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Abstract

In this contribution, a computational framework for the analysis of tertiary

concrete creep is presented, combining a discrete element framework with lin-

ear visco-elasticity and rate-dependency of crack opening. The well-established

Lattice Discrete Particle Model (LDPM) serves as constitutive model. Ag-

ing visco-elasticity is implemented based on the Micro-Prestress-Solidification

(MPS) theory, linking the mechanical response to the underlying physical and

chemical processes of hydration, heat transfer and moisture transport through

a multi-physics approach. The numerical framework is calibrated on literature

data, which include tensile and compressive creep tests, and tests at various

loading rates. Afterwards, the framework is validated on time-to-failure tests,

both for flexure and compression. It is shown that the numerical framework

is capable of predicting the time-dependent evolution of concrete creep defor-

mations in the primary, secondary but also tertiary domains, including very

accurate estimates of times to failure. Finally, a predictive numerical study

on the time-to-failure response is presented for load levels that can not be ex-

perimentally tested, showing a deviation from the simple linear trend that is
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commonly assumed. Ultimately, two alternative functions for time-to-failure

curves are proposed that are mechanically justified and in good agreement with

both, experimental data and numerical simulations.

Keywords: creep, concrete, tertiary creep, time to failure, rate effect

1. Introduction

Concrete creep is a well-known phenomenon that may influence the life-

time of concrete structures. In the concrete construction industry it is typically

assumed that creep is a process that leads to increasing deformations with-

out significant damage development. Consequences for structural design are,5

thus, mostly limited to serviceability considerations, i.e. checks of deforma-

tions. Potential positive effects resulting from local stress redistributions are

mostly neglected. Under these assumptions, the theory of linear visco-elasticity

is typically sufficient for the calculation of creep deformations in standard de-

sign situations. The necessary and usually sufficient condition is a limitation of10

concrete stresses to less than 40% of the concrete compressive strength under

the quasi-permanent load combination as required by Eurocode 2 [1] and 50%

by ACI [2].

Nevertheless, situations exist in which concrete creep affects the ultimate

limit state and the safety of structures. On the system level for example,15

concrete creep is a major source of continuously increasing pre-stress losses

in pre-stressed and post-tensioned structures that not only lead to potentially

excessive deflections, as e.g. observed for the KororBabeldaob bridge [3, 4],

but are also associated with a significant reduction in shear capacity. On the

material and component level, concrete creep may interact with existing dam-20

age and ultimately cause progressive failure due to stress redistributions that

prompt further crack propagation. For moderately high load levels between

about 40% and 65% this behavior is approximately accounted for by non-linear

(stress-dependent) visco-elastic models [1].

However, a complete understanding of the creep mechanism under high load25
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levels requires the detailed analysis of interactions between creep and crack

propagation. Unlike the initial creep response that stabilizes with a decreasing

creep rate (primary creep) followed by a phase with constant creep rate (sec-

ondary creep) the final stage, usually called tertiary creep, is characterized by

an exponential increase of the strain rate and results in failure.30

Heretofore, various approaches have been introduced in order to model the

tertiary creep of concrete. These approaches can be summarized as (a) rate-

dependent softening based on activation energy [5, 6], (b) coupling of a rheolog-

ical model to a fictitious crack model [7, 8, 9, 10], (c) combination of a microme-

chanical model and a rheological model for softening and time-dependent behav-35

ior of concrete [11], and (d) coupling of a rheological model to a continuum-based

constitutive law. For approach (d) various types of constitutive laws have been

introduced: de Borst [12] proposed a combination of the smeared crack approach

and plasticity; an isotropic damage law was used by Mazzotti and Savoia [13];

Bendoudjema et al. [14] utilized an elasto-plastic damage law; Rate-dependency40

of the damage law can be found in Challamel et al. [15]; Rate-dependency in

softening plasticity was introduced by Van Zijl et al. [16]; Di Luzio implemented

a rate-dependent micro-plane based constitutive model [17].

In this work an approach similar to that adopted by Di Luzio [17] is used,

however transferred to a discrete element framework in which rate-dependent45

fracture and a rate-type creep model are coupled. The well-established Lat-

tice Discrete Particle Model (LDPM) [18, 19] serves as mechanical constitutive

model. Aging visco-elasticity is implemented based on the Micro-Prestress-

Solidification (MPS) theory [20, 21], which is able to link the mechanical re-

sponse to the underlying physical and chemical processes of hydration, heat50

transfer and moisture transport through a multi-physics approach [22, 23].

In the present manuscript, after introducing the modeling framework, the

model components are calibrated on literature data, which include tensile and

compressive creep tests, and tests at various loading rates. Afterwards, the

framework is validated on time-to-failure (TTF) tests, both for flexural and55

compressive creep failure. It is shown that the numerical framework is capable
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of predicting the time-dependent evolution of concrete creep deformations in the

primary, secondary but also tertiary domains, including very accurate estimates

of times to failure. Finally, a predictive numerical study on the time to failure

response is presented for load levels that can not be experimentally tested. The60

results clearly show a deviation from the simple linear trend that is commonly

assumed. Ultimately, two alternative functions for time-to-failure curves are

proposed that are in good agreement with both, experiments and numerical

simulations.

