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Motion planning on a class of 6-D Lie groups
via a covering map

James D. Biggs Helen Henninger

Abstract—This paper presents an approach to motion
planning for left-invariant kinematic systems defined on the
6-D frame bundles of symmetric spaces of constant cross-
sectional curvature. A covering map is used to convert the
original differential equation into two coupled equations
each evolving on a 3-D Lie group. These lower dimensional
systems lend themselves to a minimal global representation
that avoid singularities associated with the use of expo-
nential coordinates. Open-loop and closed-loop kinematic
control problems are addressed to demonstrate the use of
this mapping for analytical and numerical based motion
planning methods. The approach is applied to a spacecraft
docking problem using two different types of actuation: (i)
a fully-actuated continuous low-thrust propulsion system
and (ii) an under-actuated single impulsive thruster and
reaction wheel system.

I. INTRODUCTION

A general motion planning problem consists of finding
an admissible trajectory on an n-dimensional manifold
G connecting two points g(0) ∈ G and g(T ) ∈ G. The
trajectory is subject to a kinematic constraint defined by
an affine control system:

ġ = u1X1(g) +

p∑
i=2

uiXi(g), (1)

where u1, ui ∈ R, g ∈ G. X1(g), Xi(g) are vector fields
with distribution ∆ = span(X1, ..., Xp) of co-rank p,
equipped with a bilinear form 〈·, ·〉. The affine constraint
(1) can also represent a kinematic system with drift if
u1 = 1, where X1(g) is the, uncontrolled, drift vector. In
addition, there are usually further requirements imposed
on the motion planning problem, such as obstacle avoid-
ance [1], approximating a non-admissible curve with an
admissible one [2], [3] and choosing a trajectory that
minimises a prescribed cost function [3], [4], [5], [6],
[7], [8], [9].

The kinematic constraint considered here is defined
on the 6-dimensional manifold G = SL4(R), where
SL4(R) is the group of 4×4 invertible matrices with real
entries having determinant 1. The vector fields consid-
ered are left-invariant, such that, X1(g) = gB1, Xi(g) =
gBi, where B1, Bi form a basis defined by u1B1 +
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p∑
i=2

uiBi = JΩ4×4, with Ω4×4 ∈ so(4), where so(4) is

the Lie algebra of the Special Orthogonal Group SO(4)
and J is the 4× 4 diagonal matrix

J = diag(K, 1, 1, 1), (2)

with K ∈ R and where the inverse of J is defined by

J−1 =

{
diag( 1/K, 1, 1, 1) K 6= 0

diag( 0, 1, 1, 1) K = 0.
(3)

This special case of the affine control system (1) can
then be expressed compactly as:

dg

dt
= gJΩ4×4, (4)

where the bilinear form on ∆ is the Killing form when
K 6= 0 [5], [6], [7]. The controls ui are equated to ui =
vi and ui+3 = ωi to identify them with the components
of translational and angular velocities respectively.

Kinematic motion planning problems for the affine
control system (4) defined on G = G(K) are relevant
to a range of applications. For example, when K = 1
Eq. (4) is used to develop quantum control laws for
coupled spin 1/2 particles [11], or to model loss-less
electrical networks [12], [13], when K = 0 they are
used to represent the kinematics of rigid-body systems
such as underwater vehicles [14], [15], unmanned air
vehicles [16] and formations of rigid-body systems [17].
In addition, when K = 0, Eq. 4 represents the static con-
figuration of an elastic rod [10], [19], with applications
to modelling DNA and cables [18]. When K = −1 Eq.
(4) can represent the kinematics of relativistic particles
[20].

In this paper two kinematic motion planning problems
for (4) are considered: (i) An infinite-time problem,
where the objective is to asymptotically approach g(T )
from a prescribed g(0) using kinematic feedback, and
(ii) a finite-time, open-loop, kinematic control problem
with prescribed boundary conditions g0, gd ∈ G(K).
Defining the feedback functions vi = fi(g), ωi = pi(g),
the infinite-time kinematic control problem considered is:

Problem Statement (PS) 1. Compute a kinematic feed-
back control vi = fi(g), ωi = pi(g), with i = 1, 2, 3,
where g ∈ G(K) is such that the closed-loop system of
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the differential equation (4) is almost globally asymptot-
ically stable, that is, g(t)→ I4×4 as t→∞ for almost
any g(0) ∈ G(K).

Note that multiplying the right hand side of Eq.(4)
by g(0)−1 and using the same feedback controls vi =
fi(g), ωi = pi(g) that solve PS 1, will drive the system
towards g(0)−1 ∈ G(K) from the identity. This class of
problem has been addressed in [21] on the n-dimensional
Special Orthogonal Group SO(n), where globally stabi-
lizing kinematic feedback laws yield analytically defined
solutions of the closed-loop system. Such kinematic
feedback laws on SO(3) have previously been used to
develop under-actuated attitude controls for spacecraft
[23], [24], [22].

A finite-time kinematic control problem is also ad-
dressed. Defining basis functions for the velocities vi =
ri(t, αj), ωi = si(t, αk) where ri, si are nonlinear func-
tions of time and the free parameters αj , αk, then

Problem Statement (PS) 2. Compute an open-loop
control vi = ri(t, αj), ωi = si(t, αk), such that g(t) ∈
G(K) is a solution of the differential equations (4)
subject to the prescribed boundary conditions g(0) = g0
and g(T ) = gT .

