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Abstract

Distribution grids probabilistic analysis is an essential step in order to assess the

daily network operability under uncertain and stress conditions. It is also func-

tional to the development of new services that require load growth capacity or

to the exploitation of new energy resources affected by uncertainty. Efficient nu-

merical tools able to forecast the possible scenarios while accounting for loads

and sources uncertainty are thus of paramount importance. The majority of

available uncertainty-aware predictive tools are based on Monte Carlo analysis

which allows probabilistic evaluations of the network state at the price of time

consuming simulations. In this paper, a much more efficient simulation frame-

work is presented. The proposed approach relies on the generalized Polynomial

Chaos algorithm and deterministic Power Flow analysis and allows achieving an

at least 100× acceleration compared to standard Monte Carlo analysis for the

same accuracy.
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1. Introduction

Distribution networks probabilistic analysis is key to the development of new

services and ways to exploit the electrical infrastructures. Most of such new

services are associated to the low-voltage (LV) distribution network. Promising

services are those related to the charging of vehicles, the decentralization of re-5

sources and the diffusion of new consumption patterns [1]. The widespread diffu-

sion of such facilities is expected to introduce a significant variability/uncertainty

of power load profiles compared to those of conventional users. For instance,

the increase of electric vehicles, especially considering their usage as storage

systems, will presumably stress the physical limits (e.g., the maximum current10

capability) of the lines. Due to the limited number of monitoring devices that

are commonly deployed along the LV feeders, a comprehensive view of the over-

all network state requires the support of effective computational tools able to

predict bus voltages and line currents under variable loading conditions [2, 3, 4].

Computational tools should be able to deal with the uncertainty of power loads15

and the trends of variation [5, 6, 7]. These techniques, commonly referred to

as Probabilistic Load Flow (PLF) analysis, consist in using appropriate proba-

bilistic models for the power load profiles as well as in replacing deterministic

load flow simulation with statistical Monte Carlo (MC) analysis.

In order to account for the interplay of many independent uncertain loads20

(i.e. variations in the active power demands at the different phases of the net-

work) a great number of MC runs is needed to achieve a satisfactory statistical

description. In fact, even though loads uncertainty can commonly be modeled

as Gaussian distributed parameters [8] the nonlinear nature of the load flow

problem leads to state variable variations, e.g. maximum voltage at nodes or25

lines current, that are nonGaussian-distributed. In this case, the statistical in-

formation about mean value and variance of an electric variable is not enough

to describe it properly and the detailed Probability Density Function (PDF)

shape is required for further meaningful inferences. The accurate determination

of PDF with MC method can require tens of thousands load flow analyses thus30
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becoming very time consuming. Other approximate techniques for PLF analy-

sis exhist, such as the Point Estimate method and the Cumulant Tensor (CT)

[9, 10, 11, 12, 13, 14, 15]. However, commonly such techniques do not provide

the detailed PDF shape which is instead required in our analysis.

In order to address the above issues, in this paper we describe an innovative35

approach to PLF analysis which is based on generalized Polynomial Chaos (gPC)

algorithm and Stochastic Testing (ST) method [16, 17, 18, 19]. The relevant

features of the proposed approach are: a) the implementation of the gPC+ST

method does not need to modify the code of the deterministic load flow solver

employed; b) gPC+ST method allows handling strongly nonlinear problems, as40

it is the case for PLF formulated in terms of node voltages and powers, and

with many independent statistical parameters.

