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Different families of three-body orbits are being proposed as location for a human-tended lunar orbiting
station, and as operational orbit for communication relay and navigation satellites. In particular, Space
Agencies are currently considering the Near Rectilinear Halo Orbits (NRHO) family as a staging location
for a lunar exploration infrastructure. Due to the increased interest, a close investigation of the NRHO
dynamics, at insertion and departure respectively, is worth to consolidate transfer capabilities, back and
forth the Earth and other destinations. The paper investigates the trajectory sensitivity to the incoming
and outgoing manoeuvres direction; different models (Circular Restricted Three-Body Problem, Bi-Circular
Restricted Four-Body Problem, full ephemeris model) are exploited, to gradually increase fidelity of the
dynamical model and to classify the transfer shape. For any manoeuvre direction, several manifolds for
NRHO departure/arrival exist, differing in manoeuvre magnitude and time of flight.
The initial aim of the investigation was to search for escape trajectories that exploit Weak Stability Boundary
(WSB) dynamics, to obtain a low energy ballistic capture. Generally, a single family of trajectories directly
leaves the NRHO towards the WSB. The other manifolds describe additional orbits around the Moon before
connecting to the WSB, either going towards heliocentric escape, or colliding with the Moon or the Earth.
Notably, the correlation between time of flight and manoeuvre magnitude is highly irregular; Finite Time
Lyapunov Exponents (FTLE) are here used to correlate the two quantities to identify transitions between
dynamical regimes, in order to derive the manoeuvres bounds that describe similar dynamical behaviours.
To deepen the knowledge of the dynamical regime, the paper analyses the manoeuvre direction effect,
mapping the results in Azimuth-Elevation plane with respect to the Earth-Moon rotating frame. Optimal
∆v directions are identified, as circular structures in such phase space, whose bounds are defined through
a local FTLE analysis; this offers the analyst a further degree of freedom in manoeuvre planning, e.g. to
satisfy pointing constraints.
As operational example, WSB transfers from/to Earth are identified, showing how a proper exploitation of
the manifold structures and geometry can reduce the magnitude of said manoeuvres. Theperformed analyses
give rise to general guidelines for manoeuvres design; indeed, transfers to and from any Halo orbit - optimal
in terms of manoeuvre magnitude and time of flight - can be easily assessed.

1. Introduction

The investigation of the dynamical space, in the
neighbourhood of libration point orbits, is a topic of
growing interest in astrodynamics and trajectory de-
sign domains [1, 2].

The knowledge of the dynamical flow in proximity
of the cis-lunar space enables advanced techniques for
orbits design, station-keeping, transfer strategy defi-
nition, improving the comprehension of the complex
and chaotic nature of the Earth-Moon system.
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Recent studies introduced the use of dynamical
systems theory in astrodynamics problem [3, 4, 5].
Namely, chaos and chaotic systems theory are applied
to non-Keplerian regimes, to investigate the phase-
space of libration point orbits and help mission de-
sign. The main aim of said studies is to deepen the
knowledge of the high non-linearities of the environ-
ment, and to give novel results to the astrodynamics
investigations by borrowing dynamical systems the-
ory tools.

The paper proposes an investigation of the cis-
lunar Halo orbit escape/capture dynamics; assuming
to perform a manoeuvre, the effect of magnitude and
direction is investigated, proposing the use of Finite
Time Lyapunov Exponents to identify boundaries in
the phase space, aiming at an identification of pos-
sible optimal escape manifolds. The same approach,
with backwards integration in time, allows to identify
capture manifolds and dynamics.

The different dynamical models and mathematical
tools, employed throughout the study, are presented
in Section 2; in particular, a new scalar measure
is introduced, to quantify and classify the different
dynamical behaviours observed. Section 3 proceeds
with the core of the investigation, mapping the solu-
tion space and identifying the possible solution fam-
ilies. An operational example is offered in Section 4,
showing a converged WSB transfer which employed
the mapping techniques to generate initial guess. Sec-
tion 5 concludes the paper, wrapping up the results
and providing suggestions for future studies.

2. Model and assumptions

2.1 Equations of motion

The starting point for Halo orbits investigation
is often the Circular Restricted Three-Body Prob-
lem (CR3BP). This model assumes a spacecraft, with
negligible mass, to be moving under the gravitational
pull of two massive bodies, which mutually revolve in
circular orbits [6].