2. Review of constitutive modeling framework65

In this section a numerical framework is presented that combines a discrete

model for concrete with rate-dependent fracture and aging linear visco-elasticity

into a powerful tool for the investigation of tertiary creep. The basis of the

time-dependent mechanical analysis is a multi-physics model that simulates the

chemical reactions of concrete, coupled with moisture transport and heat trans-70

fer in interaction with the environment. The solution of the coupled system

of equations yields the basic physical and chemical quantities, namely hydra-

tion degree, humidity rate, and temperature rate, which drive thermal strains,

hygral shrinkage and determine the evolution of material properties as well as

the kinetics of concrete creep. The coupling between mechanical response and75

physical/ chemical processes of concrete at early age has already been used in

some recent applications [24, 25, 26, 27, 28].

2.1. Hydration and diffusion

The coupled problem of chemical reactions – hydration of cement, and poz-

zolanic reactions – moisture transport and heat transfer is solved using the

Hygro-Thermo-Chemical (HTC) model [22, 23]. The reaction kinetics are for-

mulated in terms of reaction degrees, that represent the progress of each chem-

ical reaction, which are described by the respective chemical affinity [29, 30]

and an Arrhenius type evolution. Coupling between chemical reactions and
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transport processes is achieved by combining the mass and enthalpy balance

equations with Fick’s and Fourier’s laws, respectively, leading to a system of

partial differential equations with only two state variables – the temperature T

and the pore relative humidity h:

∇ · (Dh∇h)− ∂we
∂h

∂h

∂t
− ∂we
∂αc

α̇c −
∂we
∂αs

α̇s − ẇn = 0 (1)

where Dh the moisture permeability of concrete, we, and wn the evaporable

and non-evaporable water, respectively, and αc and αs the degree of cement

hydration and silica fume, as well as pozzolanic reaction.

∇ · (kt∇T )− ρct
∂T

∂t
+ α̇ccQ̃

∞
c + α̇ssQ̃

∞
s = 0 (2)

where kt heat conduction coefficient, ρ density, ct isobaric heat capacity, c and

s cement and silica fume content, and Q̃∞c , and Q̃∞s enthalpies of hydration and80

silica fume reaction, respectively.

The rate of the cement hydration degree, α̇c, is given in Eq. 3 and follows an

Arrhenius type evolution expressed by the exponential term with Eac the acti-

vation energy, and R the gas constant. The other terms express the normalized

chemical affinity with Ac1, Ac2, and ηc material parameters which define the

reaction kinetics, while α∞c is the theoretical asymptotic degree of hydration.

The first term that contains the relative humidity h expresses the delay of the

hydration reaction when the water supply becomes low, as proposed in [30, 31].

α̇c =
Ac1

1 + (5.5− 5.5h)4

(
Ac2
α∞c

+ αc

)
(α∞c − αc) e−ηcαc/α

∞
c · e−Eac/RT (3)

The HTC model solves the heat transport problem by formulating only one

mechanism of heat transfer, i.e. the linear heat conduction that is expressed

by the term ∇ · (kt∇T ) in Eq. 2. The other two heat transfer mechanisms,

surface heat radiation and heat convection, are neglected. This approximation85

is sufficient since in the inner part of concrete the main mechanism of heat

transfer is conduction.

For moisture transport (Eq. 1) a non-linear water diffusion process is as-

sumed under isothermal conditions. Due to a lack of experimental data on
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differences between wetting and drying isotherms no distinction is made here-90

after. However, for most of the applications, including the current study, this

approximation suffices because no wet/ dry cycles have to be considered.

2.2. Mechanical model

In this work, a discrete concrete model, the Lattice Discrete Particle Model

(LDPM), is used. The LDPM has been widely used in studies of mechani-95

cal properties of concrete, [32], as well as in structural applications [33]. The

model simulates the macroscopic response of concrete based on the mechanical

properties at the mesoscale level accounting for the combined response of the

cement paste and aggregates. The model assumes that the aggregates can be

approximated by spheres, the particles. Following a sieve curve the concrete100

domain is geometrically constructed placing randomly the particles [34, 35] and

creating polyhedral cells through three-dimensional domain tesselation. First

the aggregates of zero radius are distributed on the external surfaces. Then the

coarse aggregates are placed in the interior domain. The domain tessellation

is based on Delaunay tetrahedralisation of the particle centers. The generated105

polyhedral cells interact through triangular facets and a lattice system made up

of the segments that connect the sphere centers. The behavior of the material

is represented by vectorial constitutive equations of the form, σ = f(ε) with the

stress vector, σ = [tN tM tL]T , and the strain vector, ε.