In this paper, we provide the following original contributions:

1. we present in an intuitive way the application of the gPC+ST method

to the PLF problem by considering data-based uncertainty in the load45

profiles;

2. we describe a simulation framework where the gPC+ST algorithm, im-

plemented in Matlab, is interfaced with the deterministic load flow solver

OpenDSS [20, 21], to prove how the metodology is not-invasive and doesn’t

require a direct access to the simulation kernel;50

3. we show how the proposed method can be exploited to predict the de-

tailed probability distribution of monitor variables (e.g. Voltages, Cur-

rents, Voltage Unbalance or whatever else is needed to be observed) in the

IEEE European low voltage test feeder while accounting for the interplay

of variability in the three phase loads.55

The above contributions are organized as follows. In Sec. II, we review some

background material about deterministic load flow analysis and its probabilistic

extension with Monte Carlo method. In Sec. III, we describe load uncertainty

modeling while in Secs. IV and V, we illustrate the gPC method and its compu-

tation details. The implementation and simulation frame are discussed in Sec.60
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VI. Finally, Secs. VII and VIII report details about the considered test network

and the related numerical results.

2. Background material: Probabilistic Load Flow with Monte Carlo

method

2.1. Deterministic Load Flow65

We consider the model of a distribution network made of N buses, repre-

sented by nodes, and connected by Nl lines described by their impedances. At

each candidate node (a candidate is a node of the network in wich we assign

the power load profile), equipment are connected that may supply or remove

power from the electric network. This is described by power profiles assigned to

the candidate nodes (e.g it is possible to choose the number of the nodes sub-

jected to the variation). Deterministic load flow analysis consists in calculating

Voltages and Currents by solving a set of nonlinear equations of the type:

Fn(~V) = Sn −Vn

N
∑

i=1

YniV
∗

i = 0 (1)

for n = 1, . . . , N . In (1), Sn = Pn + jQn denotes the complex power at node

n where Pn and Qn are the active and reactive powers respectively, Vn is the

node voltage phasor, while Yni are the entries of the bus admittance matrix.

Node voltage phasors are collected into vector ~V.

Network terminations are specified at the buses by imposing the known70

active and reactive powers Pn, Qn absorved or delivered by loads. Load con-

ditions vary in time and thus the associated powers become function of time,

Pn(t), Qn(t). Let us consider a given time window (e.g. a day or a week), that is

discretized into a sequence of Ntimes equally-spaced time instants tm = m ·∆t,

over which the load profiles are given. Node voltage waveforms Vn(t) are calcu-75

lated by repeatedly solving the nonlinear problem (1) over the sequence of time

instants tm. In doing that, the network state computed at time tm is used as

the solver initialization at next time tm+1.

4

gruosso
Casella di testo
https://doi.org/10.1016/j.ijepes.2018.10.023



2.2. Monte Carlo analysis

Statistical fluctuations and uncertainty of loads can be accounted for by in-80

cluding into the load flow analysis a set of l stochastic parameters ξr that can

be collected in the vector ~ξ = [ξ1, ξ2, . . . , ξl]. More details about probabilis-

tic load modeling will be provided in the next section. Mathematically, each

ξr is a zero-mean stochastic variable described by a given Probability Density

Function (PDF) ρr(ξr) [22]. Due to the uncertainty of the power loads applied85

to the candidate nodes , each observable variable describing the state of the

network at time t, e.g. the magnitude of the nth node voltage Vn(t) = |Vn(t)|,
becomes a stochastic variable that depends on the uncertainties vector, i.e.

Vn(t, ~ξ) = |Vn(t, ~ξ)|. In conventional MC implementations, the statistical de-

scription of Vn(t, ~ξ) is achieved by generating a very large number Nmc of un-90

certainty vectors ~ξ1, ~ξ2, . . . , ~ξNmc according to the joint probability distribution

of variables in ~ξ. At time instant tm, For each vector ~ξk, the physical quantity

