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Abstract. The industrial breakthrough of metal additive manufacturing processes mainly involves highly 

regulated sectors, e.g., aerospace and healthcare, where both part and process qualification are of 

paramount importance. Because of this, there is an increasing interest for in-situ monitoring tools able to 

detect process defects and unstable states since their onset stage during the process itself. In-situ measured 

quantities can be regarded as “signatures” of the process behaviour and proxies of the final part quality. 

This study relies on the idea that the by-products of laser powder bed fusion (LPBF) can be used as process 

signatures to design and implement statistical monitoring methods. In particular, this paper proposes a 

methodology to monitor the LPBF process via in-situ infrared (IR) video imaging of the plume formed by 

material evaporation and heating of the surrounding gas. The aspect of the plume naturally changes from 

one frame to another following the natural dynamics of the process: this yields a multimodal pattern of the 

plume descriptors that limits the effectiveness of traditional statistical monitoring techniques. To cope with 

this, a nonparametric control charting scheme is proposed, called K-chart, which allows adapting the 

alarm threshold to the dynamically varying patterns of the monitored data. A real case study in LPBF of 

zinc powder is presented to demonstrate the capability of detecting the onset of unstable conditions in the 

presence of a material that, despite being particularly interesting for biomedical applications, imposes 

quality challenges in LPBF because of its low melting and boiling points. A comparison analysis is 

presented to highlight the benefits provided by the proposed approach against competitor methods. 

Keywords: metal additive manufacturing; laser powder bed fusion; in-situ monitoring; infrared imaging; 

zinc; process plume. 

 

1 Introduction 

Laser-based additive manufacturing (AM) of metal parts and laser powder bed fusion (LPBF) 

systems in particular have been increasingly used in various industrial sectors [1 – 13]. Indeed, 

LPBF provides a high flexibility for producing parts whose shape complexity, internal structure 

and material properties can not be achieved with conventional technologies. However, quality-
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related issues play a key role in highly regulated sectors, like aerospace and healthcare, which are 

currently pulling the industrial breakthrough of AM technologies. As a matter of fact, the process 

capability, repeatability and stability shall meet the challenging requirements imposed by the 

industry. Local defects may occur during the laser scanning of one (or more) layers, caused by 

improper process parameters or supporting strategies, non-homogeneous powder deposition, out-

of-control heat exchanges, material contaminations, etc. [2 - 3]. Because of this, many authors 

and LPBF system developers are devoting continuous research efforts in developing in-line 

monitoring tools based on in-situ sensing for defect detection and localization. Several quantities 

that are measurable during the process can be related to the final quality of the part, and hence 

they can be regarded as signatures of the process itself [9]. A large portion of the literature in this 

framework was devoted to the monitoring of melt pool signatures, i.e. the properties of the powder 

bed region where the local laser melting occurs [2 – 3; 8 - 9]. This involves the use of sensors 

(e.g., photodiodes and cameras) placed co-axially to the laser path. Other studies investigated 

signatures that can be measured with off-axis sensors (e.g., cameras placed outside the laser 

optical path), including the thermal map, topography and geometry of the printed slice, and the 

homogeneity of the powder bed [2 – 3; 8 - 9]. More recently, different authors pointed out that 

also the LPBF by-products, i.e., spatters and plume, can be information drivers for in-situ process 

monitoring [14 - 22]. A similar conclusion was drawn in few seminal studies in laser welding [23 

- 24], which demonstrated that both the spatters and the plume enclose relevant information to 

determine the stability of the process and the quality of the weld.  

Spatters are either powder particles blown away during the laser scan of the part or liquid 

material ejected from the melt pool as a result of unstable solid-liquid transitions [16 - 17, 20]. 

The plume, instead, is formed by the partial material vaporization, which may also lead to the 

formation of plasma as a consequence of metallic vapor ionization [21]. The plume differs from 

the surrounding atmosphere in terms of chemical composition, temperature and pressure, and it 

can interfere with the optical properties of the beam path by altering the beam profile and the 

local energy density [25].  



In LPBF, the use of spatters and plume properties as process signatures for the development 

of in-situ monitoring methodologies was first proposed by Repossini et al. [14] and Grasso et al. 

[15]. In particular, [15] was the first study to present an in-situ statistical monitoring tool based 

on the analysis of the plume properties. This study extends [15] by presenting an automated alarm 

rule for fast detection of process instabilities based on in-situ monitoring of the process plume in 

a novel statistical learning framework. Similarly to [15], the proposed approach relies on thermal 

image streams acquired by means of an off-axis infrared (IR) camera and it involves the 

estimation of different descriptors that capture the size, orientation and intensity of the plume 

during the LPBF of each layer. Differently from [15], this study attempts to tackle the 

continuously time-varying pattern of the plume properties under in-control conditions caused by 

the natural process dynamics. Indeed, the aspect of the plume changes from one frame to another 

as the laser scans the part along the predefined trajectory. As an example, Fig. 1 shows three 

consecutive frames of an IR video acquired during the LPBF process described in Section 2, 

where the plume passes from a left-oriented hot region (frame 1) to an almost absent one (frame 

2) to a right-oriented region (frame 3). 

 

 

Fig. 1 – Three consecutive frames showing three different states of the plume under in-control process 

conditions 

 

 

When traditional control charting schemes are applied to this kind of pattern, poor 

performances may be achieved. On the one hand, the natural transitions of the plume in the 

presence of in-control process conditions can inflate the false alarm rates. On the other hand, the 

underlying dynamics can mask actual out-of-control states and reduce the effectiveness of the 



control chart. As a matter of fact, the plume behaviour shown in Fig. 1 yields a clustered pattern 

of the monitored descriptors, where the transition from one cluster to another is not representative 

of an out-of-control state unless a real process instability occurs. This corresponds to a so-called 

“multimode” process, i.e., a process that naturally switches from one in-control state to another 

[26 - 28]. To deal with this, we propose the use of a nonparametric method, known as 𝐾-chart [29 

- 35]. It is based on a one-class-classification variant of the Support Vector Machine (SVM) 

paradigm, called support vector data description (SVDD) [36]. The term “one-class-

classification” refers to statistical learning methods that can be trained on a dataset consisting of 

only natural process data, i.e., data collected under in-control process conditions [37]. The 𝐾-

chart is applied to the plume descriptors extracted from the in-situ IR video via image 

segmentation. It is aimed at determining if the process remains stable during the entire production 

of the part in terms of plume emissions. The SVDD methodology allows one to adapt the alarm 

threshold to the clustered nature of the monitored descriptors to improve the control chart 

performances.  