ẍ− 2ẏ = Ux (1)

ÿ + 2ẋ = Uy (2)

z̈ = Uz (3)

Equations 1-3 describe the dynamics of the space-
craft in the CR3BP framework, employing dimen-
sionless, barycentric coordinates. The partial deriva-
tives Ux, Uy, Uz are referred to the potential function

U =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
(4)

where r1 and r2 denote the magnitudes of r1 and
r2, the distances of the spacecraft from the two pri-
maries. As the fidelity of the model needs to be in-
creased, the Elliptic Restricted Three-Body Problem
(ER3BP) may be employed, with a similar formula-
tion and nomenclature, but taking into account the
eccentricity of the relative orbit between the two pri-
mary bodies [7].

Some of the trajectory analysed in the paper,
namely, the Weak Stability Boundary transfers [8, 9],
are based on the exploitation of the gravitational pull
of the Sun, together with the Earth and the Moon.
Thus, both three-body problem formulations are not
suitable for such kind on study, and the Sun grav-
ity shall be added to the model. The Bi-Circular
Restricted Four-Body Problem (BCR4BP) is an ef-
ficient model to take into account Earth, Moon and
Sun gravities [1], with a reduced increase in complex-
ity. Within the BCR4BP, equations 1-3 are modified
by adding the time-dependent gravitational pull of
the Sun, assumed to move circularly in the Earth-
Moon plane

ẍ− 2ẏ = Ux −
µs

r3s
(x− xs)−

µs

a3s
xs (5)

ÿ + 2ẋ = Uy −
µs

r3s
(y − ys)−

µs

a3s
ys (6)

z̈ = Uz (7)

Equations 5-7 describe the motion of a massless
spacecraft in the BCR4BP; note that the two addi-
tional terms, in the planar components, may be seen
as a perturbation of the CR3BP [10]:

• The first term indicates the direct gravitational
pull of the Sun on the spacecraft;

• The second term derives from the Earth-Moon
barycentre acceleration, due to the Sun gravity.

At early stage of the research, the investigation
was carried out with the restricted models; the results
presented in the paper are eventually obtained with
a full ephemeris model, employing the real position
of Sun, Earth and Moon with the JPL DE405 model.

2.2 Orbit strain index

The present investigation deals with trajectories
that originate from/to non-Keplerian Halo orbits,
but do not strictly belong to an orbit family. Fur-
thermore, the distinction between given trajectories
might be clear by visual shape inspection, but the nu-
merical implementation needs a value to work with.
Thus, the necessity of identifying some parameters

IAC–18–C1.8.7 Page 2 of 9



69th International Astronautical Congress, Bremen, Germany.

arises, in order to give a measure, at least qualita-
tive, of how the orbit is modified. A parameter is
here proposed, which indicates how the orbit elon-
gates in respect to its nominal shape.

Let us consider the physical length of an orbit in
space

L(T ) =

∫ T

0

x(t) ds (8)

The nominal value, L0, is taken as reference; the mea-
sure of expansion of the orbit ε, due to a perturba-
tion, may be computed through a structural mechan-
ics analogy, as the natural logarithm of the ratio be-
tween dilated and nominal length (i.e., the strain of
the orbit), as defined in equation (9)

ε(t) = log
L(t)

L0
(9)

Previous studies [11, 12] employed a momentum
integral as escape performance, with application to
station-keeping and disposal trajectories. Such index,
although different from the orbit strain employed in
the current investigation, leads to the same conclu-
sions about the dynamical flow in cis- and translunar
non-Keplerian orbits. In general, any performance
index that monitors the elongation of the state flow
(i.e. integrals that involve position and/or velocity)
may be employed for an escape analysis.

2.3 Finite Time Lyapunov Exponents (FTLE)

The concept of Lyapunov exponents derives from
Lyapunov’s stability theory. Successive early stud-
ies [13] provide a mathematical description, within
the context of dynamical system theory, until recent
works [3, 5] which describe their use in astrodynam-
ics problems. Recalling the specialized literature for
a detailed description, the Finite Time Lyapunov Ex-
ponents (FTLE) are here defined as

Λ(t) =
1

|t|
log(max(eig

√
JTJ)) (10)

Equation (10) employs the following nomenclature:

• Λ(t) is the FTLE at the time instant t.

• The matrix J is the Jacobian of the dynamical
system at hand, defining the variation of a given
quantity with respect to a variation in the in-
dependent variables. In general, J may not be
square.