Vn(t, ~ξ), sampled in time over the tm, can be evaluated by running one deter-

ministic LF analysis. As the number Nmc of evaluations grows, at limit tending

to infinity, the distribution of values provided by LF analyses tends to the sta-95

tistical distribution of Vn(t). However, due to the slow 1/
√
Nmc convergence

rate of MC method, the number of repeated LF simulations actually needed to

obtain a satisfactory statistical description of Vn(t) (i.e., the detailed shape of

its PDF) can be very large. The PLF problem is made particularly critical by

the nonlinear nature of equations (1). In this case in fact, Gaussian-distributed100

parameters can result in network state variables Vn(~ξ) being not Gaussian dis-

tributed. A qualitative example of non Gaussian-distributed variable is shown

in Fig. 1. The statistical inference about the variability interval (with a cer-

tain confidence level) of the network observable Vn(~ξ) requires the complete

information about PDF distribution and it cannot only rely on mean value and105

variance. As a result, even in the case of a few uncertainty parameters (e.g. 2

or 3), several tens of thousands deterministic LF analyses are required, making

MC approach time consuming.
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Variability Interval

PDF

Vn(~ξ)

Figure 1: Qualitative example of a nonGaussian-distributed state variable in the network:

the area beneath the curve, over a given interval, provides the probability for that variable of

falling within the interval.

3. Modeling load uncertainty

Current practice in probabilistic load modeling relies on an observational

approach where power profile datasets for different type of utilities, area, and

time periods are collected and analyzed in order to extract the relevant infor-

mation that should be reproduced in simulations. The theme of loads or energy

resources forecasting is a great issue that goes beyond the scope of this arti-

cle. There are several approaches to forecast load variation with most of them

being based on users behavior analysis [23, 24] or on historical data [25], that

could be used to improve the probabilistic analysis. Here we will suppose to

start from the loads presented in the IEEE European low voltage test feeder [26]

introducing for each of them, or for groups of loads, a variation described by a

statistical parameter. In order to account for the potential growth or reduction

in the power demand, we adopt the following expression for the active power at

nth node in the network:

Pn(t) = p0n(t) [1 + σp
n ξ

p] (2)

where p0n(t) is the nominal power profile. In (2), ξp denotes a zero-mean110

Gaussian-distributed statistical parameter having unitary variance, i.e. 〈ξp〉 = 0

and 〈(ξp)2〉 = 1 where 〈·〉 is the expectation operator. The parameter σp
n is a

scaling constant that determines the coefficient of variation.
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As a consequence, the active power is a stochastic process whose mean value

and standard deviation are given by [22]:

〈Pn(t) 〉 = p0n(t)

√

〈 (Pn(t)− p0n(t) )
2 〉 = σp

n p0n(t).

(3)

In the analysis that follows, we also consider uncertainty in the power factor

cos(φn) by adopting the following statistical model:

cos(φn) = cos(φ0
n)

[

1 + σφ
n ξφ

]

, (4)

where cos(φ0
n) is the nominal power factor at nth node while ξφ is a zero-mean

unitary-variance Gaussian-distributed statistical parameter and σφ
n is the scaling115

constant that determines the power factor degree of variability.

4. Uncertainty quantification with generalized Polynomial Chaos

We consider a probabilistic problem where the uncertainty in the load power

profiles is described by means of l stochastic parameters ξr modeling active

power and power factor variability as in (2) and (4), respectively. The gPG

method consists in adopting generalized polynomial chaos expansions for the

node voltages. Depending on the numerical technique used to solve the gPC

problem, the variables that have to be expanded can be all of the node voltages

(i.e. the complex phasors including magnitude and phase information) in the

network or a subset of them. In some cases, the variables that we need to

expand are limited to the quantities that we want to monitor: they may be the

magnitude of some node voltages or line currents at a given time or the peak

or minimum value assumed over the time window. In what follows, we will

generically denote as V (t, ~ξ) one of such variable. Under the mild hypothesis

that V (t, ~ξ) has finite variance (i.e. it is a second-order stochastic process), it

can be approximated by an order-β truncated series [16]

V (t, ~ξ) ≈
Nb
∑

i=1

ci(t)Hi(~ξ), (5)
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formed by Nb multi-variate basis functions Hi(~ξ) weighted by unknown poly-

nomial chaos coefficients ci(t). The main feature in expression (5) is that the

dependence of V (·) on the deterministic variable time, which is incorporated120

into coefficients ci(t), is separated by its dependence on statistical parameters

~ξ represented by basis functions Hi(~ξ).