LDPM uses rigid body kinematics to describe the deformation of the particle

system and the displacement jump, JuCK, at the centroid of each facet is used

to define measures of strain as

eN =
nTJuCK

`
eL =

lTJuCK
`

eM =
mTJuCK

`
(4)

with ` the distance between the particles, and n, l,m, are the vectors defining a

vectorial basis, i.e. the local reference system of each facet, and ε = [eNeMeL]T

stands for the facet strain vector. The strains of Eq. 4 have been found to be the

projections of the strain tensor of continuum mechanics into the local reference

system, [36, 37, 38]. In the elastic domain the vectorial constitutive relation
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between stress and strain components are

tN = ENe
∗
N tM = ET e

∗
M tL = ET e

∗
L, (5)

where e∗N , e
∗
M , and e∗L are the instantaneous plus mechanical deformations (see

Eq. 8), EN = E0, and ET = αE0, with E0 the effective normal modulus,

α = (1− 4ν)/(1 + ν) the shear-normal coupling parameter, and ν the Poisson’s

ratio. The strain components can be corrected by eigenstrains resulting from

different phenomena, like thermal expansion, shrinkage, or expansive chemical

reactions such as e.g. alcali-silica reaction. Due to strain additivity visco-

elasticity problems can be represented by elasticity problems in which the creep

strains are introduced as additional eigenstrains. A more detail discussion of the

viscoelastic problem follows in section 2.3. The LDPM formulation explicitly

models fracture and cohesion, compaction and pore collapse, and internal fric-

tion. For tensile loading, e∗N > 0 fracturing behavior can be formulated through

effective strain ε and effective stress σ, with

ε =
√
e∗2N + α(e∗2M + e∗2L ), σ =

√
σN 2 + α(σ2

M + σ2
L) (6)

The effective stress is incrementally elastic obeying the inequality 0 ≤ σ ≤

σb(e, ω), with tan(ω) = e∗N/
√
αe∗T = tN

√
α/tT , and H0(ω) = Ht(2ω/π)nt , is

the post peak softening modulus, with Ht the softening modulus in pure tension

(ω = π/2) expressed as Ht = 2E0/ (`t/`− 1), ` = the length of the tetrahedron

edge, and `t = the tensile characteristic length. The stress boundary is given

by

σbt = σ0(ω) exp [−H0(ω)〈ε− ε0(ω)〉/σ0(ω)] (7)

The exponential decay of the stress boundary begins when the effective stress110

σ reaches the elastic limit.

2.3. LDPM coupling with HTC model

Although the phenomena of concrete creep and shrinkage are known for

many decades now, the actual underlying mechanisms are still not fully under-

stood. In order to predict creep and shrinkage deformations the engineering115
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community uses mostly semi-empirical models [2, 39, 40, 41, 42, 43]. Usually

their calibration is performed on experimental data. Afterwards they predict

the time evolution of creep and shrinkage on a cross-sectional level, and in ac-

cumulated form. Various material properties, e.g compressive strength, water

to cement ratio, cement content, and environmental conditions, among others,120

act as input variables of the models. In spite of all efforts the model predictions

are often quite far from the measured response [41, 44]. Thus, a more refined

modeling approach must be employed for more demanding problems – a local

point-wise model formulated in a rate-type form which is able to combine the

different physical and chemical mechanisms.125

Figure 1: Rheological model for coupling

In this work, creep and shrinkage are modeled in a rate-type form based

on the Micro-Prestress-Solidification Theory (MPS) first proposed by Bažant

and co-workers [20, 21]. The model following the rheological representation of

Figure 1 splits the total strain rate, ε̇tot, into different strain rates that de-

scribe different physical mechanisms. These are an instantaneous response,

ε̇∗ described by a non-aging spring plus the strain rate due to damage, εdam,

which are determined from LDPM, viscoelastic response, ε̇v, represented by a

non-aging Kelvin chain with typically ten elements in combination with an aging

function formulated in terms of reaction degree [45, 46]. Additionally, the model

accounts for the pure viscous flow, ε̇f , using an aging dashpot calculated from

the Micro-Prestress theory [45, 46]. Furthermore, the hygral, ε̇sh, and thermal,

ε̇th, strain rates are added. The total strain rate is imposed as the summation
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of the individual strain rates:

ε̇tot = ε̇∗ + ε̇v + ε̇f + ε̇sh + ε̇th + ε̇dam (8)

Numerically, the solution of the multi-physics model and the mechanical

model are coupled in one-way only so that the parameters of the mechanical

model and the imposed eigenstrain increments are updated to reflect the evolv-

ing hydration degree, temperature and relative humidity fields. However, the

effects of damage or deformation state on the transport processes are not ac-130

counted for. In this work the time-dependent evolution of strength and fracture

are neglected, while aging of the visco-elastic response is accounted for by the

MPS theory. Aging fracture properties could have been introduced following

the work of Wan et al. for UHPC [47, 48], and Wendner et al. [49]. However,

for this investigation the approximation of constant mechanical properties is135

sufficient considering the relatively short duration of the tests (the failure times

were less than 1 day) compared to the concrete age of 4months and 56 days,

respectively.