The basis functions vi = ri(t, αj), ωi = si(t, αk) can
be defined as analytic solutions to optimal kinematic
control problems [6], [8], [5], [4], [7], [1], [27], [24],
[10], [28]. For example, with respect to Eq. (4), a finite-
time optimal kinematic control problem could be defined
as one that minimizes a quadratic cost function of the
form:

ξ(ωi, vi) =

∫ T

0

n∑
i=1

civ
2
i +

m∑
i=1

ci+3ω
2
i dt (5)

where n + m ≤ 6 and is subject to the boundary
conditions g(0) = g0 and g(T ) = gT . Here ci, ci+3 are
constant weights of the cost function. The Pontryagin
Maximum principle associates to (4) and (5) an optimal
Hamiltonian function on T ∗G(K) = G(K)× gK where
gK is the Lie algebra of the Lie group G(K) defined
in (10). An optimal trajectory is a projection of an
integral curve of this time-varying Hamiltonian vector
field (g(t), λ(t)) that satisfies the boundary conditions
g(0) = g0 and g(T ) = gT . g(t) ∈ G(K) is then
a candidate optimal solution (satisfying the necessary
conditions for optimality) of (4) and λj ∈ g∗K the
extremal curve. The optimal kinematic feedback laws
are then functions of the extremal curves, where vi =
ri(λj), ωi = si(λj) (see [4], [5], [6], [26], [10], [8],
[9]). In some cases explicit expressions for the extremal
curves can be obtained ([6], [8], [5], [4], [7], [1], [27],
[24], [10], [28]), such that, the optimal feedback controls
are vi = ri(t, λj(0)), ωi = si(t, λj(0)). The problem of

matching the boundary conditions is then equivalent to
PS 2.

In addition, interpolation problems can be framed in
the context of PS2 with the use of basis functions (such
as polynomials). Basis functions can be used to represent
the path of a motion, whereby the parameters of the basis
function are chosen to match the boundary conditions
and/or minimize a cost function. For interpolation on
SO(3), normalized polynomials [29] and exponentials of
polynomials [30] have been used as basis functions to
design efficient motions for spacecraft. However, for left
(respectively right) invariant system, the basis functions
maybe better utilized to represent the kinematic controls
at the level of the Lie algebra, avoiding the complication
of constraining them to the structure of the group or
using exponential coordinates. The boundary conditions
can then be matched using a numerical shooting method
[32] to find the αj , αk such that g(0) = g0, g(T ) =
gT . To give an example for Eq. (4), assume a constraint
v1 = 1, v2 = 0, v3 = 0 (a kinematic system with drift,
for example, [10], [15], [18], [19], [20], [28]), then one
could choose the basis functions for the angular velocity
to be cubic splines (assuming for simplicity that t ∈
[0, 1]) of the form:

ωi = ωi(0) + αi,1t+ αi,2t
2+

(ωi(1)− ωi(0)− αi,1 − αi,2)t3,
(6)

with i = 1, 2, 3. The basis functions (6) automatically
satisfy the boundary conditions on the angular velocities
and the parameters αi,1, αi,2 are chosen, such that, given
g(0) = g0 the following cost function is minimized:

ξ(g) = tr(I − g(T )g−1T ). (7)

where tr(·) denotes the trace. A shooting method can
be implemented to minimize (7) which requires the
numerical integration of (4), equivalent to the integration
of 16 coupled scalar differential equations. One possi-
bility to simplify the shooting method would be to use
exponential coordinates that would reduce the numerical
task to integrating only 6 coupled scalar differential
equations. For example, local co-ordinate representations
of a Lie group using the Wie-Norman representation
were used in [14] to enable the application of classical
averaging. However, these exponential coordinates are
not globally defined for g ∈ G(K), thus not ideally
suited for planning global motions.

In this paper the kinematic system (4) is converted into
two coupled kinematic equations using a covering map.
This decomposition enables PS 1 to be re-defined as
a simpler infinite-time problem on a lower-dimensional
space. Furthermore, PS 2 can be re-defined in terms of
quaternions, a minimal set of globally defined coordi-
nates.
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The paper is presented as follows: Section II defines
the decomposition of the kinematic equations on G(K)
into two coupled equations which are isomorphic to a
set of global coordinates. Section III re-defines PS 1
and 2 using a co-ordinate transformation, such that, PS
1 reduces to a lower-dimensional problem and PS 2
is re-defined in terms of global coordinates on G(K).
Section IV provides an example application to spacecraft
docking. Two cases are considered which incorporate
different types of propulsion technology: (i) an infinite
time, closed-loop control problem, where the spacecraft
is fully-actuated, with continuous thrust for translation
control and reaction wheels for attitude control. (ii) a
finite-time, open-loop control problem, where the space-
craft can only thrust impulsively in a single direction and
which uses reaction wheels for steering the spacecraft to
the target.

II. THE KINEMATIC EQUATIONS EXPRESSED IN
GLOBAL COORDINATES

In this section a covering map is derived for G(K),
which is used to convert the original kinematic equations
into two coupled equations each evolving on a 2 × 2
complex matrix Lie group. Here we begin by presenting
some geometric properties related to the structure of
G(K).

A. Geometric properties of g ∈ G(K)

By differentiating the following equation with respect
to time

gT (J−1)g − J−1 = C, (8)

it can be seen that C is constant along the flow of
(4). Since g ∈ SL4(R) is the connected component of
the group of 4 × 4 invertible matrices with real entries
through the identity, then C = 0 and Eq. (8) can be
expressed as:

gTJ−1g = J−1. (9)

It follows that g ∈ SL4(R) subject the kinematic
constraint (4) is always contained in its sub-group:

G(K) = {g ∈ SL4(R) : gTJ−1g = J−1}. (10)

For K 6= 0 the group G(K) is a semi-simple Lie group,
with non-degenerate trace form, while for K = 0 the
trace form is degenerate [6]. For K = 0 an element
g ∈ G(K) has the form

g =

(
1 0
γ R

)
, (11)

such that G(K) = SE(3) where SE(3) is the Special
Euclidean Group of Motions ([4], [5], [6], [7], [10])
with γ ∈ R3 and R ∈ SO(3) (where the condition (9)
degenerates to RTR = I3×3). Other classical sub-groups

of G(K) include K = 1 where G(K) = SO(4) and
K = −1 where G(K) = SO(1,3) where SO(1,3) is the
Lorentz group.