The present paper extends [15] by proposing an SVDD-based nonparametric monitoring 

approach that overcomes the limitations of the previous approach and yields better performances 

in terms of faster detection of out-of-control states. One further novel contribution with respect 

to [15] regards the presentation of an improved approach for IR image segmentation, which relies 

on the same SVM technique used to design the alarm rule. It allows enhancing the identification 

of the region of interest corresponding to the plume in the IR video frames.  

The proposed method was tested in the presence of both stable and unstable LPBF process 

conditions and compared against benchmark competitors to highlight the provided benefits. In 

particular, a real case study involving the LPBF of pure zinc is presented. AM processes of zinc 

and its alloys are highly appealing for customized medical implant manufacturing, but the low 

melting and boiling points make LPBF of pure zinc and zinc alloys a challenging task. In 

particular, the low vaporization point of zinc together with its proneness to heat accumulation 

phenomena, make the plume emission a relevant driver for in-situ process stability monitoring.  



Section 2 reviews the state of the art on the analysis of LPBF by-products, with a special 

focus on in-situ monitoring applications; Section 3 presents the proposed process monitoring 

methodology; Section 4 describes the real case study dealing with LPBF of zinc; Section 5 

presents the achieved results; Section 6 eventually concludes the paper. 

 

2 State of the art 

The plume consists of thermally excited high-temperature vapor that originates in 

correspondence of the melt pool [38]. Some authors also discussed the possible partial ionization 

into plasma when the evaporated material interacts with the laser radiation [21 - 22]. A large 

amount of plume can modify the laser beam geometry and the energy input to the material by 

partially deflecting and absorbing the laser beam energy, or even deviating the laser focus position 

[24]. Thus, a variation of the characteristics of the plume may be representative of a variation in 

the energy input conditions and, consequently, of modifications of material properties.  

Some authors studied the effect of process parameters on the LPBF by-products by using in-

situ sensing methods mainly consisting of very high-speed vision [39 – 40]. The most recent 

literature [20, 39 – 40] showed that plume emissions are strictly related to spatter ejection 

phenomena. Indeed, the vapor-driven entrainment of powder particles was shown to be the 

dominant factor at the origin of spatter ejections in LPBF, whereas liquid metal ejections as a 

consequence of the recoil pressure in the melt pool play a secondary role on overall by-product 

emissions [20, 39 – 40]. Ly et al. [20] showed that the hot plume emission generates an induced 

gas flow inwards the melt pool, which produces a drag force in the vicinity of the melt pool that 

is sufficient to blow powder particles towards the melt pool. These particles can be consolidated 

into the track or they pass through the laser path, rapidly heat up and are ejected as incandescent 

spatters. Bidare et al. [39] showed that the direction of the plume emission determines to a large 

extent the spatter ejection behavior. By varying the process parameters it is possible to obtain a 

forward, backward or vertically upward plume emission with respect to the scan direction. Bidare 

et al. [39] showed that both forward and vertically upward plume emissions may produce a 



powder bed denudation caused by the vapor-driven entrainment effect. On the contrary, when a 

low angle backward plume emission is produced (e.g., at high scanning speed), the plume 

impinges directly on the powder bed and causes another kind of denudation, where particles are 

blown away from the track instead of being entrained. This may produce a large amount of cold 

spatters and just a limited ejection of hot spatters. Ly et al. [20] showed that a backward plume 

emission can be produced when the recoil pressure is not sufficient to produce a keyhole melting 

mode, but high enough to form a depression characterized by highest temperature toward the front 

of the depression. In addition to the plume orientation, Zheng et al. [40] showed that the amount 

of plume emission and its stability along the track play a relevant role on the amount of spatter 

ejection and on the quality of the process. The experimental study presented by Zheng et al. [40] 

showed that in the presence of overmelting conditions at low speed, which caused poor quality 

track properties, an unstable plume emission was observed. On the other hand, in the presence of 

lack of fusion regimes at high speed, which caused irregularly shaped tracks, large amounts of 

plume were observed. The best track quality conditions were met in the presence of intermediate 

speeds, with small plume emissions and few spatter ejections. 

All the aforementioned studies investigated the plume behavior during LPBF of stainless 

steel, with the only exception of Ly et al. [20] who investigated the LPBF of both stainless steel 

and Ti6Al4V. Another study, authored by Grasso et al. [15], instead, studied the LPBF of pure 

zinc. Grasso et al. [15] showed that an instability of the plume size and intensity could be used as 

a proxy of the process stability and quality. Such evidence was used to design a statistical 

monitoring method for in-line detection of out-of-control process conditions based on in-situ 

thermal imaging. A different perspective was investigated by Mumtaz and Hopkinson [41]. 

Rather than studying a method to monitor the plume behavior, they investigated the possibility of 

reducing the size of plume and the amount of spatter ejections. In particular they showed that such 

reduction could be obtained via pulse shaping.  

This study extends the research presented by Grasso et al. [15] grounding on the recent 

enhancements of the general comprehension of physical phenomena that drive the plume 



emissions in LPBF, the influence of process parameters and the correlation with the process 

quality and stability. 

 

3 Proposed methodology 

The proposed approach relies on statistical process monitoring of the LPBF plume properties 

gathered via in-situ thermal imaging. It consists of four major steps shown in Fig. 2, i.e. i) IR 

image pre-processing, ii) region of interest (ROI) extraction, iii) computation of plume descriptors 

and iv) K-chart design and use. All these steps are described in the next subsections. 