Each multi-variate basis function is given by the product

Hi(~ξ) =
l

∏

r=1

φir (ξr) (6)

where φir (ξr) is a univariate orthogonal polynomial of degree ir whose form de-

pends on the density function of the rth parameter ξr. For instance, φir (ξr) are

Hermite polynomials if ξr is a Gaussian-distributed variable, while φir (ξr) are125

Legendre polynomials if ξr is a uniformly distributed variable. A complete list of

correspondence between several typical stochastic distributions and associated

orthogonal polynomials can be found in [16].

For a given number of parameters l and series expansion truncation order β,

the degrees ir of univariate polynomials in (6) forming Hi(~ξ) , for r = 1, . . . , l,

satisfy the following relation
l

∑

r=1

ir ≤ β. (7)

As an example, in Fig. 2, we report the case of two independent Gaussian-

distributed parameters ξ1 and ξ2 (i.e. l = 2) and for expansion order β = 3.

In this simple case, the basis functions are the product of couples of Hermite

polynomials

Hi(~ξ) = φi1(ξ1)φi2(ξ2) (8)

whose degrees are such that i1+i2 ≤ 3. In this example, the number Nb of basis

functions Hi(~ξ) is ten. For generic truncation order β and number of parameters

l, the number of gPC basis functions is given by [17]

Nb =
(β + l)!

β! l!
. (9)

Once the coefficients cj(t) are computed, (using one of the methods described

in the next section) the mean value and standard deviation of V (t, ~ξ) can easily130
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Univariate Hermite polynomials

Multi-variate gPC basis functions

φ0(ξ) = 1, φ1(ξ) = ξ, φ2(ξ) = ξ2 − 1, φ3(ξ) = ξ3 − 3ξ

Hj(ξ1, ξ2) ∈ {

φ0(ξ1)φ0(ξ2), φ0(ξ1)φ1(ξ2), φ0(ξ1)φ2(ξ2), φ0(ξ1)φ3(ξ2),

φ1(ξ1)φ0(ξ2), φ1(ξ1)φ1(ξ2), φ1(ξ1)φ2(ξ2),

φ2(ξ1)φ0(ξ2), φ2(ξ1)φ1(ξ2),

φ3(ξ1)φ0(ξ2) }

Figure 2: Univariate Hermite polynomials and the set of multivariate gPC basis functions for

the case of two Gaussian-distributed parameters ~ξ = (ξ1, ξ2) and truncation order β = 3.

be determined [17]. Furthermore, and even more importantly, the gPC expan-

sion (5) provides a compact model for the V (t, ~ξ) multi-dimensional dependence.

For each realization of the uncertainty vector ~ξ = [ξ1, ξ2, . . . , ξl], generated ac-

cordingly to the joint probability distribution of variables in ~ξ, the evaluation of

polynomials in Fig. 2 and gPC expansion (5) provides a realization of V (t, ~ξ).135

This enables repeated evaluations of V (t, ~ξ) for large numbers of uncertainty

vector realizations ~ξk in very short times (one million of evaluations take a few

seconds on a quad-core computer) and the determination of the detailed PDF.

5. Computing the gPC coefficients

There are two different mainstream approaches for computing the gPC ex-140

pansion coefficients in (5): Galerkin Projection and Collocation Method [27].

5.1. Galerkin Projection (GP)

Galerkin projection is an intrusive numerical technique that requires modi-

fying the LF code (1). According to this method, a gPC expansion of the type

9



(5) is adopted for each unknown nodal voltage Vn(t), i.e.

Vn(t, ~ξ) ≈
Nb
∑

i=1

cni (t)Hi(~ξ), (10)

leading to Nb × N unknown cni coefficients that are complex variables. Such

coefficients are determined by plugging the expansions (10) into (1) and then

projecting the resulting nodal equations along the Nb basis functions. This

results in a very large nonlinear system of size Nb ×N , i.e.