At first inspection, the FTLE does not possess a
straightforward meaning, as it involves the maximum
eigenvalue of a matrix which has no direct relation to

the state. If the STM of the system is used [3], the
FTLE will indicate the strain of the phase-space flow.
In the current investigation, the concept of FTLE was
extended beyond the state representation, employing
a more general definition which relies on the problem
Jacobian. Note that the STM may be interpreted
naturally as the Jacobian of the final state with re-
spect to the initial state, thus no generality is lost in
the definition here employed.

3. Solution space investigation

In this Section, the main results of the study are
presented. As working bench, the faminly of Near
Rectilinear Halo Orbits (NRHO).

Figure 1: Sample NRHO and manoeuvre location in
Earth-Moon rotating frame

The large search-space is narrowed down as fol-
lows:

• A manoeuvre is performed at the orbit apose-
lene. Although restricting, this assumption al-
lows a preliminary investigation of the dynamical
portraits without loss of generality.

• The epoch of the manoeuvre is fixed. Since the
investigation is carried out in the Earth-Moon
rotating frame, changing the epoch implies a
change in the relative Earth-Moon-Sun geome-
try, thus modifying the acceleration field. The
epoch may be considered as additional parame-
ter, although the direction study is meaningful
if performed at the same initial epoch.
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• The magnitude of the manoeuvre is limited to 20
m/s. As the magnitude is increased, self-similar
patterns are observed in the solution.

Figure 1 summarizes the investigation geometry; the
approach may be naturally extended to any other
non-Keplerian orbit in cis-lunar space.

The manoeuvre direction is parametrized in spher-
ical coordinates, with the nomenclature of Figure 2,
in the Earth-Moon rotating frame. 

�̂�𝑠 

�̂�𝑠 

�̂�𝑠 

𝜙 

𝚫𝒗 

𝜃 

Figure 2: Spherical coordinates nomenclature

3.1 Optimal manoeuvre direction

Let us consider to apply a planar manoeuvre, in
the Earth-Moon rotating frame, at the aposelene of
an NRHO, and to compute the orbit strain index ε
at the end of the integration. Running a parametric
analysis, varying the manoeuvre magnitude and di-
rection, allows to portray maps of the strain index,
investigating the solution space.

Figures 3 and 4 depict the strain index, ε, obtained
for different values of ∆v and azimuth θ; the tra-
jectory is numerically integrated for 120 days, for-
ward and backwards in time. The resulting maps al-
low to understand the transitions between dynamical
regimes; although the orbit strain has no direct mean-
ing, and no information about the actual trajectory
shape is retrieved, these maps are useful to identify
chaotic transition regions. The contour plots are cre-
ated with a bold, black line at the edges; by doing
so, peaks and sudden variations in the contour sur-
face result in black-scattered regions, whereas smooth
transition are portrayed with a continuous black line.

The FTLE may be employed as a measure of sensi-
tivity, and will be itself affected by the chaotic nature
of the solution. Figure 5 depicts the FTLE related to
Figure 3; note how the patterns of the two figures are

Figure 3: Azimuth-∆v map, forward integration for
120 days

Figure 4: Azimuth-∆v map, backwards integration
for 120 days

similar, although representing different behaviours.
Recalling the definition of FTLE in equation 10, the
Jacobian of the problem is here defined as

J =
∂ε

∂η
with η = [∆v θ]T (11)

In general, chaotic transitions are difficult to describe
from a quantitative point of view, whereas visual aid
techniques [3] may be employed. Within the current
work:

• The black ridges in Figures 3 and 4 help to
identify chaotic transitions between dynamical
regimes;

• The FTLE gives an index of the sensitivity of
the solution, and manifests as well a chaotic be-
haviour in transition regions.

The optimal manoeuvre direction, for a given di-
rection, may be identified as follows:
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Figure 5: Azimuth-∆v Lyapunov exponent map of
Figure 3

1. Start at a point with given coordinates ∆v, θ
that yields the desired dynamical behaviour; e.g.,
let us consider an escape trajectory with ∆v =
13 m/s and θ = −66 deg, in Figure 3.

2. A given orbit strain index will be associated with
such behaviour, within the bound dictated by
the black ridges; e.g., the yellow region in the
lower right-hand side.