In general, visco-elasticity can be described by a compliance function J(t, t′) =

ε/σ, where t the age of concrete and t′ the age at loading, ε the resulting strain

when a constant unit stress σ = 1MPa is applied. As shown by Bažant [50] for

the general three-dimensional case and under the assumption of a time-invariant

Poisson’s ratio ν the compliance function can be expressed as:

J(t, t′) = ξ1 + C(t, t′) (9)

where ξ1 = 1/E0 the instantaneous elastic compliance, and C(t, t′) is the creep

compliance function. The parameter ξ1 is used for the calculation of the instan-

taneous strain ε∗, since ε̇∗ = ξ1Gσ̇, where σ = the applied stress, and G is a

constant matrix, under the assumption that the viscoelastic process does not

vary the material isotropy (ν =constant). Therefore G can be expressed as

G =


1 0 0

0 1/α 0

0 0 1/α

 (10)
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where α = the shear-normal coupling parameter which is related to Poisson’s

ratio ν as summarized in section 2.2. It is easily understood that the relations140

of Eq. 5 can be also expressed as ε∗ = 1/E0Gσ.

Any non-aging creep compliance function C(t, t′) can be represented by a

non-aging Kelvin chain expressed as Dirichlet series with N elements as

C(t, t′) =

N∑
µ=1

Aµ [1− exp (−(t− t′)/τµ)] (11)

where Eµ the elastic moduli of the µth unit of the chain, τµ the retardation time

of the µth unit of the chain, and Aµ = 1/Eµ the strain increment during time

equal to τµ. In general, the identification of chain parameters directly from creep

data is a ill-posed problem and leads to non-unique chain properties. Through145

the introduction of a continuous retardation spectrum as discussed subsequently

this problem is overcome by linking the individual dash pot viscosities and spring

stiffnesses to a significantly lower number of parameters defining the spectrum.

The most efficient and accurate way to evaluate the values of Aµ is by as-

suming an infinite, i.e. continuous, Kelvin chain with infinitely close retardation

times. Following this the creep compliance function can be expressed with the

help of a continuous retardation spectrum L (τ) as:

C(t, t′) =

∫ +∞

−∞
L(τ) [1− exp(−(t− t′)/τ)] d(lnτ) (12)

and the retardation spectrum can be derived as

L(τ) = − lim
k→ ∞

(−kτ)
k

(k − 1)!
C(k)kτ (13)

where k is the order of the retardation spectrum. It can be assumed that the

creep compliance follows a logarithmic - power law function, expressed by

C(t, t′) = ξ2ln

[
1 +

(
t− t′

λ0

)n]
(14)

with ξ2, λ0 = 1 day, n = 0.1 material parameters, and t − t′ is the duration

since load application t′. This functional form has been selected as a compromise

between the power-law shape of short term creep and the logarithmic evolution
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of long-term creep. Based on the chosen functional form of the creep compliance

the latter can be expressed for a retardation spectrum of order 3 as

L(τ) =

[
−2n2 (3τ)

2n−3
(n− 1− (3τ)

n
)

(1 + (3τ)
n
)
3

]
(3τ)

3

2
ξ2

+

[
n(n− 2)(3τ)n−3[n− 1− (3τ)n]− n2(3τ)2n−3

[1 + (3τ)n]
2

(3τ)3

2
ξ2

] (15)

In order to compute numerically the integral of Eq. 12 the continuous spec-

trum has to be discretized and then approximated by a sum. It is most conve-150

nient to space the retardation times τµ equidistantly in logarithmic time. Based

on previous studies by Bažant and co-workers a spacing between retardation

times of ∆(log τµ) = log(10) results in a sufficiently accurate approximation.

Then the total creep compliance can be approximated as a finite sum with the

contributions Aµ = L(τµ) ln 10∆(log τµ) of N Kelvin chain elements:155

C(t, t′) = A0 +

N∑
µ=1

Aµ(1− exp(−(t− t′)/τµ)) (16)

It is important to also account for the area under the continuous spectrum

up to the shortest retardation time τ1 considered. This area under the tail

is included in the constant A0, see Figure 2. As previously shown [51] the

theoretical value of the constant A0 is given by the integral A0 =
∫ τ0
−∞ L(τ)dτ ,

where the upper integration limit τ0 can be determined for a spacing of log(10)160

as τ0 = τ1/
√

10, where τ1 = the first retardation time of the Kelvin chain.

However, a more preferable computational method of the constant A0 is

through the minimization of the error of the series of Eq. 16 compared to it’s

theoretical value[51] as

A0 =
1

t− t′

∫ t−t′

0

[
C(t, t′)−

N∑
µ=1

Aµ(1− exp(−(t− t′)/τµ))

]
d(t− t′) (17)

This approach has the advantage that the accumulated discretization error165

can be corrected for based on the time period of interest. For this investigation

an upper integration limit of t − t′ = 365 days is used as compromise between
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Figure 2: Discretization of the continuous retardation spectrum

short loading durations and the multi-decade behavior. The integral is most

efficiently evaluated using the trapezoidal rule with logarithmically spaced time

steps. In Table 1 the calculated A0 values are reported for three different values170

of τ1, three upper integration limits, and for ξ2 = 1. As it can be seen the inte-

gration limit doesn’t have a significant effect on the calculated values. However,

the values of A0 sensitive to the choice of the first retardation time τ1.