〈Fn(Ṽ(~ξ), Hi(~ξ)〉Ω = 0, (11)

for n = 1, . . . , N and i = 1, . . . , Nb, where 〈·〉Ω denotes the inner product in the

stochastic space [17]. The solution of (11) requires a significant computational

effort both in terms of time and allocated memory. As an example, consider145

the case of a distribution network with N = 100 nodes, and suppose to perform

stochastic Galerkin with l = 3 statistical parameters and expansion order β =

3. In this case, Nb = 20, so that the nonlinear system to be solved has size

Nb × N = 2, 000. Due to the problem nonlinearity, equations (11) require a

computational time for solving the system that tends to grow as a power of two150

of the system size, i.e. about (Nb ×N)2.

In our example, the computational time for solving Galerkin problem is

about 400× greater than that needed for a single LF analysis. The GP compu-

tational time grows very rapidly with the number of statistical parameters thus

limiting the applicability of the method to networks of small size and with a155

few statistical parameters (i.e. 2− 3).

5.2. Stochastic Collocation (SC)

SC is a nonintrusive method that can be combined with any LF formulation

(1) without modifying the implementation codes. A second advantage of SC

method is that the gPC expansion (5) is adopted limitedly to the set of network160

variables that we want to evaluate, i.e. the peak value of some monitoring

node voltages. In what follows, we will focus on a recently proposed efficient

implementation of SC method referred to as Stochastic Testing (ST) method.
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According to collocation-based Stochastic Testing (ST) [17], the Nb unknown

coefficients cj(t) in the series (5) are calculated by properly selecting Ns = Nb165

testing points ~ξk, for k = 1, . . . , Ns in the stochastic space where Vk(t) = V (t, ~ξk)

is calculated with a deterministic LF analysis.

At each testing point, the series expansion (5) is enforced to fit exactly (i.e.,

the polynomials interpolate the samples) the values Vk(t).

Mathematically, this results in the following linear system

M~c(t) = ~V (t), (12)

where ~c(t) = [c1(t), . . . , cNb
(t)]T and ~V (t) = [V1(t), . . . , VNs

(t)]T are the column170

vectors collecting the unknown coefficients and node voltage values respectively.

The Nb × Nb square matrix M = {ak,i} = {Hi(~ξ
k)} collects the gPC basis

functions evaluated at the testing points, i.e.

M =











H1(~ξ
1) . . . HNb

(~ξ1)
...

. . .
...

H1(~ξ
Ns) . . . HNb

(~ξNs)











. (13)

It is worth noting that the M only depends on the selected basis functions and

testing points, so that it can be precalculated, inverted and used for any t = tm

as follows:

~c(tm) = M−1 ~V (tm). (14)

The ST method enables handling PLF problems with larger size and larger

number of parameters. As an example, for expansion order β = 3 and num-

ber of stochastic parameters l = 6, the ST method needs only repeating 84

deterministic LF analysis.175

5.3. Testing points selection

The selection of the testing points ~ξk in the stochastic space is done so as to

ensure the highest numerical accuracy of the gPC-based interpolation scheme

and of the associated statistical description. This is achieved by considering

the highest order β univariate polynomial φ(ξr) describing the rth parameter180
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Figure 3: (Black Cross Marker) The 2-dimensional grid of quadrature nodes. (Red Circle

Marker) Subset of nodes used as testing points in ST method.

ξr with PDF ρr(ξr). For the univariate case, the testing points are selected

in correspondence of the (P + 1) Gauss quadrature nodes used in numerical

integration ξkr [17]. When the multivariate case with l parameters is considered,

the testing points vectors ~ξk = [ξk1 , ξ
k
2 , . . . , ξ

k
l ] are determined by considering

the multi-dimensional grid of all of the possible combinations (i.e. the tensor185

product) of the univariate quadrature nodes.