3. For any value of ε, it is possible to move leftward,
following the contour colour, until a point with
minimum ∆v is reached, within the same region;
e.g. ∆v = 5.5 m/s and θ = −136 deg.

Figure 6 shows the self-similar trajectories, along the
yellow region employed in the description. Although
different, all the trajectories show the same macro-
scopic dynamical behaviour, thus proving the effec-
tiveness of the orbit strain index ε and the existence
of optimal direction, given the desired dynamical be-
haviour.

Such statement is linked to the relative Earth-
Moon-Sun geometry at the manoeuvre epoch: triv-
ially, the weakly-bounded dynamics of Halo orbits is
sensitive to the Sun perturbation, whose location at
the initial epoch dictates the optimal direction for
escape, as noted also in a contemporary study [12].
The novelty here introduced is the investigation of
self-similar patterns, exploring how the optimal di-
rection may be found by starting from non-optimal
solution, mimicking the desired dynamical behaviour.
As noted in the following Sections, such technique
may be employed to investigate different problems,
classifying the solutions into families, and generating
initial guesses for local optimizers.
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Figure 6: Self-similar escape solutions

3.2 In-plane vs. out-of-plane

The present Section investigates the possible ad-
vantages of an out-of-plane manoeuvre.

Figure 7 portrays a map, that indicates how the
strain ε varies with the azimuth and elevation angles,
for a fixed magnitude of the manoeuvre.

Figure 7: Azimuth-elevation map, ∆v = 5 m/s

A circular, symmetric pattern may be noted in the
map. Recall that the orbit strain index, ε, is not to be
taken as a figure of merit per se, but is exclusively em-
ployed to identify self-similar patterns and behaviours
in the dynamical space. The presence of circular pat-
terns allows to conclude that, if a given dynamical
behaviour is obtained with an out-of-plane manoeu-
vre, there will always exist an in-plane manoeuvre
which will yield the same behaviour. The line cross-
ing the null elevation angle, φ = 0, includes any pos-
sible strain index of the map. Naturally, there is no
a priori guarantee that the trajectories will be ex-
actly coincident, but only conclusions regarding their
self-similarity.
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A preliminary hypothesis for the presence of cir-
cular patterns lies in the existence of the Coriolis ap-
parent acceleration in the xy plane. The deviation of
the trajectory from the nominal one is, mainly, due to
this acceleration, and thus dominated by the in-plane
behaviour.

3.3 Solution families

As noted previously, it is possible to identify self-
similar trajectories, which are obtained from different
combinations of ∆v and θ, assuming null elevation
angle. To identify solution families, a cut in the solu-
tion surface is performed, along the line correspond-
ing to the optimal direction. As operational example,
let us consider to cut Figure 3 along the θ = 37 deg
line. The main topic of the current investigation was
the search for escape direction, targeting heliocentric
orbits or Earth reentry with low-energy manoeuvres.

0 5 10 15 20
1

2

3

4

5

Escape - family 1

Reentry - family 1

Escape - family 2

Reentry - family 2

Figure 8: Cut at θ = 37 deg

The orbit strain index is not able to give informa-
tion about the shape of the trajectory; nevertheless,
it is possible to state that, in the regions where the
strain index is similar, between the boundaries dic-
tated by the chaotic regions and FTLE peaks, all the
solutions will manifest similar behaviour, and may
thus classified into a family. Let us proceed by visual
inspection of Figure 8, which shows the cut of Figure
3 along the θ = 37 deg line.

• The first peak is associated with a solution fam-
ily. Although not foreseeable a priori, computing
the distance from the Earth allows us to note
that this family corresponds to heliocentric es-
cape behaviours.

• Then, we sample an orbit before the second peak,
prior to a small chaotic transition. This region
corresponds to Earth ballistic reentry, as noted
again after computation of the Earth distance.

• Going on in the analysis of different regions, we
may identify other reentry and escape families;
although outside the scope of the current investi-
gation, different dynamical patterns are present
in the vast phase space.

Figure 9 depicts the distance from the Earth, for the
corresponding identified families, where the ballistic
reentry and escape dynamics are evident. Note that
the first families (labelled with 1, associated with
lower ∆v) leave the NRHO regime after roughly 40
days, whereas the second families (labelled with 2,
associated with higher ∆v) depart after 28 days. Dif-
ferent, independent studies [12] observed the same
pattern, classifying the trajectories according to the
number of revolutions prior to departure. It is re-
marked that the present analysis was limited to low
values (less than 20 m/s) of ∆v magnitude; as such
value is increased, the self-similarity of the problem
will reveal more and more, enabling the identification
of escape/reentry patterns after shorter amounts of
time.