A Lie group defined by (10) is the frame bun-
dle of simply-connected surfaces of constant cross-
sectional curvature K [6], where the simply-connected
surface is defined explicitly by MK = G(K)e1, where
e1 = [1, 0, 0, 0]T . For a = [a0, a1, a2, a3]T , b =
[b0, b1, b2, b3]T ∈ MK ⊆ R4 a bilinear form on MK

is given by
a� b = aT (J−1)b. (12)

The classical non-Euclidean geometries can be recog-
nized as M1 = S3, where S3 is the 3-dimensional sphere
isomorphic to the unit quaternions and M−1 = H3,
where H3 is 3-dimensional Hyperbolic space. For the
special case K = 0 it is necessary to set a0 = b0 =
1 as g ∈ SE(3) acts on a projective space, where[

1 γ
]T ∈M0. It follows from (9) and (12) that

ga� gb = (ga)T (J−1)gb = aT gT (J−1)gb
= aT (J−1)b = a� b. (13)

and therefore G(K) is also the isometry group of MK .

B. Constructing a group homomorphism on G(K)

In this sub-section the kinematic equation (4) defined
on G(K) is converted to an equivalent system defined
on a subgroup of GU(2) × GU(2), where GU(2) is the
General Unitary group defined by

GU(2) = {g ∈ GL2(C) : gg∗ = αI2×2} , (14)

where GL2(C) is the group of 2× 2 invertible matrices
with complex entries, α a scalar and g∗ the transpose
conjugate of g. The original kinematic equations (4) are
converted to a set of equations evolving on their covering
group.

Definition 1. [25] Let G be a connected Lie group,
then a covering of G is a simply-connected Lie group H
together with a Lie group homomorphism Φ : G → H ,
such that, the associated Lie algebra homomorphism
φ : g→ h is a Lie algebra isomorphism.

Explicit covering maps have been computed for spe-
cific cases when K = 1 and K = −1 [33]. For
K = 1 and where the entries of G(K) are complex
an explicit covering by the 2 × 2 complex Special
Linear Group reveals a connection between complex
quaternions and the complexification of SO(4) [4]. We
define a covering group of G(K) by constructing a Lie
group homomorphism Φ : Q1 × Q2 → G(K), where
Q1, Q2 are 2×2 matrix Lie groups with complex entries
and φ : q1 × q2 → g(K) is a Lie algebra isomorphism
where qi is the Lie algebra of Qi. The direct product
Q1 × Q2 is equipped with the standard matrix product

3
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(g1, g2) · (h1, h2) = (g1h1, g2h2) for (g1, h1), (g2, h2) ∈
Q1 × Q2. Firstly, we define (g1, g2) ∈ Q1 × Q2 such
that for Φ(g1, g2) ∈ SL4(R) and x,w ∈ MK ⊆ R4,
x = [x0, x1, x2, x3]T ,w = [w0, w1, w2, w3]T , then

Φ(g1, g2)x = w if g1Xg
−1
2 = W (15)

with the isomorphism (·)] : X → x defined by

X = x0I2×2 + 2
√
K(x1A1 + x2A2 + x3A3)

W = w0I2×2 + 2
√
K(w1A1 + w2A2 + w3A3)

(16)
with I2×2 the identity and Ai defined by

A1 = 1
2

(
i 0
0 −i

)
, A2 = 1

2

(
0 1
−1 0

)
,

A3 = 1
2

(
0 i
i 0

)
.

(17)

Note that in the case K = 0, g ∈ SE(3) acts on
a projective space where X,Y are defined by X =
3∑

i=1

2
√
KxiAi and W =

3∑
i=1

2
√
KwiAi. Furthermore,

the case g ∈ SE(3) is distinguished from the other cases
as K = 0, but for X,Y to be defined

√
K 6= 0, meaning

that it must be a dual number (dual numbers are used to
define dual-quaternions [34], [35], [36], [37], [38], [39]).
A dual number is a number ε defined by the property
that ε 6= 0 and ε2 = 0. Dual numbers can be thought
of in an analogous way to imaginary numbers, that is,
an imaginary number ε 6= 0 would be defined by the
property ε2 < 0. The properties of the dual numbers are
detailed in [37]. Here

√
K is defined as an extension of

a dual number where

√
K =

{ √
K ∈ R, K > 0√
K 6= 0, K = 0.

(18)

A simple computation shows that Φ is a Lie group
homomorphism, preserving the group product:

Φ((g1, g2) · (h1, h2))z = g1h1 Z h−1
2 g−1

2 ,

Φ(g1, g2)Φ(h1, h2)z = g1h1 Z h−1
2 g−1

2 .