 

 

Fig. 2 – Scheme of the proposed approach 

 

3.1 Image pre-processing and ROI extraction 

An IR video can be treated as a stream of IR images, 𝑼𝑗 ∈ ℝ𝑀×𝑁, where 𝑗 = 1,2, … and 

 𝑀 × 𝑁 is the size, in pixels, of each frame. Each image is characterized by a dark (cold) 

background and hot foreground regions that correspond to the laser heated zone (LHZ), the plume 

and the spatters generated by the laser-material interaction. The plume originates from the LHZ, 

and hence they can be difficult to separate in video frames. Because of this, we focus the analysis 

on a ROI that consists of the union of plume and LHZ, although the plume usually represents the 

largest portion of the ROI. 

Fig. 3 shows the sequential operations needed to segment the images and to extract the ROI 

in each frame.  

 



 

Fig. 3 – Image pre-processing steps required to estimate the ROI’s statistical descriptors 

 

 

The first step is a thresholding operation to binarize the image and identify the connected 

components corresponding to the ROI and the spatters. A previous study on plume analysis in 

LPBF [15] showed that the Otsu’s algorithm is a computationally efficient and effective technique 

that yields a reliable segmentation for this application. The second step consists of identifying the 

connected component that corresponds to the ROI. A few studies for a similar purpose in laser 

welding [23 - 24; 42] classify the spatters and the plume by setting a limit on the area of the 

connected components: the smallest ones are classified as spatters and filtered out. An automated 

method for the selection of this limit was proposed in [15], but a sensitivity analysis showed that 

wrong choices of the threshold could lead to unsatisfactory monitoring performances. In this 

study, we propose a different approach, which exploits not only the area of the components but 

also an information about their location within the frame. Indeed, the ROI is expected to occupy 

a large area partially overlapped to the region of the slice currently scanned by the laser beam, 

whereas the spatters are expected to be small components at higher distances from that region. 

Fig. 4 (left panel) shows the histogram of the areas of all the connected components extracted 

during the training phase of our case study. Fig. 4 (right panel), instead, shows the scatterplot of 

the area of all the components against the corresponding distance from the scanned region.  

 



 

Fig. 4 – Histogram of the areas of all the connected components identified within the training set (left 

panel) and scatterplot of component area against its distance from the scanned region (right panel) 

 

 

Fig. 4 shows that the spatters cover a narrow region of the bivariate space corresponding to a 

wide range of distances and a thin range of areas, whereas the ROIs do the opposite. Contrary to 

setting a threshold on the area, the proposed approach for ROI classification aims to define a 

partition of the space spanned by the area and the distance from the scanned region (Fig. 4, right 

panel). A maximum-margin partition of the bivariate space is proposed, by training an SVM on 

these data [43]. The SVM is a statistical learning approach whose underlying idea consists of 

finding the hyperplane with largest distance (margin) from the nearest training data of each class 

[43]. The maximization of the margin among the classes is aimed at minimizing the generalization 

error of the classifier.  

Let 𝐴𝑖 be the area of the i-th connected component and 𝐷𝑖 be the Euclidean distance 

(expressed in pixels) between its centroid and the centroid of the scanned region2. Being unknown 

the label 𝑔𝑖 ∈ {𝑠𝑝𝑎𝑡𝑡𝑒𝑟, 𝑅𝑂𝐼} of the i-th connected component, a two step procedure is needed: 

 
2 Note that in our application the scanned region is quite small, 5 x 5 mm, and hence its centroid can be 

used to approximately estimate the distance of the connected component from the currently scanned 

area. Generally speaking, a more accurate estimate should be based on the instantaneous laser spot 

location in the powder bed, which implies a synchronization of the IR video acquisition with the laser 

scan controller. 

https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Generalization_error


1. A two-class clustering algorithm (e.g., k-means clustering with 𝑘 = 2) is applied to the 

bivariate observations {𝐴𝑖, 𝐷𝑖} in the training set, which yields the labels 𝑔𝑖 ∈

{𝑠𝑝𝑎𝑡𝑡𝑒𝑟, 𝑅𝑂𝐼}; 

2. Then, the bivariate space is partitioned by applying the SVM on the labelled observations 

{𝐴𝑖, 𝐷𝑖, 𝑔𝑖 }. In its general formulation, the SVM exploits a kernel function to estimate a 

flexible separating plane. To this aim, a Gaussian radial basis function (RBF) is proposed 

for the present application. Being 𝒂, 𝒃 ∈ ℝ𝑝, the RBF with kernel width parameter 𝑆 ∈

ℝ+ is defined as follows: 

 

𝐾(𝒂 × 𝒃) = exp {−
‖𝒂 − 𝒃‖2

𝑆2 } (1) 

 

The same kernel function is used in the monitoring phase to design the 𝐾-chart (see 

subsection 3.4). The RBF bandwidth parameter, 𝑆, can be automatically selected by 

following the procedure presented in [44].  

 

Once the bivariate space partition has been estimated, the trained SVM classifier is used to label 

each future connected component as either a spatter or a ROI. A comparison against the method 

proposed in [15] is discussed in Section 5. It is worth noticing that maximum-margin clustering 

via SVM has been proposed in the literature to merge the unsupervised and supervised 

classification steps mentioned above in one single step [45], but the high computational cost 

makes this solution less attractive for the present application.  

3.2 Estimation of plume descriptors 

After the image segmentation and ROI classification, a set of statistical descriptors is 

computed in order to characterize the relevant properties of the ROI signature. When more than 

one connected component is classified as a ROI in one single frame, the final ROI is generated as 

the union of all those components. As an example, this may happen in the presence of bimodal 

plumes or ROIs where the plume and the LHZ are observed in two distinct connected components. 