The number (β + 1)l of nodes in the multi-dimensional grid is greater than

the numberNb of basis functions defined in (9). For the considered example with

l = 2 and β = 3, the number of Gauss nodes is 4× 4 = 16 while the number of

basis is Nb = 10. To make problem (14) well posed, a subset formed by Ns = Nb190

quadrature nodes has to be selected as testing points. A possible method for

selecting the subset of testing points among the quadrature nodes is presented

in [17]. It relies on the criteria of preferring those quadrature nodes with largest

associated Gauss weights and that lead to the best (smallest) condition number

for the matrix M. Fig. 3 shows the subset of testing points selected for the195

example with 2 stochastic variables.
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6. Implementation and simulation framework

In our implementation, the uncertainty about active power profiles and

power factor are modelled as described in Sec. III by means of l indepen-

dent Gaussian-distributed random variables ξr. Hence, variability analysis is200

performed for a set of node voltages and line current magnitudes, considered

here as the output variables, by using the nonintrusive ST method described in

Sec. IV and subsection V-C. This is achieved by interfacing the gPC+ST code

developed at Massachusetts Institute of Technology [17] and written in Matlab

with the Load Flow deterministic solver OpenDSS. Fig. 4 shows the qualitative205

flowchart of the implemented simulation framework. To this aim, we exploit

the OpenDSS internal interface DCOM which allows bidirectional information

exchange between OpenDSS and Matlab. Such an information flow is first used

to import in OpenDSS the relevant information about the load profiles, i.e.

the active power time profiles and cos(φ), at all network nodes, generated with210

gPC+ST in the Matlab workspace. Second, the information about the time

waveforms of simulated network voltages and currents are exported to Matlab

for further processing. This includes extracting the ci expansion coefficients and

using the compact gPC model (5) to efficiently compute the detailed PDFs of

the network variables of interest.215

7. Test Network

The distribution network adopted in our simulations is the IEEE European

low voltage test feeder[26]. Such a test network, published by the Test Feeders

Working Group of the Distribution System Analysis Subcommittee of the Power

Systems Analysis, Computing, and Economics Committee (PSACE), provides a220

valid benchmark for researchers willing to study low voltage feeders which are

common in Europe. The previously published test feeders were mainly focused

on North American style systems, which consists in radial, very wide medium

voltage networks with a large number of secondary service transformers, each

serving a couple of houses. In Europe instead the most common distribution225
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Figure 4: Flowchart of the simulation Framework

system design is with medium voltage networks still radial, or weekly meshed,

but smaller in amplitude and serving few secondary substations, which are larger

with respect to the North American style. Each substation supply a radial low

voltage network. Residential and small commercial loads are supplied by these

networks.230

The topology of the proposed network is reported in Fig. 5. The test feeder

is a radial distribution feeder with a base frequency of 50 Hz, at 240 V (phase

voltage)/416 V (line to line voltage), which is typical of the Italian low voltage

distribution systems.

The medium voltage system supplying the substation is modeled as a voltage235

source with an impedance (Thevenin equivalent). The impedance is specified by

short circuit current. The LV test feeder model is composed of 906 low voltage

nodes, connected by 905 branches. The network is radial, with 55 load buses.

The distribution lines are defined by their codes and lengths. To each code

specific line impedance and shunt admittance values are assigned. Due to the240

short length of lines (all branches are shorter than a hundred meters) the shunt

14



Figure 5: Topology of the IEEE LV European test feeder. The numbered nodes are some of

the nodes under observation in the implemented analysis.
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Table 1: Number of loads per Phase

Phase A 21

Phase B 19

Phase C 15

admittance is neglected and just the series impedance is considered.

7.1. Load data analysis

The test distribution network is a 3-phase/4 wire network, with the possi-245

bility of assigning the terminal powers either as 3-phase or 1-phase loads. In

this work, we assume that all of the powers are given as 1-phase loads which

are distributed among the three-phase lines, i.e. Phase A, Phase B and Phase

C, in the numbers reported in Table 1.