Using the definition of the bilinear form (12) and the
isomorphism (16), it is straightforward to show that

XW ∗ +WX∗ = 2K(x�w)I2×2 (19)

then defining the matrices X1 = X det(X),W1 =
W det(W ) then X−11 = X∗,W−11 = W ∗, it follows
from Eq. (19) that

XW−11 +WX−11 = 2K(x�w)I2×2. (20)

As the action of g ∈ G(K) on x in Eq. (15) preserves
the product � then x � x = w � w which implies

that det(X) = det(W ). Therefore, g1Xg2−1 = W is
equivalent to g1X1g2

−1 = W1 then

2K(gx� gw)I2×2
= (g1Xg2

−1)(g1W1g2
−1)−1

+(g1Wg2
−1)(g1X1g2

−1)−1

= g1Xg2
−1(g2

−1)−1W−11 g−11

+g1Wg2
−1(g2

−1)−1X−11 g1
−1

= g1XW
−1
1 g1

−1 + g1WX−11 g1
−1

= 2K(x�w)I2×2.

and therefore gx� gw = x�w.
Thus, Φ(g1, g2) = g preserves the product �, and

so the range of Φ(·, ·) is G(K) with ker(Φ) =
{(I, I), (−I,−I)} and Φ : Q1 × Q2 → G(K) is a
Lie group homomorphism. Having established that (15)
implicitly defines a homomorphism it is used to construct
an explicit relation:

Lemma 1. The homomorphism Φ : Q1 × Q2 → G(K)
with (g1, g2) ∈ Q1 ×Q2 and g ∈ G(K) is given by the
relation

g = [x1 x2 x3 x4] (21)

with

x1 = (g1g
−1
2 )],x2 = (2

√
Kg1A1g

−1
2 )]

x3 = (2
√
Kg1A2g

−1
2 )],x4 = (2

√
Kg1A3g

−1
2 )]

(22)

Proof. From (16) note that x = [1 0 0 0]T

corresponds to X = I2×2 and substituting these into
(15) gives (g1g

−1
2 ) = W . Therefore, the first column of

g ∈ G(K) is g[1 0 0 0]T = (g1g
−1
2 )]. The other

columns of g are computed in an analogous way to give
(21) and (22).

In addition, from Eq. (15) we also have the condition

det(g1) det(X) det(g−12 ) = det(W )
det(g1) det(g−12 ) = 1
det(g1g

−1
2 ) = 1.

(23)

C. A covering group of G(K)

To show that Q1 × Q2 is a covering group we need
to show, in addition to Lemma 1, that its Lie algebra
q1 × q2 is isomorphic to gK . Firstly, a basis for gK is
explicitly defined:

B1 =

 0 −K 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , B2 =

 0 0 −K 0
0 0 0 0
1 0 0 0
0 0 0 0


B3 =

 0 0 0 −K
0 0 0 0
0 0 0 0
1 0 0 0

 , B4 =

 0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


B5 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , B6 =

 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 .
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with Lie bracket [X,Y ] = XY −Y X and corresponding
commutator table:

[·, ·] B1 B2 B3 B4 B5 B6

B1 0 KB6 −KB5 0 B3 −B2

B2 −KB6 0 KB4 −B3 0 B1

B3 KB5 −KB4 0 B2 −B1 0
B4 0 B3 −B2 0 B6 B5

B5 −B3 0 B1 −B6 0 B4

B6 B2 −B1 0 B5 −B4 0

(24)

Then defining (U, V ) ∈ q1 × q2 where

U =
3∑

i=1

ui
√
KAi, V =

3∑
i=1

siAi, (25)

with ui, si ∈ R, with the basis elements de-
fined by (

√
KAi, 0), (0, Ai) ∈ q1 × q2 for i =

1, 2, 3. The Lie bracket is defined by [Xi, Xj ] =
XiXj − XjXi, which are mapped from the elements
(Xi, 0), (Xj , 0), (0, Xi), (0, Xj) ∈ q1 × q2, then the Lie
bracket commutator table is:

[·, ·]
√
KA1

√
KA2

√
KA3 A1 A2 A3√

KA1 0 KA3 −KA2 0
√
KA3 −

√
KA2√

KA2 −KA3 0 KA1 −
√
KA3 0

√
KA1√

KA3 KA2 −KA1 0
√
KA2 −

√
KA1 0

A1 0
√
KA3 −

√
KA2 0 A3 A2

A2 −
√
KA3 0

√
KA1 −A3 0 A1

A3

√
KA2 −

√
KA1 0 A2 −A1 0

(26)
Note that the commutator tables in (26) and (24)

are equivalent by equating B1 =
√
KA1, B2 =√

KA2, B3 =
√
KA3, B4 = A1, B5 = A2, B6 = A3.

In addition, the mapping is one-to-one so the Lie alge-
bras are isomorphic. Note that the isomorphism is only
defined for K = 0 if

√
K is a dual number. It follows

that:

Corollary 2. The group Q1 × Q2 is a covering group
of G(K).

To define an explicit mapping between an element
of the Lie algebra (U, V ) ∈ q1 × q2 and S ∈ gK we
substitute the one parameter sub-groups g = exp(St)
and g1 = exp(Ut), g2 = exp(V t) into (15), where
S,U, V are constant matrices. Then for any constant
vector x ∈ MK ⊆ R4 and on differentiating (15),
the following necessary condition for Q1 × Q2 to be
a covering group of G(K) (denoting z = ẇ(0) and
Z = Ẇ (0)), is given by the equivalence of the relation:

Sx = z (27)

to
UX −XV = Z (28)

Theorem 3. The solution g ∈ G(K) to the kinematic
equations (4) can be expressed in the form (21), (22)
where

ġ1 = g1
3∑

i=1

(ωi + vi
√
K)Ai

ġ2 = g2
3∑

i=1

(ωi − vi
√
K)Ai

(29)

where (g1, g2) ∈ Q1 ×Q2 is defined by

Q1 ×Q2 ={
(g1, g2) ∈ GU(2)×GU(2) : det(g1g

−1
2 ) = 1

}
(30)