0 20 40 60 80 100 120
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2
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106

Escape - family 1
Reentry - family 1
Escape - family 2
Reentry - family 2

Figure 9: Distance from Earth for different families

A close-up view of the departure from NRHO
is portrayed in Figure 10, where the different be-
haviours can be appreciated. In particular, the tra-
jectory twirls prior to departure are notable, as they
lead to similar long term trajectories after different
amounts of time. Eventually, Figure 11 depicts the
selected solution families in a Earth-centred inertial
frame, where the reentry and escape dynamics are
clear. The ballistic reentry trajectories correspond to
Earth capture after I or III quadrant weak-stability
boundary transfer, whereas the escape trajectories
are related to prograde or retrograde heliocentric es-
cape.

The same trajectory patterns and dynamical be-
haviours may be obtained by backwards integration,
as the same consideration apply. By performing a cut
in Figure 4, one may compute trajectories that lead,
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Figure 10: Sample solution families, initial segments
in Earth-Moon rotating frame

e.g., to a quasi-ballistic NRHO capture, deriving from
a lunar-bound transfer orbit or from an incoming hy-
perbola after an interplanetary arc.

4. Case study: WSB transfer

The existence of preferable manoeuvre directions
was shown in the previous Sections. In the following,
their use to efficiently generate first guess trajectories
is illustrated. This section begins with a short quali-
tative description of WSB transfers. An example scan
of manoeuvre directions is discussed to underline the
applicability of above’s discussion for WSB trajectory
design, using transfers to an NRHO as example.

4.1 WSB transfers and generation

WSB transfers employ the Sun’s gravity gradient
to reduce ∆v costs as compared to a direct trans-
fer. Considering a transfer from Earth orbit to an
NRHO, the typical saving is around 150 m/s, and
can be even higher for other libration point orbits.
However, the typical transfer time via WSB is in the
order of months compared to days for direct transfer
options.

To follow a WSB transfer to an NRHO the geocen-
tric apogee has to be raised well beyond the Moon’s
orbit, to approximately 1.4 million kilometers. In this
WSB region, the Sun’s gravity gradient has a consid-
erable effect on the orbit. If the apogee is in the
second or fourth quadrant with respect to the Sun
the gravity gradient accelerates the spacecraft, rais-
ing the orbit perigee.
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Reentry - family 2
NRHO

Figure 11: Sample solution families, Earth-centred
inertial frame

By varying the parameters of the transfer and
adding a small burn at apogee the perigee can be
chosen such that the spacecraft arrives at or near the
targeted lunar orbit. In principle it is possible to find
a fully natural transfer, not requiring any manoeuvre
at apogee. However, depending on the desired launch
window, target orbit, and Earth departure orbit, a
deterministic WSB manoeuvre is necessary. Typical
values range in the tens of m/s, but can be in the hun-
dreds of m/s for unfavourable geometries. To inject
into the target orbit, an additional small manoeuvre
may be needed. For NRHOs the required burn is
typically in the order of a few meters per second.

Typical travel times for WSB transfers to NRHOs
are between 90 and 160 days. Note that in practice,
not a single WSB manoeuvre is planned. Instead,
several deterministic burns and trajectory correction
manoeuvres take place before and after apogee, to
connect to the ideal trajectory towards the target or-
bit.

4.2 First guess generation

One of the initial scopes of the investigation was
to reliably find preliminary WSB transfers, that can
be used as initial guesses for successive optimisation
and launch window definition. A suitable method for
such purpose is the generation of natural transfers,
i.e. without intermediate manoeuvres.

Starting from the target orbit, a small manoeuvre
is added and the such-modified state is propagated
backwards or forward in time. A reliable figure of
merit to differentiate successful natural transfers is

IAC–18–C1.8.7 Page 7 of 9



69th International Astronautical Congress, Bremen, Germany.

the Earth proximity of the first perigee after WSB
crossing. If the perigee radius is sufficiently low, the
natural transfer is a suitable candidate to connect to
an Earth parking orbit in subsequent steps. Example
results of such a scan are shown in Figure 12.

Figure 12: Natural transfers from Earth to NRHO,
depicted in inertial frame in units of 1,000 km.