Such loads are assigned to 55 nodes and their shapes are provided by the

benchmark, as 1 minute time series, for a day [26]. The aim of the analysis is to

study, in a probabilistic sense, the fluctuations of the node voltages which are

induced by power loads variation in order to assess the quality of the network,

therefore we focus on the Voltage Unbalance Factor (VUF). The percentage

VUF is defined as the ratio of the negative voltage sequence component Vn to

the positive voltage sequence component Vp [28], i.e.

VFU =
|Vn|
|Vp|

· 100, (15)

with

Vn =
VAB + a2 · VBC + a · VCA

3
(16)

and

Vp =
VAB + a · VBC + a2 · VCA

3
, (17)

where VAB , VBC , VCA are the phasors of the unbalanced line voltages while250

a = exp (j 120o) and a2 = exp (j 240o).
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8. Numerical Results

In this section, we present fresh results provided by the application of the

proposed variability analysis to the IEEE European low voltage test feeder.
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Figure 6: Daily time evolution of the three phases at node 898 for one of the testing points.

Our goal is that of investigating the effects that the variability of the total255

power assigned to a given phase induces on the node voltages. To this aim, and

accordingly to load model (2), we assume that the active powers Pn(t) of all of

the nodes assigned to a given phase line, e.g. Phase A, are scaled by the same

ξp Gaussian statistical parameter, e.g. ξpA. As a result, three statistically inde-

pendent parameters ξpA, ξ
p
B and ξpC are simulated. In simulations the variability260

degrees σp
A = σp

B = σp
C = 0.2 are adopted.This is a simplification that we adopt

in order to show the main features of the method. More complex scenarios could

be implemented where an independent statistical parameter is introduced for

each load.

Assuming gPC expansion order β = 3, twenty testing points are generated in265

the statistical space and for each one of them a deterministic load flow analysis is

performed. Fig. 6 reports the waveforms of the three phase voltages at node 898,

used here as the monitoring point, simulated with OpenDSS in one of the testing

points (i.e. for a given set of parameters ~ξ). Such waveforms exhibit sharp
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Figure 7: PDFs for the peak and minimum values of the voltage phases at node 898: subfigures

(a), (b) and (c) report phases A, B, C, respectively.
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fluctuations over the considered time window with peaks (maxima) and valleys270

(minima) that are significantly affected by the potential growth or reduction

of the loads. The probabilistic evaluation of the achievable daily peak and

minimum is thus crucial in order to assess the quality of the service provided by

the distribution infrastructure. To this aim, with the proposed gPC+ST method

we calculate the detailed statistical distribution of the peak and minimum values275

in each node. As an example, Fig. 7 shows the statistical distribution of the

peak value of voltage at node 898 for the three phases. For the assumed loads

uncertainty, the peak value of Phase A exhibits wide variability with an almost

Gaussian distribution. In fact, the peak of Phase A ranges within the interval

(254, 257) V with 90% probability. The peak values of Phase B and Phase280

C, fluctuate within narrower intervals, i.e. about (252.5, 254) V, however their

distributions are nonGaussian. This is due to the nonlinear nature of the LF

problem.

Similarly the statistical distributions of minimum voltage at the same node

shows as the greatest variability is seen for the minimum value of Phase B that285

fluctuates into the interval (230, 243) V with 90% probability.

In order to check the accuracy of the gPC+ST method we compare it with a

reference MC method that uses 5, 000 runs (i.e. deterministic load flow analyses)

selected with a latin-hypercube sampling. Fig. 8 shows the PDF for the peak

value of the Phase C voltage provided by proposed gPC and MC (5,000 samples)290

methods. The two distributions are almost superimposed , e.g. the Kullback

Leibler [29] divergence between them is ≈ 0.0161, and the associated standard

deviations, i.e. σgPC = 0.572 V and σMC = 0.565 V respectively, match within

a relative accuracy of 2%. As a further check, we also use the point estimate

scheme described in [14] and [30] , which adopts a numerically efficient sam-295

ples selection method, to estimate the raw moments of the output variables of

interest. The standard deviation predicted by the numerically-efficient point

estimate method for the peak value of Phase-C is σPEM = 0.410 V so that the

relative error compared to reference MC analysis is about 27%.