Proof. Substitute S = B1v1 +B2v2 +B3v3 +B4ω1 +
B5ω2+B6ω3 ∈ gK into (27) and (25) into (28). Equating
z with Z through the mapping (16) then gives

U =
3∑

i=1

(ωi + vi
√
K)Ai, V =

3∑
i=1

(ωi − vi
√
K)Ai

(31)
which yields (29). As q1 × q2 is isomorphic to gK
and q1, q2 are traceless, skew-Hermitian matrices, then
the covering group Q1 ×Q2 inherits the properties of
the Unitary Group. In its most general form we can
define the covering group as GU(2)×GU(2). Moreover,
consider the exponential map of an element gi ∈ U(2)
such that

gi = exp(Xt) =
∞∑
k=0

(Xt)
k

k!
= I2×2 +Xt+ o(t2) (32)

then an element of GU(2) is a scalar multiple of an
element of gi ∈ U(2):

g =
√
αgi =

√
α
∞∑
k=0

(Xt)k

k!

=
√
αI2×2 +

√
αXt+ o(t2)

(33)

where
√
α ∈ R is a scalar such that

gg∗ = αI2×2 + α(X +X∗)t+ o(t2), (34)

then gg∗ = αI2×2 if and only if X∗ = −X , that is,
if X are traceless, skew-Hermitian, matrices (14). Then
along with (23) we have the covering group defined by
(30) �.

In the case of g ∈ SE(3) the equations (29) are not
suitable for direct numerical implementation as

√
K is a

dual number. In the next section we define a convenient
form of the kinematic equations which allow numerical
implementation for all K ≥ 0.

D. Global co-ordinates using quaternions

In this section the kinematic equations (29) are
expressed in a new set of coordinates q̂R =
[q1 q2 q3 q4]T and q̂D = [q5 q6 q7 q8]T , where
q̂R, q̂D ∈ R4 using the co-ordinate transformation for
(g1, g2) ∈ Q1 ×Q2 where:

g1 = gR +
√
KgD

g2 = gR −
√
KgD,

(35)

with the conjugate defined by

g1
∗ = gR

∗ +
√
Kg∗D

g2
∗ = gR

∗ −
√
Kg∗D,

(36)

5
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where

gR =

(
q4 + iq1 q2 + iq3
−q2 + iq3 q4 − iq1

)
(37)

and

gD =

(
q8 + iq5 q6 + iq7
−q6 + iq7 q8 − iq5

)
. (38)

Substituting (35) and (36) into g1g∗1 = αI2×2 yields:

αI2×2 = (1 +K)I2×2 +
√
K(gDgR

∗ + gRg
∗
D) (39)

Therefore, gR and gD are Unitary matrices (gRg∗R =
I2×2 and gDg∗D = I2×2) if α = (1 +K) and

gDg
∗
R + gRg

∗
D = 0. (40)

It follows that if gR, gD ∈ U(2) then q̂R, q̂D are
quaternions (in general these are not unit quaternions).
Furthermore, the inverse of g1, g2 ∈ GU(2) can now be
defined as:

g−11 =
g∗1

(1 +K)
, g−12 =

g∗2
(1 +K)

. (41)

Substituting (35) into (29) (either equation can be used
here and yield the same result) gives

ġR +
√
KġD =

gR
3∑

i=1

ωiAi +KgD
3∑

i=1

viAi

+
√
KgD

3∑
i=1

ωiAi +
√
KgR

3∑
i=1

viAi

= gR
3∑

i=1

(ωi +
√
Kvi)Ai

+
√
KgD

3∑
i=1

(ωi +
√
Kvi)Ai.

(42)

Equating the coefficients of
√
K on both sides of equa-

tion (42) yields

ġR = gR
3∑

i=1

ωiAi +KgD
3∑

i=1

viAi

ġD = gD
3∑

i=1

ωiAi + gR
3∑

i=1

viAi.

(43)

The form of equations (43) naturally incorporate the
Euclidean case when K = 0 as the term

√
K 6= 0 does

not appear in the equations. It follows from (37), (38)
and (43) that the kinematics can be expressed in the
global co-ordinate form

dq̂R
dt

=
3∑

i=1

ωiEiq̂R +K
3∑

i=1

viEiq̂D (44)

dq̂D
dt

=
3∑

i=1

ωiEiq̂D +
3∑

i=1

viEiq̂R (45)

where

E1 = 1
2

 0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 ,

E2 = 1
2

 0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


E3 = 1

2

 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 .

(46)

Note that when K = 0 (44, 45) can be recognized as the
dual-quaternion representation of rigid-body kinematics.

E. Converting boundary conditions on G(K) to the
quaternions q̂R and q̂D

In order to convert PS 1 and 2 to problems
on U(2) × U(2) it is necessary to define bound-
ary conditions equivalently on g(0), g(T ) ∈ G(K)
and q̂R(0), q̂D(0), q̂R(T ), q̂D(T ). The projection onto
the homogeneous space ge1 ∈ MK where e1 =
[1 0 0 0]T is given by (16) and (41) such that:

(1 +K)ge1 = ((gR +
√
KgD)(gR −

√
KgD)∗)] =

((gR +
√
KgD)(g∗R −

√
Kg∗D))]

= ((1−K)I2×2 +
√
K(gDg

∗
R − gRg∗D))]

.