Fig. 5 shows the ROIs extracted from the same frames shown in Fig. 1. The boundary of the ROI 



is shown in red. The ellipse that fits the ROI is shown in green: it is the ellipse having the same 

normalized second central moments, 𝜇20, 𝜇02, 𝜇11, as the ROI, where: 

 

𝜇𝑝𝑞 =
∑ ∑ (𝑥 − 𝜇𝑥)𝑝(𝑦 − 𝜇𝑦)

𝑞
𝐼(𝑥, 𝑦)

𝑁𝑅𝑂𝐼
𝑦=1

𝑀𝑅𝑂𝐼
𝑥=1

∑ ∑ 𝐼(𝑥, 𝑦)
𝑁𝑅𝑂𝐼
𝑦=1

𝑀𝑅𝑂𝐼
𝑥=1

 (2) 

 

𝐼(𝑥, 𝑦) is the temperature intensity of the ROI’s pixel at 𝑥 and 𝑦 coordinates, whereas 𝑀𝑅𝑂𝐼 and 

𝑁𝑅𝑂𝐼 are the number of pixels along 𝑥 and 𝑦 that belong to the ROI. The orientation of the fitted 

ellipse with respect to the horizontal axis is called 𝜗 and is such that 𝜗 ∈ [−90°, 90°]. 

 

 

Fig. 5 – Examples of ROIs extracted from the frames shown in Fig. 1  

 

 

Three statistical descriptors were selected to characterize the signature of the ROI: the area, 

𝐴𝑅𝑂𝐼,𝑗, expressed as the overall number of pixels of the ROI; the average temperature intensity, 

𝐼𝑅𝑂𝐼,𝑗, normalized with respect to the camera temperature range such that  𝐼𝑅𝑂𝐼,𝑗 ∈ [0,1], and the 

absolute orientation, 𝜗𝑅𝑂𝐼,𝑗 = |𝜗𝑗| ∈ [0,90°], 𝑗 = 1,2, …. Different authors [23 - 24] pointed out 

that the size of the plume is a relevant descriptor for in-process quality characterization in laser 

welding. Indeed, the larger is the plume the higher is the potential deflection and absorption of 

the laser beam energy. Moreover, the size of the plume can be a proxy of heat accumulation in 

the part, which is relevant to detect unstable conditions related to bubble formation and pressure 

increase around the laser-material interaction zone [46]. 



The average temperature intensity can be a proxy of the amount of material vaporization and 

heating of the surrounding gas. The temperature is affected by the plume chemical composition 

and the possible occurrence of ionization. Thus, it potentially provides complementary 

information with respect to the plume area descriptor. Eventually, the orientation of the plume is 

relevant because, being equal the plume area, a horizontal orientation of the plume (e.g. 𝜗𝑅𝑂𝐼 

close to 0°) is expected to affect to a lower extent the laser beam absorption and deflection with 

respect to a vertical orientation (e.g. 𝜗𝑅𝑂𝐼 close to 90°). Moreover, [24] showed that the polar 

coordinates of the plume centroid, representative of its orientation, have a close relationship with 

the actual welding quality. Moreover, recent studies in LPBF [39 – 40] discussed in Section 2 

showed that the orientation of the plume is a relevant descriptor of the process stability and the 

solidified track quality. In this study, only forward oriented plume emissions were observed in 

different process conditions, and the transition from left to right oriented plumes in in-situ images 

was only caused by the scan direction of the laser when the frame was acquired. Because of this, 

the absolute plume orientation was considered in this study, as left-oriented and right-oriented 

plumes with equal 𝜗𝑅𝑂𝐼 are expected to be representative of specular conditions and to have an 

analogous interference with the laser beam. 

3.3 Nonparametric process monitoring via K-chart 

The proposed approach relies on the assumption that the plume properties should remain 

stable over time during the entire process under IC conditions. Therefore, we propose using a 

small set of initial layers as training dataset to design the control chart that will be used to monitor 

any following layer. This approach is suitable for the specific case of LPBF on pure zinc, where 

a possible out-of-control condition consists of a heat accumulation that may lead to a drastic 

failure of the process. Generally speaking, the same control charting scheme can be extended to 

series production where the training dataset may be collected during the production of copies of 

the same part. 



In order to highlight the need for a nonparametric method, Fig. 6 shows the scatterplots of the 

three statistical descriptors computed for all the frames acquired under in-control conditions 

during the LPBF of pure zinc in the experimental case study that is described in Section 4. 

 

 

Fig. 6 – Scatterplots of the statistical descriptors belonging to the training dataset of the IC Scenario 

described in Section 4  

 

 

Fig. 6 shows two major clusters, one corresponding to the frames where the ROI mainly 

consists of the LHZ (orientation close to zero, small area and a wide variability in terms of mean 

intensity3), and one corresponding to the frames where the ROI mainly consists of the plume 

(larger areas, orientations larger than about 20° and a smaller variability in terms of mean 

intensity). Any transition between one cluster and the other should not be signalled as an alarm 

because such a transition is the consequence of the natural process dynamics. Such clustered 

pattern of monitored variables is representative of so-called multimode processes. Various 

authors studied control charting schemes for this kind of process data. They can be mainly divided 

into two categories [26, 28], namely the global modelling approach [47 – 48] and the multi-

modelling approach [49 – 50]. Both the methods assume the availability of a training dataset that 

characterizes the natural process behaviour in different operating modes. The global modelling 

approach consists of designing a single control chart that is globally able to monitor the process 

 
3 Due to the fact that the LHZ may be captured during different stages of its cooling transitory, from high 

intensities to lower ones. 



in every known state. The multi-modelling approach, instead, consists of designing one control 

chart for each distinct in-control mode, such that only the information related to the in-control 

state that matches the current observations is used for monitoring purposes. This second approach 

is applicable when different modes are well separable from each other via a preliminary 

classification step. In our application, plume descriptors in different clusters can be partially or 

largely overlapped, which makes the multi-modelling approach poorly effective, as initial 

misclassification errors may strongly affect the control chart performances. To avoid this, we 

advocate the global modelling framework. In particular, we propose the one-class-classification 

SVM methodology that allows estimating a control region that adapts to the natural multivariate 

spread of the descriptors shown in Fig. 6. The 𝐾-chart methodology exploits that region to 

determine if any new multivariate observation is in-control or not. The control statistic consists 

of the kernel distance of any observation from the multivariate center of the aforementioned 

control region. Contrary to the traditional 𝑇2-based elliptical region, the shape flexibility of the 

control region is achieved thanks to one additional degree of freedom provided by a kernel 

function. The methodology is an extension of the SVM approach, and it is briefly described 

hereafter. Given the 3-variate training dataset {𝒙𝑗 = [𝐴𝑅𝑂𝐼,𝑗, 𝐼𝑅𝑂𝐼,𝑗, 𝜗𝑅𝑂𝐼,𝑗]𝑇 , 𝑗 = 1, … , 𝐾}, the 