τ1 [days] 10−5 10−4 10−3

A0 (t− t′ = 365 days) [Pa−1] 0.226 0.279 0.343

A0 (t− t′ = 3, 650days) [Pa−1] 0.228 0.279 0.342

A0 (t− t′ = 20, 000days) [Pa−1] 0.244 0.281 0.343

Table 1: Values of A0 for different first retardation times τ1 of the Kelvin chain and different

upper integration limits

Assuming that the creep response of fully hydrated cement gel is an in-
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trinsic material property the problem of macroscopic aging visco-elasticity can

be converted into non-aging visco-elasticity of the fully hydrated cement gel

and an aging function predicting the amount of gel already formed. Thus, the

creep microstrain rate of the non-aging cement gel under constant stress can be

expressed with the help of Eq. 16 as:

γ̇ = σ

[
A0 +

N∑
µ=1

Aµ(1− exp(−(t− t′)/τµ))

]
(18)

The aging viscoelastic response of concrete is obtained by introducing an

aging function expressed as

ε̇v =
1

v(αc)
· γ̇ (19)

where v(αc) = is the function that approximates the amount of hydrated cement

gel which can be calculated as v(αc) = (αc/α
∞
c )na , in which αc is the hydration175

degree and the exponent na can be calibrated using short term creep data for

different loading ages.

Due to the introduction of function v(αc) any macroscopic viscoelastic strain

εv can only be partially recovered after unloading, although the micro-strain of

the cement gel γ can be fully recovered. Furthermore, in this formulation time180

is replaced with the reduced time tr(t) =
∫ t
0
ψs(τ)dτ capturing temperature

and relative humidity effect on the microscale creep with the activation energy

Qv/R ≈ 3000K, and the function ψs(t) = [0.1 + 0.9h2] exp[Qv/R(1/T0 − 1/T )].

Thus, the creep microcompliance can be expressed as C(tr(t), t
′).

Finally the plastic creep strain rate, ε̇f , i.e. the viscous flow rate, that

originates in the slippage between adsorbed water layers can be described by

the Micro-Prestress theory. The source of this creep deformations lies in the

relaxation of disjoining pressures and the rupture of atomic bonds. Bažant

[20] proposed to formulate the viscous flow in terms of microprestress S, which

describes the stress among the bonds of the gel pores and is expressed by the

differential equation

Ṡ + ψs(t)κ0S
2 = κ1 | Ṫ ln(h) + T ḣ/h | (20)
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with κ0, κ1 material parameters, and ψs(t) the already introduced function of

reduced time. Thus, the viscous strain rate is given by

ε̇f = ξ4κ0Sψs(t)Gσ̇ (21)

where ξ4 = material parameter that has to be calibrated. Finally, the hygral

and thermal strain rates of Eq. 8 can be assumed to be proportional to the

humidity and temperature rates, respectively,

εsh = αshḣ (22)

where αsh is the shrinkage coefficient, and αT is the coefficient of thermal ex-

pansion.

εT = αT Ṫ (23)

2.4. Rate effect185

The change of loading rate has a direct effect on the mechanical properties

of concrete, as it has been shown by many authors [52, 53, 54, 55, 56, 57, 58].

This variation can be explained by three main mechanisms: (1) the creep of

the material, (2) rate effect on the bond rupture, and (3) the effect of inertia

in the crack propagation. For quasi-static tests, typically the loading rate ε̇190

lies in between 10−7 and 10−3 s−1 [59], and whithin this strain rate range, the

first two mechanisms mentioned above are dominant. Therefore, except the

creep rate, also the rate dependency of the crack opening has to be taken into

account. The rate effect can be modeled under the concept of a rate dependence

on the fracture process [60]. In general it can be accepted that fracture is the195

consequence of the rupture of atomic or molecular bonds, and that this breakage

arises due to a thermal activation of the bonds.