(47)
Similar expressions follow for x2 = ge2,x3 =
ge3,x4 = ge4. Then converting to quaternions using
(37) and (38) we have the mapping from quaternions to
g ∈ G(K) given by g = 1

(1+K) [x1 x2 x3 x4]:

x1=

 ||q̂R||2 −K||q̂D||2
2(q4q5 − q3q6 + q2q7 − q1q8)
2(q3q5 + q4q6 − q1q7 − q2q8)
2(q1q6 + q4q7 − q2q5 − q3q8

 , (48)

x2=

 2K(q2q7 + q1q8 − q4q5 − q3q6)
q21 − q22 − q23 + q24 + K(q26 + q27 − q25 − q28)

2(q1q2 + q3q4 −K(q5q6 + q7q8))
2(q1q3 − q2q4 + K(q6q8 − q5q7))



x3=

 2K(q3q5 − q4q6 − q1q7 + q2q8)
2(q1q2 − q3q4 + K(q7q8 − q5q6))

q22 − q23 − q21 + q24 + K(q25 − q26 + q27 − q28)
2(q1q4 + q2q3 −K(q6q7 + q5q8))



x4=

 2K(q1q6 − q2q5 − q4q7 + q3q8)
2(q1q3 + q2q4 + K(−q6q8 − q5q7))
2(q2q3 − q1q4 + K(q5q8 − q6q7))

q23 + q24 − q21 − q22 + K(q25 + q26 − q27 − q28)


We express this mapping as F : Q̃ → SL4(R) where

(q̂R, q̂D) ∈ Q̃ is isomorphic to (gR, gD) ∈ U(2) × U(2)
with F(q̂R, q̂D) = [x1,x2,x3,x4]. Each component of
this mapping is a quadratic function and it follows from
the mapping between U(2) and R4 that F is surjective.

6
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Thus Q̃ is defined as the set of all q̂R, q̂D satisfying the
properties

det(F(q̂R, q̂D)) = 1
F(q̂R, q̂D)TJ−1F(q̂R, q̂D) = J−1

(49)

then

F(Q̃) = {g ∈ SL2(R) : gTJ−1g = J−1}
= G(K) |K>0

. (50)

Thus, F : Q̃ → G(K) |K>0 is a surjective function
(since the co-domain is equal to the range). Therefore,
there exists a right-inverse, that is, given g ∈ G(K)
there exists a function H : G(K) → Q̃ such that
F(H(g)) = g. However, the representation of g ∈ G(K)
using the global co-ordinates q̂R, q̂D is not unique and
could lead to the problem of unwinding [40]. For ex-
ample, when using quaternions to represent rotation,
q4 = ±1 corresponds to a single physical rotation.
However, mathematically, it is possible for q4 = 1 to be
a stable equilibrium point, while q4 = −1 is unstable.
Thus, if the desired position is q4 = ±1 and the system
begins close to the unstable equilibrium q4 = −1, it
will perform an unnecessarily large rotation to get to the
desired orientation.

One possibility to construct the right-inverse for K >
0 given an arbitrary constant matrix gc ∈ G(K) would
be to use a numerical optimization method to select the
quaternions q1, q2, q3, q4, q5, q6, q7, q8 that minimise an
appropriate cost function, for example:

J = tr(I4×4 −F(qR, qD)g−1c )2, (51)

subject to the conditions (50). Since the function (51) is
nonlinear, local minima exist which makes it necessary
to use a constrained global optimizer similarly to the
approach in [1]. In the case of SE(3) exact equations
exist for the conversion between boundary conditions.
Moreover, by equating the first column of (11) with (48)
when K = 0, it can be seen that ‖q̂R‖ = 1 and the
inverse of the mapping q̂R, q̂D to g ∈ SE(3) is:

qR =


(R23 −R32)/4q4
(R31 −R13)/4q4
(R12 −R21)/4q4

q4

 (52)

where q4 = ± 1
2

√
1 +R11 +R22 +R33 with Rij the

components of the matrix R ∈ SO(3). The path γ =
[x1 x2 x3] ∈ R3 is then given by equation (48).
Moreover, we have x1 = [1 γ]T where:

γ = [
2(q4q5 − q3q6 + q2q7 − q1q8)
2(q3q5 + q4q6 − q1q7 − q2q8)
2(q1q6 + q4q7 − q2q5 − q3q8)

]. (53)

Recalling the normalized image space coordinates con-
ditions q̂R · q̂R = 1, q̂R · q̂D = 0, thus we can write the

solution to (53) including the constraint q̂R · q̂D = 0
as [36]:

0
x1
x2
x3

 = 2


q5 q6 q7 q8
−q8 q7 −q6 q5
−q7 −q8 q5 q6
q6 −q5 −q8 q7



q1
q2
q3
q4

 (54)

and as the matrix in (54) is orthogonal it is easily shown
that:

q5
q6
q7
q8

 =
1

2


0 −x3 x2 x1
x3 0 −x1 x2
−x2 x1 0 x3
−x1 −x2 −x3 0



q1
q2
q3
q4

 .
(55)

Therefore, given R(0), R(T ) ∈ SO(3) we can compute
q̂R(0), q̂R(T ), then given γ(0),γ(T ) ∈ R3 we can
compute q̂D(0), q̂D(T ) using (55).

III. MOTION PLANNING PROBLEMS ON THE
COVERING GROUPS AND GLOBAL CO-ORDINATES

From (35) it is clear that if g1 → I2×2 then g2 →
I2×2. It follows from (21), (22) and the mapping (16)
that if g1 → I2×2 and (4) is controllable then g → I4×4.
This means that by designing a kinematic feedback-
control that drives g1 ∈ GU(2) to the identity then the
same control will also drive g ∈ G(K) to the identity.
This implies that PS 1 can be defined equivalently on
GU(2):

Re-defined PS 1. Compute a feedback control vi =
fi(g1), ωi = pi(g1) where the closed-loop system of the
differential equation (29) is almost globally asymptoti-
cally stable, that is, g1(t)→ I2×2 as t→∞ for almost
any g1(0) ∈ GU(2).