Finally, Fig. 9 shows the distribution of the average value (over the day300
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Figure 8: Detail of the distributions of the Phase-C peak value supplied by gPC and MC

(5, 000 samples) methods.

window) of the Voltage Unbalance Factor (VUF) figure of merit: the average

VUF is always smaller than 2%.

As a second example, we repeat variability analysis also considering the

uncertainty of the power factors for the three phases. We thus add three ex-

tra statistically-independent Gaussian distributed parameters ξφA, ξφB and ξφC305

scaling power factor accordingly to (4). We assume nominal power factor

values cos(φ0
A) = cos(φ0

B) = cos(φ0
C) = 0.925 and associated scaling con-

stants σφ
A = σφ

B = σφ
C = 0.01. Such scaling constants meet the constraint

0.9 ≤ cos(φ) ≤ 1. We perform variability analysis considering the mutual effect

of the six statistical parameters. The simulated distributions of the peak val-310

ues at monitoring node are collected in Fig. 10. The distributions for the case

with six parameters are quite similar to those for three parameters shown in

(7) meaning that, for the considered scenario, the power factor uncertainty is

less relevant than active power variability. Even though in this paper we

have focused on the case of Gaussian-distributed parameters, since315

this is the most frequent case in applications, more complex scenarios
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Figure 9: Statistical distribution of the average value of the voltage unbalance factor.

may arise where statistical parameters are not Gaussian distributed

[31, 32].

The generalized Polynomial Chaos method allows handling statisti-

cal parameters with several nonGaussian statistical distributions as320

listed in [16], and complex combinations of them [33]. As an example,

Fig. 11 shows the distributions of the peak values at monitoring node

in the case where the six parameters ξpA, ξpB, ξpC and ξφA, ξφB, ξφC scal-

ing active powers and power factors, respectively, are all uniformly

distributed into the interval [−1, 1]. In this case, the expansion (5) is325

made of Legendre-chaos polynomials [16].

Finally, in Table 2 we report the simulation times of the proposed variability

analysis for the cases l = 2, l = 3 and l = 6 statistical parameters. The

simulation times are dominated by the deterministic load flow simulation with

OpenDSS. For the case with l = 3 parameters, one deterministic load flow330

analysis takes about 4 second and the whole variability analysis is completed in

about 5 minutes. By contrast, the same analysis performed with the reference

Monte Carlo method require about 5, 000 load flow analyses and takes more
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Figure 10: Case with 6 Gaussian-distributed statistical parameters. PDFs for the

peak values of voltage at node 898 for the three phases A, B, C.
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Figure 11: Case with 6 Uniformly-distributed statistical parameters. PDFs for the

peak values of voltage at node 898 for the three phases A, B, C
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Table 2: Simulation Times

2 Variables 3 variables 6 Variables

Number of Simulations 10 20 84

Total Time Elapsed [s] 40 80 336

Time per Simulation [s] 4 4 4

than 5 hours.

9. Conclusion335

In this paper, we have described an innovative simulation framework for the

probabilistic analysis of power distribution networks subject to load uncertainty.

Our approach employes generalized Polynomial Chaos (gPC) algorithm and

Stochastic Testing (ST) method combined with the deterministic load flow solver

OpenDSS. We have shown how the proposed method enables deriving in a very340

efficient way the detailed information about the variability of a subset of electric

variables and figure of merits that are relevant for the quality of service. The

speed up factor in computation is about 100× compared to standard Monte

Carlo simulations.
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