SVDD works by estimating a minimal volume region centered in 𝒐 ∈ ℝ3 and with radius 𝑅 by 

solving the following optimization problem: 

min (𝑅2 + 𝐶 ∑ 𝜉𝑗)𝐾
𝑗=1   

s.t. (𝒙𝑗 − 𝒐)𝑇(𝒙𝑗 − 𝒐) ≤  𝑅2 + 𝜉𝑗 and 𝜉𝑗 ≥ 0, 𝑗 = 1, … , 𝐾 

(3) 

 

where 𝜉𝑗, 𝑗 = 1, … , 𝐾, are slack variables, and 𝐶 is a penalty coefficient used to weight the trade-

off between the volume of the region and the percentage of enclosed data (𝐶 > 0). By introducing 

the Lagrangian function: 



𝐿(𝑅, 𝒐, 𝜉𝑗; 𝛼𝑗, 𝛾𝑗)

= 𝑅2 + 𝐶∑𝑗=1
𝐾 𝜉𝑗 − ∑𝑗=1

𝐾 𝛼𝑗(𝑅2 +  𝜉𝑗 − (𝒙𝑗 − 𝒐)𝑇(𝒙𝑗 − 𝒐))

− ∑𝑗=1
𝐾 𝛾𝑗𝜉𝑗 

(4) 

 

and by setting the partial derivatives w.r.t. 𝑅, 𝒐, and 𝜉𝑗, 𝑗 = 1, … , 𝐾, to zero, problem (1) can be 

simplified as follows [34]: 

 

max (∑ 𝛼𝑗𝒙𝑗
𝑇𝒙𝑗 −𝐾

𝑗=1 ∑ 𝛼𝑗𝛼𝑘𝒙𝑗
𝑇𝒙𝑘)𝐾

𝑗,𝑘=1   

s.t. ∑ 𝛼𝑗 = 1𝐾
𝑗=1  and 0 ≤ 𝛼𝑗 ≤ 𝐶, 𝑗 = 1, … , 𝐾 

(5) 

 

Analogously to the margin in the traditional SVM problem [43], the shape of the region is 

determined by support vectors only, i.e., by the points whose Lagrangian coefficients are larger 

than zero [34]. Eventually, the control statistic (kernel distance 𝑘𝑑(𝒛) of any new observation 𝒛 ∈

ℝ3 from the center 𝒐) is estimated by replacing the inner product 𝒂𝑇𝒃 with a kernel function 

𝐾(𝒂 × 𝒃): 

 

𝑘𝑑(𝒛) = 𝐾(𝒛 × 𝒛) − 2∑𝑗=1
𝐾 𝛼𝑗𝐾(𝒙𝑗 × 𝒛) +  ∑𝑗,𝑘=1

𝐾 𝛼𝑗𝛼𝑘𝐾(𝒙𝑗 × 𝒙𝑘) (6) 

 

The RBF kernel function is the common choice for the 𝐾-chart implementation and one 

previous study [35] showed that it is suitable to deal with clustered data. Because of this, the RBF 

function is used in this study. An automated method for the selection of the kernel parameter, 𝑆, 

was proposed by Tax and Duin [36] and tuned by Ning and Tsung [34]. It extends the kernel 

selection methodologies used in multi-class SVM problems to the one-class-classification 

framework. This kernel selection method was used in this study. 

By comparing different design solutions, Ning and Tsung [34] showed that the highest control 

chart performances are achieved by setting 𝐶 > 1. In this case, the constraint 0 ≤ 𝛼𝑗 ≤ 𝐶 is 

replaced by 𝛼𝑗 ≥ 0, and problem (5) can be solved by introducing the kernel function 𝐾(𝒙∙ × 𝒙∙) 



without penalty. Thus, the kernel radius of the control region can be controlled only by setting 

the control limit corresponding to the 100(1 − 𝛼)% empirical percentile of the kernel distance 

𝑘𝑑(𝒛𝑗), 𝑗 = 1, … , 𝐾 [34], where 𝛼 is the targeted Type I error. This is the control limit used to 

determine if any observation is in-control or not. 

 

4  Real case study 

The real case study consists of the production of zinc specimens via LPBF. Zinc and its alloys 

are biodegradable metals, i.e., materials that provide a dissolution of the medical device (e.g., 

cardiovascular stents) inside the human body once it has fulfilled its duty [51]. However, the 

LPBF of pure zinc is particularly challenging because of its very low melting (𝑇𝑚 = 693 𝐾) and 

vaporization (𝑇𝑣 = 1180 𝐾) points that are responsible for a large plume formation [52].  

Previous studies in laser welding showed that the process plume formation is inflated by the fact 

that zinc is highly prone to vaporization under laser irradiance [45]. Another challenge related to 

the LPBF of pure zinc is related to the heat accumulation that may lead to a partial disintegration 

of the part at high energy density levels [15]. The defect does not manifest immediately, but 

occurs after a certain number of layers. It can not be completely avoided by selecting an adequate 

choice of process parameters, because heat accumulation also depends on the local shape of the 

scanned part. In the presence of temperature sensitive materials like zinc, an increase of heat 

accumulation in the part may lead to a larger process plume formation. All these issues motivate 

the investigation of the plume properties as relevant in-situ measurable quantities for the design 

of LPBF monitoring methods in the presence of critical materials like pure zinc. 