Experience shows that, in first approximation,
perigees lower than 100,000 km provide acceptable
results. Reducing this threshold generally improves
the performance of the transfers but also risks dis-
carding potentially suitable candidates. The mission
designer may consider additional restrictions, such as
a maximum allowable deviation of the perigee decli-
nation, or a variation of the natural transfer perigee
epoch from the intended launch epoch. Finding reli-
able limit values for these parameters is a subject of
ongoing investigations.

Figure 13 depicts the results of a numerical search
for natural transfers as a function of manoeuvre di-
rection in azimuth and elevation and using a fixed
scan interval of manoeuvre magnitudes. As discussed
above, the figure of merit to identify suitable manoeu-
vre directions is the number of natural transfers that
reach Earth proximity.

Interestingly, the scan of the azimuth-elevation
phase space presented the same circular patterns
highlighted in the orbit strain analysis. In applica-
tion, it was thus possible to restrict the search for
WSB transfer with in-plane manoeuvres only. This
resulted in numerical advantages for the local opti-
mizer, reducing the number of variables and allow-
ing a more efficient search, particularly for prelim-
inary mission analysis phases where a large number
of transfer options are to be investigated. Manoeuvre
directions for which no or only a few natural transfers
are identified can be readily discarded by a mission
designer.
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Figure 13: Search for natural transfers in azimuth-
elevation space

4.3 Selection of launch windows

WSB transfers in general show a large variability
and sensitivity to launch epoch and inclination. The
exact transfer trajectory and its parameters depend
on the geometry between Earth, Moon, and Sun.
Naturally this restricts the launch window availabil-
ity. In principle, WSB transfer opportunities repeat
approximately every fourteen days. It is effectively
always possible to find a WSB transfer within any
fourteen-day period throughout the year. However,
a transfer may be associated with a ∆v cost exceed-
ing the cost of a direct transfer. This nullifies the
earlier-mentioned advantage of WSB transfers while
retaining the generally disadvantageous long travel
times. The largest share of a ∆v increase lies in
the WSB manoeuvre, as larger burns are required
to match poor launch geometries.

In particular, for Earth orbits near the equator
(i.e. with near-zero inclination), the available trans-
fer windows for WSB transfers are limited to the
equinoxes. Outside these favourable time windows,
the departure orbit’s apogee cannot easily match to
a trajectory towards a lunar or libration point orbit.

Considering this, the results discussed above are
not to be understood as a method to guarantee op-
timal transfers for any orbit geometry; the total ∆v
may be considerable if the Earth departure orbit con-
nects poorly to the available natural transfers. How-
ever, restricting manoeuvre directions does offer an
efficient way to generate first guess trajectories based
on natural transfers.

5. Final remarks

The paper offered a preliminary analysis of escape
dynamics in lunar non-Keplerian orbits, with specific
application to NRHOs. The parameter space is inves-
tigated by applying a manoeuvre, using its magnitude
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and direction as independent variables and creating
visual maps, that help to define the solutions; a scalar
metric is defined, borrowing the definition of strain
from structural mechanics.

The analysis of the maps allows to identify reg-
ular and chaotic behaviours, the latter characterised
by peaks and sudden variations in the parameter sur-
face. The results strictly depend on integration time,
although it is possible to make some long-term pre-
diction after classifying the trajectories into families.
The maps are meant as a preliminary tool, to gener-
ate initial guesses and identify transfer opportunities,
prior to refining such solutions with local optimiza-
tion.

A notable result is the existence of an optimal di-
rection, in the Earth-Moon plane, for any kind of
trajectory; i.e., given a desired type of transfer or
escape, it is always possible to find a planar manoeu-
vre with minimum ∆v that shows a strictly similar
behaviour. Numerical evidence supports this state-
ment, although a strict proof is not currently avail-
able; a preliminary hypothesis links such behaviour
to the Earth-Moon-Sun geometry, at the manoeuvre
epoch, and on the predominant role of the apparent
Coriolis acceleration in non-Keplerian Earth-Moon
orbits, leading to a lesser effect of the out-of-plane
manoeuvre component.

Future studies will further investigate the trajec-
tory sensitivity to manoeuvre direction, looking for a
more solid proof of the numerical results, and attempt
to provide a tool to predict long-term behaviours,
while avoiding numerical propagation of the full tra-
jectory.
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