This PS can be solved in a number of ways using
kinematic-feedback controls analogously to those devel-
oped on SO(3), such as [21], as their Lie algebras are
isomorphic. An example feedback control is given in the
following Lemma:

Lemma 4. The trajectory g1 = gR +
√
KgD ∈ GU(2)

of the coupled equations (43) subject to the kinematic
feedback controls defined by

3∑
i=1

ωjAi =
g∗
R

1+KP − PgR
3∑

i=1

viAi =
g∗
D

1+KP − PgD
(56)

where P is a positive semi-definite gain matrix yields
the following closed form solution

g1 = (sinh(Pt) + cosh(Pt)g1(0))
·(cosh(Pt) + sinh(Pt)g1(0))−1

(57)

7
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Proof. Replacing the transpose in the control law [21]
with the inverse (41) we can define a feedback law for
the reduced system (29) as:

3∑
i=1

(ωi + vi
√
K)Ai = (

g∗1
1 +K

P − Pg1) (58)

Substituting Eq. (35) into Eq. (58) gives
3∑

i=1

(ωi + vi
√
K)Ai

= (
g∗
R

1+KP − PgR) +
√
K(

g∗
D

1+KP − PgD)

(59)

and (56) follows by equating the real and the dual
components

√
K. Multiplying (58) by g1 on both sides

yields
ġ1 = P − g1Pg1 (60)

and following an analogous procedure to [21] let X,Y ∈
GL(2,C) satisfy

Ẋ = PY, Ẏ = PX (61)

with initial conditions X(0) = g1(0) and Y (0) = I2×2.
It follows that g1 = XY −1 is in GU(2) as

ġ1 = ẊY −1 +XẎ −1

= P +X(−Y −1Ẏ Y −1) = P − g1Pg1
(62)

which is equivalent to equation (60). Noting that (61) is
linear with transition matrix

exp(

[
0 P
P 0

]
t) =

[
coshPt sinhPt
sinhPt coshPt

]
(63)

yields (57). �
As sinhPt → (1/2)exp(Pt) and cosh(Pt) →
(1/2)exp(Pt) when t → ∞ it follows from (57) that
g1 → I2×2 as t → ∞. A rigorous proof of the global
stability for the case of SO(3) is given in [21] which
naturally extends to GU(2). Note that g ∈ G(K) can be
reconstructed from (21) and (16). Therefore, g → I4×4
under the feedback law (56).

Re-defined PS 2. Compute an open-loop control vi =
ri(t, αj), ωi = si(t, αk) such that (q̂R, q̂D) ∈ R8 is a so-
lution of the differential equations (44) and (45) subject
to the prescribed boundary conditions (q̂R(0), q̂D(0))
and (q̂R(T ), q̂D(T )).

Given the basis functions ri, si then a numerical
shooting method [32] can be implemented such that the
cost function:

ξq̂R,q̂D =
n=8∑
i=1

(qi − qi(T ))
2 (64)

is minimized where qi(T ) are the prescribed boundary
condition at the final time T . In this set of coordinates
the shooting method only requires the integration of 8
coupled scalar differential equations (44) and (45) (as

opposed to 16 coupled scalar differential equations in the
original problem). These approaches are demonstrated
with an application to a spacecraft docking problem.

IV. AN APPLICATION TO SPACECRAFT DOCKING

Spacecraft docking specifically refers to the joining
of two separate free-flying space vehicles; a target and
a chaser spacecraft. Current applications of spacecraft
docking include the docking of small spacecraft with
the International Space Station for crew transfer. Future
applications include the possibility of in-orbit refuelling
and maintenance. Of recent interest is the prospect of us-
ing nano-spacecraft (1-50kg spacecraft) for autonomous
docking operations to provide support to larger space
assets. In this section we consider the possibility of
using a 12 U CubeSat spacecraft (with mass of 22
kg and dimensions 20cm × 20cm × 30cm) for deep
space docking. Guidance methods have been developed
for spacecraft docking in the planar case without a
gravitational field (deep space docking) using inverse
dynamics and nonlinear programming [41] and in Earth
orbit [43] using a potential function approach. In [42]
the approach direction is constrained along the target
docking axis and uses a feedback control. However,
none of these papers consider the extension to the
spatial case or the possibility of undertaking docking
with an under-actuated spacecraft. In this section we
consider an extension of previous work to the spatial
docking problem with a 12 U nano-spacecraft in deep-
space where the gravitational influence of other bodies
is negligible such that the dynamics can be described by
the equations [41]:

mv̇ = F
Iω̇ = Iω × ω + T

(65)

where v = [v1 v2 v3]T ,ω = [ω1 ω2 ω3]T and I
the inertia matrix with zero cross terms and principal mo-
ments of inertia equal to I1 = 0.1656, I2 = 0.2671, I3 =
0.2643 kg m2 with 3 reactions wheels each with a maxi-
mum torque ||T || = 2 mNm and applied force F whose
maximum is dependent on the thrusters used. The data
for this spacecraft is taken from the preliminary design
of the LUMIO 12 U Cubesat described in [44], [45].
The kinematics of the nano-spacecraft can be described
by (4) with K = 0. The initial position relative to the
target is γ(0) = [9.4 6 4]T m and initial attitude:

R(0) =

 −0.782 0 0.6233
−0.6233 0 −0.782

0 −1.000 0

 (66)

8
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with final conditions γ(T ) = [0 0 0]T and R(T ) =
I4×4. Converting this to boundary conditions on qR and
qD using equations (54) and (55) yields

q̂R(0) = [0.233 − 0.667 0.667 0.233]T

q̂D(0) = [4.435 − 1.970 − 3.371 − 0.430]T

q̂R(T ) = [0 0 0 ± 1]T

q̂D(T ) = [0 0 0 0]T .