In this study, we tested the LPBF process on a prototype system equipped with a fiber laser 

source with 1 kW maximum power (IPG Photonics YLR-1000) coupled to a scanner (El.En. Scan 

Fiber) (see [15] for additional details about the experimental setup). Cubic specimens of size 

5 × 5 × 5 𝑚𝑚 were produced with a layer thickness of 50 𝜇𝑚 in the presence of different 

conditions. In the first scenario (denoted by IC), three sets of process parameters were tested, 

which led to an in-control (IC) process and dense parts (density in the range 96.2 - 98.7% 



measured with the Archimede’s method). In the second scenario, two different sets of parameters 

that led to out-of-control (OOC) process states and final part disintegration were tested (denoted 

by OOC1 and OOC2, respectively). The different sets of process parameters are summarized in 

Table 1. In particular, three parameters were varied: the laser power, 𝑃, the scan speed, 𝑣, and the 

hatch distance, ℎ𝑑, i.e., the distance between adjacent scan tracks. The scan direction was kept 

fixed in each layer, corresponding to a pathway from left to right. A future development involves 

the test of the proposed approach to more general scan strategies. 

 

  

Fig. 7 – Left panel: IR camera setup; right panel: specimens produced under in-control (IC) and out-of-

control (OOC1 and OOC2) process conditions 

 

 

Table 1 – LPBF process parameters used in different scenarios 

Scenario Laser power,  

𝑃 (W) 

Scan speed,  

𝑣 (mm/s) 

Hatch distance, ℎ𝑑 

(𝜇𝑚) 

IC Parameter set 1 110 475 160 

Parameter set 2 195 679 160 

Parameter set 3 195 475 160 

OOC 1  195 475 78 

OOC 2  195 270 160 

 

A FLIR SC3000 (spectral range of 8 – 9 𝜇𝑚, sampling frequency 𝑓𝑠 = 50 𝐻𝑧, 320 ×  240 

pixels) was mounted as shown in Fig. 7 (left panel). It is worth noting that a sampling frequency 

of 𝑓𝑠 = 50 𝐻𝑧 is representative of the current state-of-the-art on in-situ thermography in LPBF [2 

– 3; 8 - 9], but also of some near IR sensing configurations available in commercial systems [2]. 

However, it necessarily implies a sub-sampling of the plume formation dynamics. Although this 



reduces the capability of detecting quick transient phenomena, the preliminary study discussed in 

[15] showed that it is sufficient to capture major out-of-control patterns related to the plume 

behaviour. In particular, it was shown in [15] that out-of-control plume patterns were visible in 

different consecutive frames acquired at 𝑓𝑠 = 50 𝐻𝑧, which allows using such sampling 

frequency as a compromise choice between the capability of properly characterizing the aspect of 

the plume, and the computational cost for in-situ image processing and analysis. 

The IR camera was calibrated considering only the emissivity of the material in its solid state4, 

which is deemed sufficient to analyse relative variations of the temperature either in space or 

time, although it does not provide reliable absolute temperature measurements.  

During the LPBF process of all the specimens, 14 non-consecutive layers were monitored. 

The first four monitored layers were used as training dataset. Generally speaking, the choice of 

the number of layers to be used in the training phase should result from a compromise between 

the reactivity of the monitoring tool and the need to collect a sufficient amount of data to reliably 

start monitoring the process. The next ten monitored layers were spaced five layers apart, and 

they were used to test the performances of the proposed method. The collapse of cubes in Scenario 

OOC1 and OOC2 started to be evident in the last layers, especially in Scenario OOC2, where the 

plume emissions considerably increased, eventually leading to some sort of explosion (see 

Section 5). However, the aim of the proposed methodology consists of anticipating the detection 

of the process instability by signalling an alarm since its onset stage. 

 

5 Discussion of results 

The results achieved in the real case study of LPBF on zinc powder are presented hereafter. 

Subsection 5.1 describes the results related to the image pre-processing step, with a comparison 

against the alternative method proposed in [15]. Subsection 5.2 presents the monitoring results 

 
4 An accurate calibration in LPBF is known to be complicated or even impossible because the material 

undergoes phase changes during the process. However, a temperature intensity indicator is deemed 

sufficient for relative comparison and stability monitoring purposes. 



achieved by applying the proposed monitoring methodology. Subsection 5.3 presents a 

comparison study against alternative process monitoring approaches.  

5.1 ROI classification performances 

Fig. 8 shows an example of the maximum-margin partition for ROI classification achieved 

by using the proposed approach based on the SVM methodology (left panel), compared against 

the partition corresponding to the threshold on the area descriptor (right panel) described in [15]. 

Fig. 8 (right panel) shows that some large spatters at high distances from the currently scanned 

region were classified as ROIs when the competitor method proposed in [15] was applied. Three 

examples of these spatters are shown in Fig. 9. 

 

 

Fig. 8 – Classification between spatters an ROIs based on our propose approach (left panel) and area 

thresholding [15] (right panel) 

 

 

 
Fig. 9 – Example of spatters misclassified by the approach based on area thresholding 

 

 



Table 2 compares the effectiveness of the proposed classification method against the 

competitor one in terms of overall confusion matrices. The confusion matrix was determined by 

inspecting all the frames belonging to the dataset. Table 2 shows that by setting a threshold on 

the area descriptor, 4% of larger spatters are misclassified as ROIs, whereas the proposed 

approach reduces this error to 0.8% thanks to a better partition of the bivariate space. The SVM-

based partition enhances the classification of large spatters that are far away from the current 

melting area without loosing classification capability for small spatters close to the scanned area. 

A wrong inclusion of large spatters into the ROI inflates the variability estimation for the 

monitored plume descriptors. The 𝐾-chart performances coupled with both the classification 

methods shown in Fig. 8 are compared in the next sub-section. 