Bažant [61] has formulated the cohesive crack model taking into account

the aforementioned mechanism, in which the cohesive crack model is trans-

formed in a time-dependent process characterized by an activation energy. The200

Maxwell-Boltzmann distribution describes statistically the thermal energies of
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the vibrating atoms or molecules in a solid material with the functional form:

f = kb exp (−U/RT ) (24)

with f the frequency of particles having a potential energy of U , kb is a

constant, R the gas constant and T the temperature. The vibration of the

molecules or atoms implies a maximum value, Q, of the potential energy, which205

physically represents the barrier of energy that a particle has to exceed in order

to break a bond. In case of stress applications, σa, the potential energy is

varying among U ± ra · σa, with ra the distance from the equilibrium position

to the position of maximum energy, i.e. the displacement caused by stress, and

thus the product ra ·σa expresses the work of the latter. By denoting f1 and f2210

the frequencies of the varied potential energies U1,2, the rate of crack opening

ẇ can be taken as their difference with the proportionality constant kf :

ẇ = kf (f2 − f1) (25)

By substituting U1,2±ra ·σa in Eq. 24 and then the respective results in Eq. 25,

the rate of crack opening can be expressed as:

ẇ = 2kbkf sinh (raσa/RT ) exp(−Q/RT ) (26)

which for constant temperature, and under the assumption of proportionality

σa ∝ σ − φ(w) with the cohesive crack model, yields

σ(w, ẇ) =
[
1 + C1 sinh−1 (ẇ/C0)

]
φ(w) (27)

with C0 = 2kbkf exp(−Q/RT0) and C1 are material constants.

The above concept has been implemented in LDPM [59] by scaling the stress-

strain boundary, defined in Eq. 7 by the function F (ε̇) as

F (ε̇) = 1 + C1 sinh−1 (ε̇/(C0`ch) (28)
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3. Numerical Analysis

3.1. Experimental data215

The discussed computational framework is evaluated using data from two

different contributions found in the literature. The two specific research works

have been selected out of the very few available experimental investigations of

time-dependent fracture as they reflect different types of tests. In the work

of Rüsch [62], the sustained loading was applied in compression, while Zhou220

[63] performed bending time-to-failure tests on notched and unnotched beams

in a three point bending configurations, and creep relaxation tests on notched

cylinders under tensile loading.

3.2. Zhou data

Zhou performed tests on concrete with cement content, c = 420 kg/m3,225

water cement ratio, w/c = 0.55, and aggregate to cement ratio of a/c = 3.81.

The size of aggregates used in the concrete mix design was within 0 and 4 mm.

The concrete had at 28-days a compressive strength of fc28 = 38 MPa. All the

tests, which comprised fracture tests in tension and bending, creep, and time-

to-failure tests were performed at a concrete age of 4 months. The measured230

concrete properties were: tensile strength ft = 2.8 ± 0.2 MPa, fracture energy

GF = 82 ± 9 Nm/m2, modulus of elasticity of E = 36 ± 2 GPa, and

characteristic length, indirectly obtained from the Hillerborg’s equation [64],

`ch = 0.38 m.

Table 2 shows the geometry and the number of specimens tested for the235

quasi-static tensile and fracture tests, the tensile relaxation tests, the rate tests

and the time-to-failure creep tests.

In order to obtain the tensile strength, notched cylinders (NC) were tested

under tensile loading. The NC had a notch width of 10 mm and a notch depth

of 12 mm (see Figure 3b). Fracture properties were obtained from notched240

prisms (NP) with a support distance of 800 mm and notch depth of 50 mm

(see Figure 3a). The data, which will be used for the creep calibration, was a
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relaxation tensile test on NC specimens. The specimens was loaded such that

the notch opening reached 0.05 mm within 5 minutes. The notch opening was

then kept constant for the next 60 minutes. Tests with four strain rates (see245

Figure 6a) were performed on NP specimens in order to evaluate the rate effect

on the stress at peak. The notched prisms tested for rate effect had a support

distance of 600 mm and a notch depth of 25 mm. At last, time to failure creep

tests were performed on two different geometries, notched prisms and unnotched

prisms (UP) having different sizes. The notched prisms had the same geometry250

as those of the fracture energy tests and were tested with load levels in the

range between 92% and 76% of the ultimate load of the related quasi-static

test. The UP of size 320x50x50 mm were tested with a support distance of

300 mm and for a load range between 95% and 67% of the related ultimate load

of the quasi-static test. No geometrical information could be retrieved for the255

other tests performed by Zhou [63], which were compression tests and elastic

modulus determination tests.

Tests

type

ID Geometry

mm

No of

tests

Measured

property

Tension NC 64x60 5 Tensile strength

Fracture NP 840x100x100 6 Fracture Energy

Relaxation NC 64x60 6 Creep (Relaxation)

Rate NP 640x50x50 14 Stress at peak

Creep NP 840x100x100 14 Creep rupture

Creep UP 320x50x50 12 Creep rupture

Table 2: Zhou data: Overview of the specimen geometry and number of tests

3.3. Rüsch Data

The concrete mix design used by Rüsch can be summarised as follows:

c = 337 kg/mm3, w/c = 0.55, and a/c = 5.47. No information about260

the aggregate size distribution was provided. All the tests were performed at
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a)

b) c)

d)

Figure 3: Specimens geometry: a) notched beam (Zhou), b) notched cylinder (Zhou) and c)

related numerical model visualization, and d) geometry of the dog-bone-like specimen used

by Rüsch for compressive strength and creep tests

a concrete age of 56 days. In order to obtain the compressive strength, two

geometries were used: cylinders and prismatic dog-bone-type specimens. The

geometry of the dog-bone-type specimens with a depth of 150 mm is shown in

Figure 3d. The 56 days cylinder compressive strength was 20.68 MPa, while265

for the other geometry, the compressive strength was 34.47 MPa. The elastic

modulus estimated from the compressive test results was E ≈ 41.3 GPa.
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Rate effect tests were performed on cylindrical specimens,while sustained

load tests were carried out with the dog-bone-type geometry. The specimens

were loaded at the different load levels (50 to 90% of the quasi-static compressive270

strength) in around 20 min and after that, the load was sustained. For load levels

greater than 75% of the static compressive strength, failure was observed. The

time to failure varied from a few minutes to 70 days.