(67)

We consider two types of propulsion systems: Case 1: 6
micro-thrusters for translational control (fully-actuated)
which can be throttled continuously up to a maximum
of 90 µ N typical of Nano-spacecraft plasma thrusters.
Case 2: a cold-gas propulsion system which can provide
an impulsive thrust of 0.1 N. In this case the impulse is
provided only at the beginning of the motion to induce
a constant translational velocity and the reaction wheels
then used to steer the spacecraft to the target.

A. Fully-actuated continuous thrust spacecraft docking

In this example we use Lemma 4 to design a control
law. For simplicity of exposition we choose the positive
definite matrix P = k1I2×2 and define k = 4k1. Then
converting the feedback-controls (56) to quaternions
using the equations (37) and (38) yields the simple
feedback law ωi = −kqi, vi = −kqi+4. From Lemma
4 it is known that the closed loop system is almost
globally asymptotically stable such that g → I4×4
as t → ∞. This control law is implemented on the
kinematic equations (44) and (45) for K = 0. The path
that the spacecraft traces in Euclidean space is given by
Equation (53). The parameter k is tuned experimentally
(k =0.00025 in this example) such that the time of con-
vergence is minimized, while the thrust remains within
the limits of the propulsion system (which is checked
using equation (65)). The distance from the target over
time and the corresponding thrust is shown in Figure
1. The resulting rotation is displayed in Figure 2 in
unit quaternions over time, along with the corresponding
required reaction wheel torques.

This kinematic feedback control provides convergence
to the desired position and attitude within the physical
limits of a nano-spacecraft low-thrust propulsion device
such as a pulsed-plasma thruster.

B. Under-actuated impulsive thrust spacecraft docking
with reaction wheel steering

In this application the spacecraft is now assumed to
only have one main thruster fixed in the body frame
for translational control and reaction wheels that can
steer the orientation of the spacecraft in all three axis
continuously. The thruster is assumed to be impulsive
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Fig. 1. The translation γ converging to the desired position and the
thrust required to undertake the translation

typical of a chemical propulsion thruster. The spacecraft
is assumed to be at rest and then to provide a single
impulse that induces a velocity in the forward direction
such that v1 = v where v is a constant velocity. Since
there are no other thrusters the velocities in the other
axis are zero such that v2 = 0 and v3 = 0 (equivalent
to a nonholonomic sliding constraint). The objective is
then to steer the spacecraft so that it reaches the target
position and attitude within a finite-time. As suggested
in [31] sinusoidal functions are used as basis functions
for the angular velocity:

ω1 = D,ω2 = r1 sin(a1t+ β1), ω3 = r2 cos(a2t+ β2).
(68)

where v,D, ri, ai, βi are free parameters that are com-
puted such that the boundary condition (67) are matched
on a virtual time domain t ∈ [0, 1] using a standard nu-
merical shooting method which yields the numerical val-
ues: D = 0.155, r1 = 79.524, r2 = 1.1893 × 104, a1 =
0.0775, a2 = 3.523 × 10−4, b1 = −0.0595, b2 =
1.57, v = 16.6. Note that on the virtual time domain
t ∈ [0, 1] the resulting motion is dynamically infeasible
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Fig. 2. The rotation in quaternion form converging to the desired
rotation and the torque required to perform the rotation

which can be checked by substituting the velocities and
their derivatives into (65). However, as the velocities
(68) are defined analytically as a function of time the
accelerations, torque and force can also be expressed
analytically as a function of time t using equation (65).
Therefore, to ensure dynamic feasibility t can be re-
parametrized [29], [1] to reduce the required force and
torques using the equation (65). For a direct comparison
with the previous example the time is re-parametrized
by the final time τ = t/Tf where Tf = 10000 secs.
Converting ω(t) → ω(τ/(Tf ))/(Tf ) it can be seen
that to induce the required velocity the 0.1 N thruster
must fire for 0.0166 secs to reach the required constant
translational velocity of 0.00166 ms−1. In Figure 3 the
path the vehicle traces in Euclidean space is shown
with the second plot displaying the comparison with the
path generated using the closed-loop feedback with full
actuation. In the open-loop case the torque profile can
be computed exactly by substituting the basis functions
(68) into (65) and solving for T which shows the re-
quired torques are feasible with nano-spacecraft reaction
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Fig. 3. The translational motion of the under-actuated spacecraft
compared to the fully actuated case: The dotted line corresponds to
the path traced by the spacecraft given the closed-loop (fully-actuated)
control and the solid line the one traced with the open-loop (under-
actuated) control.

wheels.

V. CONCLUSION

This paper derives an explicit expression to decom-
pose left-invariant differential equations defined on a
class of 6-D frame bundles, into two coupled differential
equations, that each evolve on a 2 × 2 complex matrix
Lie group. The de-composition is shown to be useful
for two types of kinematic control problems. In the case
of designing closed-loop controls it is shown that the
approach can simplify control design, by considering
the problem defined on a lower-dimensional group. In
addition, algorithms for finite-time, open-loop controls,
are developed that exploit a global coordinate repre-
sentation. In this case the problem of integrating the
original kinematic system defined on a 6-D Lie group
(equivalent to integrating 16 coupled scalar differential
equations), is reduced to the integration of only 8 dif-
ferential equations. In addition, a connection between
kinematic systems defined on the frame bundles of
symmetric spaces and those defined on dual quaternions
is demonstrated via a covering map and a simple co-
ordinate change.
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