 

Table 2 – Confusion matrices for the proposed classification approach and the one based on the area 

threshold [15] 

Proposed approach (SVM) Area threshold 

Actual class 
Result of classification 

Actual class 
Result of classification 

ROI Spatter ROI Spatter 

ROI 99.7% 0.3% ROI 99.1% 0.9% 

Spatter 0.8% 99.2% Spatter 4.0% 96.0% 

 

5.2 K-chart performances  

The scatterplots of the ROI descriptors belonging to the training set of IC Scenario were 

shown in Fig. 6, where the presence of two major clusters was highlighted. The scatterplots of the 

same descriptors belonging to the training sets of Scenario OOC1 and Scenario OOC2 are shown 

in Fig. 10 and Fig. 11, respectively. In OOC scenarios the area of the ROI reaches considerably 

higher values than the ones observed under IC conditions. In addition, the separation between the 

two clusters is less evident or even absent. The 𝐾-charts for both IC and OOC scenarios are shown 

in Fig. 12, where the vertical dashed line separates the training phase from the actual monitoring 

phase. The monitored layers are numbered from 1 to 14. A comparison between plume descriptors 

acquired during the training phase and the ones signalled by the 𝐾-chart as out-of-control in 

Scenario OOC1 and OOC2 is shown in Fig. 13. 

 



 

Fig. 10 – Scatterplots of the statistical descriptors in Scenario OOC 1, training set 

 

 

Fig. 11 – Scatterplots of the statistical descriptors in Scenario OOC 2, training set 

 

 

Fig. 12 – K-charts in Scenario IC, OOC 1 and OOC 2; vertical dotted lines separate the monitored layers; 

the vertical dashed line separate the training from the monitoring phase  



Fig. 12 (top panel) shows that in the IC Scenario the process was stable. The three sets of 

process parameters that generated dense parts also yielded a stable scattered distribution of the 

ROI statistical descriptors. Fig. 12 (central panel) shows that, in Scenario OOC1, the control chart 

signalled several out-of-control values that are far beyond the control limit. Fig. 13 shows that the 

most severe out-of-control observations are mainly caused by ROIs whose area is larger than the 

areas observed during the training phase. This size increase occurred both at low and high angles 

𝜗 without any evident temperature intensity increase. This can be interpreted in terms of a process 

instability that produced material vaporization bursts consisting of plume emissions that were 

larger in size but not at higher temperatures than the ones observed in the first layers. The 

continuous occurrence of those bursts eventually led to part disintegration. 

Fig. 12 (bottom panel) shows that the chart signalled an even larger amount of out-of-control 

observations in Scenario OOC2, starting soon after the end of the training phase. Fig. 13 shows 

that, also in this case, there is a considerable increase of the area at different orientation angles 

without any significant intensity increase with respect to the training phase, although the largest 

deviations in Scenario OOC2 were observed in correspondence of higher average intensities than 

in Scenario OOC1. Indeed, during the last monitored layers in Scenario OOC2, a sort of explosion 

was observed, with a very large ROI that moved towards the upper part of the frame as shown in 

Fig. 14. This event corresponds to the large consecutive OOC peaks of the kernel distance statistic 

in Fig. 12 (bottom panel). Although this is an evident symptom of an OOC process, it is the last 

effect of an unstable melting condition that started in the previous layers. Considering that the 

monitored layers were spaced five layers apart, the unstable condition in Scenario OOC2 could 

be detected at least 45 layers before the event shown in Fig. 14. This suggests that the plume is a 

suitable source of information to characterize the signature of the process and to determine its 

stability over time. Moreover, the 𝐾-chart based on the proposed statistical descriptors is able to 

detect the instability of the LPBF process at an early stage, by exploiting a training phase at the 

beginning of the current process itself.  

 



 

 

Fig. 13 – Comparison between ROI’s descriptor values in the training set (blue points) and the ones 

signalled by the 𝐾-chart (red crosses) in Scenario OOC1 (top panels) and OOC2 (bottom panels) 

 

 

 

 

Fig. 14 – Example of ROIs extracted in three consecutive out-of-control frames in Scenario OOC 2 

 

 

 

 

4.3 Comparison against competing methods 

The proposed approach was compared against four alternative methods. The first competitor 

consists of the same 𝐾-chart monitoring scheme proposed in this study, but it relies on applying 



a threshold on the area of the connected components to classify ROIs and spatters as proposed in 

[15], instead of using the SVM-based approach. This allowed us to determine the impact of the 

ROI classification effectiveness on the final control chart performances. The second competitor 

is the control charting scheme previously proposed in [15], where a Hotelling’s 𝑇2 control chart 

on plume descriptors was used. This type of chart relies on the assumption that the monitored 

descriptors are drawn from a multivariate normal distribution, but we showed that this assumption 

is not applicable in the presence of a multimode pattern like the one that characterizes the plume 

behaviour. Two additional competitor methods were included as they are representative of simple 

control charting schemes that could be easily implemented by practitioners in the present case 

study. The third competitor consists of applying multiple univariate control charts to individual 

plume descriptors, by using the Bonferroni’s correction to control the familywise Type I error 

[53]. This can be seen as a possible extension of previous studies in laser welding [23 - 24], where 

plume descriptors were individually analyzed. The last competitor is representative of the easiest 

image-based monitoring scheme that could be implemented by practitioners. It consists of 

applying a univariate control chart to the average pixel intensities of IR video frames. In this case, 

no image pre-processing was needed. The control limits of both univariate control charts and 

Hotelling’s 𝑇2 control charts were based on a kernel density estimator [54] to estimate the 

empirical percentiles of the in-control distribution of the monitored statistics. In order to perform 

a fair comparison, the control limits of all the compared methods were set in such a way that the 

false alarms observed in the IC Scenarios were equal to the target Type I error. The synthetic 

metrics used to compare the methods were: i) the number of the monitored layer where a first 

alarm was signalled (e.g., “1” means that the first alarm was signalled during the first layer after 

the training phase), ii) the average run length (ARL) computed as 𝐴𝑅𝐿 = 1/(1 − 𝛽) where 𝛽 is 

the Type II error (i.e., the false negative rate). The ARL indicates the average number of frames 

before an OOC state is detected. The lower is the ARL, the faster is the control chart in detecting 

the unstable process condition. 

