, USA: ACM, 2016, pp. 288-293.

C. Silvano, A. Bartolini, A. Beccari, C. Manelfi, C. Cavazzoni, D. Ga-

dioli, E. Rohou, G. Palermo, G. Agosta, J. Martinovic, J. Bispo, J. M. P.

Cardoso, J. Barbosa, K. Slaninovd, L. Benini, M. Palkovi¢, N. Sanna,

P. Pinto, R. Cmar, R. Nobre, and S. Cherubin, “The ANTAREX Tool

Flow for Monitoring and Autotuning Energy Efficient HPC Systems,” in

SAMOS 2017 - Int’l Conf on Embedded Computer Systems: Architecture,

Modeling and Simulation, Pythagorion, Greece, Jul. 2017.

N. H. Weiderman and N. I. Kamenoff, “Hartstone uniprocessor bench-

mark: Definitions and experiments for real-time systems,” Real-Time

Systems, vol. 4, no. 4, pp. 353-382, Dec 1992.

M. R. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE

International Workshop on Workload Characterization. WWC-4 (Cat.

No.01EX538), Dec 2001, pp. 3-14.

N. Simon, D. Menard, and O. Sentieys, “ID.Fix-infrastructure for the

design of fixed-point systems,” in University Booth of the Conference

on Design, Automation and Test in Europe (DATE), vol. 38, 2011.

A. H. El Moussawi and S. Derrien, “Demo: SLP-aware word length

optimization,” in 2016 Conference on Design and Architectures for

Signal and Image Processing (DASIP), Oct 2016, pp. 233-234.

[10]

[11]

[12]

[13]

[14]

	Introduction
	Analysis of the Case Study
	Proposed Solution
	Annotations of the Source Code
	llvm Conversion Pass
	Annotation Propagation and Data Flow Analysis
	Transformation

	Experimental Evaluation
	Hardware Setup
	Software Setup
	Result Analysis

	Related Works
	Conclusions
	References