4. Models calibration

The computational framework was calibrated twice using the considered ex-275

perimental data presented in the previous section. It has to be noted that the

studied effect of the rate can not be isolated from the other tests, i.e. the ma-

terial properties are related to the loading rate and also creep contributes to

deformations in all tests, especially the ones at low loading rates. The same

applies to so-called quasi-static tests that also have a finite duration during280

which creep exists. Hence, for a more accurate calibration concrete creep tests

at low load levels are required, for which the existence of damage can be ex-

cluded. Therefore, for the calibration of the static LDPM parameters creep

and the loading rate dependence have to be active in the model. This study

attempts to overcome this challenge by following an iterative procedure for cal-285

ibration and optimization of the parameters. As a matter of fact after the first

sequence of calibration, a second iteration took place including all the different

aforementioned contributions, and after that, an optimization to the calibrated

parameters, if necessary, was carried out.

Ideally, the calibration strategy follows the following sequence: (1) calibra-290

tion of creep parameters on relaxation or creep data at low load levels without

damage, (2) calibration of LDPM mesoscale static parameters on quasi-static

data accounting for creep, (3) calibration of the rate effect parameters on ex-

periments performed with different loading rates, (4) iterative improvement of

calibrations to account for interactions of rate, creep and damage. The lat-295

ter is especially important if only creep tests at moderate to high load levels
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are available and damage contributes to the observed response. In this case,

the sequence of steps (1-2) may be inverted. A complete calibration procedure

should also include the determination of the HTC parameters. Unfortunately,

for the simulate concretes no information about the hydration kinetics is pro-300

vided. Thus, the following parameters from literature [46] were adopted Ac1 =

2.5 · 107 hours−1;Ac2 = 5 · 10−3; ηc = 7.5; ct = 1100 J/kgoC;Q∞c = 500 J/g;

D0 = 10−7 [kg/(m h)]; D1 = 2 · 10−3 [kg/(m h)]; n = 4.

In case of Zhou’s data, aging effects are negligible since the tests were per-

formed at a concrete age of approximately 4 months and the test durations were305

relatively short with a maximum of 0.12 days. Therefore, the hydration degree

could be considered to be constant during the tests. Additionally, the speci-

mens were kept sealed and, thus, also the pore humidity and the temperature

can assumed to be constant. Only for the tests performed by Rüsch aging effects

matter as the testing times reached 2 years of concrete age for the tests at lower310

load levels. Nevertheless, a reasonable estimation of the hydration reaction can

be adopted based the behavior of a similar concrete [23].

For the numerical simulations, three different realisations (seeds) of the par-

ticle placement were run for each configuration and test. Hence, the numerical

scatter partially captures the experimental scatter resulting from the material315

heterogeneity. A more detailed discussion on the particles placement and the

related influence on the numerical scatter can be found in [65, 66].

4.1. LDPM parameter calibration

In a first step the LDPM static parameters for both concretes are calibrated

as only creep data with moderately high load levels was available. For Zhou’s320

data, the LDPM parameters are calibrated to match simultaneously the above

mentioned experimental compressive strength and elastic modulus, and the ex-

perimental stress-notch opening curve of the notched cylinder under tensile load-

ing. The compressive strength value was corrected with an aging function [67]

to obtain an estimated value of strength at 4 month. In order to reproduce325

numerically the latter, a simulation was performed on a cubic specimen with an
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edge size of 100 mm. The elastic modulus simulation was performed on a cylin-

der with sizes 150 × 300 mm. The experimental elastic modulus was matched

by the initial slope of the stress-strain curve obtained numerically. The output

of the tensile tests was a stress-notch opening curve (see Figure 4a). The notch330

opening was experimentally measured by extensometers and extracted from the

model through the displacement field. The experimental curves on fracture tests

in bending were used as validation in a comparison with purely predictive sim-

ulations. Additionally following the proposed calibration sequence the entire

process was repeated having the creep and rate effect active. In that case the335

mesoscale characteristic length had to be adjusted to `t = 210 mm instead of

`t = 195, which was it’s initially calibrated value. As can be seen from the

excellent agreement in Figure 4b, the calibrated model allowed to reproduce ex-

periments which were not belonging to the part of data used for the parameters’

calibration: the TPB simulation with a deflection rate of 5 µm/s.340
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Figure 4: Calibration on notched cylinder a) and validation on three point bending test b) of

the LDPM static parameters on Zhou’s data.