 



Table 3 – Comparison of competing methods performances in terms of delay to first signal and ARL in 

OOC scenarios 

 

Method 
First signal at layer ARL 

OOC 1 OOC 2 OOC 1 OOC 2 

Proposed approach 1 1 9,77 5,76 

Competitor 1 

K-chart with area-

based plume-spatter 

classification 

1 1 14,04 7,03 

Competitor 2 
𝑇2 chart on plume 

descriptors 
2 2 45,04 120,48 

Competitor 3 
Univariate charts on 

plume descriptors 
6 4 49,75 151,52 

Competitor 4 

Univariate chart on 

overall image 

intensity 

10 11 161,29 136,99 

 

Table 3 shows that the 𝐾-chart methodology coupled with the SVM-based classification of 

the ROI (proposed approach) is the faster method to detect the unstable process conditions. It 

signalled the OOC states in the first layer after the training phase, with an average number of 

frames before the signal lower than 10. The same control chart coupled with the area threshold-

based classification (competitor 1) yields a slightly higher ARL, but is it able to detect the OOC 

state in the first layer as well. The slightly lower detection capability of Competitor 1 is caused 

by the fact that the larger misclassification error between ROIs and spatters inflates the variability 

of the control statistic, which also inflates the control limit and reduces the effectiveness of the 

𝐾-chart in the presence of an unstable process.  

Competitor 2, based on the Hotelling’s 𝑇2 control chart on plume descriptors [15] yielded a 

lower detection capability. This is caused by the fact that the 𝑇2 control chart applies a control 

region that corresponds to an ellipsoid in the three-variate space spanned by the plume descriptors. 

However, as shown above, the actual scatter of the descriptors is far from approaching a 

multivariate normal one. Therefore, competitor 2 results effective only in the presence of very 

severe deviations from the training pattern. This reduces the capability of detecting an unstable 

state of the process since its onset stage. 

The Hotelling’s 𝑇2 control chart on plume descriptors and the multiple univariate control 

charts on the same descriptors, i.e., competitors 2 and 3, were characterized by similar 



performances in terms of ARL, but the univariate approach signalled the first alarm with a longer 

delay with respect to competitor 2. The simplest image-based approach (competitor 4), i.e., the 

one that entails the univariate monitoring of the average pixel intensities of IR video frames, is 

also the one characterized by lowest performances. As a matter of fact, this approach is suitable 

to detect only the most severe out-of-control events characterized by a very large plume formation 

in the last layers. All these last three competitors were outperformed by the one based on the 𝐾-

chart methodology. This highlights the enhanced effectiveness in detecting unstable process 

conditions when a non-parametric control charting scheme that adapts to the natural spread of 

monitored descriptors is used. 

 

6 Conclusions 

The enhancement of process capability and stability in LPBF is fundamental to meet the 

challenging requirements imposed by the industry in highly regulated sectors like aerospace and 

healthcare. A rapidly growing literature has been devoted to the characterization and monitoring 

of in-situ measured signatures as proxies of the process quality ad stability. This study proposed 

an LPBF monitoring method that exploits the plume generated by the laser-material interaction 

as information driver to quickly identify defects and unstable states. The presented case study 

consists of an LPBF process on zinc powder, which included both stable and unstable melting 

conditions. Despite of the industrial interest for additive manufacturing of zinc and its alloys in 

the biomedical sector, the low melting and boiling points of this material impose various 

challenges in LPBF in terms of process quality and stability. A statistical learning technique was 

proposed to monitor some relevant descriptors of the plume measured via in-situ IR video 

imaging. We proposed the use of the SVM methodology, first to extract the ROI via a maximum-

margin partition of the variable space, then to design a nonparametric control chart known as 𝐾-

chart. The 𝐾-chart is needed to cope with the multimode nature of the statistical descriptors of the 

ROI caused by the natural dynamics of the process. The application of the proposed approach to 

the zinc specimen production via LPBF showed that the plume can be used as a signature of the 



process. The comparison study showed that the proposed approach is more effective than other 

methods that exploit traditional multivariate or univariate control charting schemes. The flexible 

control region generated by the 𝐾-chart allows a faster detection of process instabilities since their 

early stage, which is of great importance to quickly abort the process or to implement, when 

possible, feed-back control strategies. 

Future developments will be aimed at investigating the feasibility of the proposed approach 

with different experimental setups and image streams acquired at higher frame rate. Indeed, high-

speed IR video imaging is expected to enhance the characterization of the variability of plume 

formation during the laser scan, at the expense of challenging computational constraints that need 

to be faced. The study of the effect of environmental conditions on the plume properties also 

deserves additional experimental research. Finally, the feasibility of the method to detect other 

kinds of defect deserves future investigations too and it will be the subject of future studies.  

 

Nomenclature 

𝛼  Type I error 

𝛼𝑗  Lagrangian multipliers 

𝛽  Type II error 

𝜉𝑗  Slack variables 

𝜇𝑝𝑞  Central moments 

𝜗  ROI orientation angle 

𝐴𝑅𝑂𝐼,𝑖  Area of the ROI 

𝐷𝑖  Distance of the i-th connected components from the scanned region 

AM  Additive Manufacturing 

ARL  Average run length 

𝐶  Penalty coefficients 

𝑓𝑠  Sampling frequency 

𝑔𝑖  Label of i-th connected component 



ℎ𝑑  Hatch distance 

IC  In-control 

𝐼(𝑥, 𝑦)  Pixel intensity 

𝐼𝑅𝑂𝐼  Average intensity of the ROI 

IR  Infrared 

𝐾  Number of frames included into the training phase 

𝐾(𝑥)  Kernel function 

𝑘𝑑(𝑥)  Kernel distance 

𝐿(𝑥)  Lagrangian function 

LHZ  Laser heated zone 

LPBF  Laser powder bed fusion 

𝑀 × 𝑁  Size of IR images 

𝑀𝑅𝑂𝐼 , 𝑁𝑅𝑂𝐼 Number of ROI pixels along the x and y directions 

𝒐  Centre of the control region 

OOC  Out-of-control 

𝑃  Laser power 

𝑅   Radius of the control region 

RBF  Gaussian radial basis function 

ROI  Region of interest 

𝑆  Kernel bandwidth 

SVDD  Support Vector Data Description 

SVM  Support Vector Machine 

𝑡  Layer thickness 

𝑇2  Hotelling’s statistic 

𝑼𝑗  j-th IR video frame 

𝑣  Scan speed 

𝒙𝑗  Monitored variable 
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