A similar process was followed for the dataset of Rüsch. All the LDPM static

parameters were calibrated on the two compressive tests aiming on matching

the strength of both the geometries.

The mesoscale static LDPM parameters for both concretes can be found in
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Table 3.345

ID Age

[days]

E0

[GPa]

α

[-]

σt

[MPa]

`t

[mm]

σs/σt

[-]

µ0

[-]

n

[-]

Zhou 120 65 0.25 2.6 210 3 0.2 0.9

Rüsch 56 41.8 0.25 2.4 160 1.85 0.2 0.8

Table 3: LDPM static parameters of both concretes

4.2. Creep calibration

After the calibration of the static parameters has been carried out, the cali-

bration of the creep parameters is performed. Regarding Zhou’s data [63], the

relaxation tests on NC were numerically simulated. The model was loaded with

the notch opening history reported for the experiment while the load relaxation350

was recorded. Figure 5a shows the good agreement of the creep calibration with

the experimental result. As a consequence of the prescribed displacement his-

tory, the load on the specimen reached about 75% of the maximum load obtained

from the quasi-static tests. At this load level, micro-cracking surely happened

and certainly influenced the relaxation process, which can be captured through355

the damage model on the level of facets.

For the second concrete, tested by Rüsch, the creep calibration was per-

formed on the creep curve resulting from the specimen loaded at 50% of the

related quasi-static compressive strength. In Figure 5b, the best fitting simula-

tion response is presented together with the experimental data. The simulated360

tests were performed under constant environmental conditions. Thus, the val-

ues κ0, and κ1 could not be calibrated. Following the approach adopted in

[46] assumed values for similar concretes found in literature can be used. The

calibrated creep parameters for both concretes are shown in Table 4.

4.3. Rate effect calibration365

Finally, the rate effect parameters are calibrated using data from tests per-

formed with different loading rates. For Zhou’s concrete, three point bending
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Figure 5: Calibration of the LDPM creep parameters: stress relaxation in Zhou’s data a) and

creep curve in Rüsch data b).

ID ξ1

[MPa−1]

ξ2

[MPa−1]

ξ4

[MPa−1]

κ0

[MPa2ds]−1

κ1

[MPa/K]

Zhou 6.7·10−6 2.0·10−5 2.8·10−6 1.1·10−15 7·106

Rüsch 7.3·10−6 3.0·10−5 2.5·10−6 1.1·10−15 7·106

Table 4: Calibrated model parameters for creep and rate effect .

specimens were tested at the following loading rates 0.05, 0.2, 2, and 50 µm/s

and the corresponding reported times to peak ranged from 5 to 5000 sec. As

previously mentioned, in Figure 3a the geometry of the tested notched prisms is370

shown, while Figure 6a, shows the relative peak load (relative to the peak load of

the highest rate) obtained for the different loading rates. The numerical model

is capable of catching the increase in the peak load with increasing loading rate.

Additionally, in Figure 7a and Figure 7b, the profiles of the maximum principal

stresses at peak load are shown for the slowest and the highest loading rate,375

respectively. It is clear that higher loading rates lead to stresses distributed in a

larger volume, which means higher energy dissipation. As also shown in [17] the

concrete behavior becomes more brittle as the loading rate decreases associated
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with a shrinking fracture process zone (FPZ). Similar behavior has also been

observed for thermally damaged concrete. The higher the temperature of the380

thermal treatment the more ductile is the material behavior leading to a longer

FPZ [68, 69].
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Figure 6: Calibration of the LDPM rate parameters in a) Zhou’s data and b) Rüsch’s data.

Similar to the Zhou rate calibration, the LDPM rate parameters were cali-

brated on Rüsch’s experiments of different rates. The used specimen geometry

was a cylinder with sizes 300 × 150 mm. Good agreement between the exper-385

imental results and the simulations can be seen in Figure 6b, in which the Y

axes of the diagram is normalized with the stress at peak of the highest rate.

5. Numerical simulations of Tertiary Creep and Time-to-Failure

After the calibration of all three model components – quasi-static LDPM

parameters, creep-model parameters, and rate-dependent fracture parameters –390

the predictive quality of the computational framework is evaluated on several

experimental data that have not been used for the calibration. In this step none

of the model parameters is modified.

The validation is performed on time-to-failure curves for the flexural and

compressive creep tests of Zhou and Rüsch, respectively. The failure times are395
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Figure 7: Maximum principal stresses normalized to their maximum value for the a) slowest

and b) fastest of the rate tests of Zhou’s data at the peak of the sustained load

determined as the time when the reaction forces on the supports are dropping

significantly. It has to be noted that the discrete element simulations are run

in an explicit framework which ensures a solution even after the specimen has

broken, unlike the case of implicit algorithms, where failure is indicated only by

a loss of convergence. The results clearly show that the behavior of concrete400

under moderate to high load levels can be predicted with a constitutive model

that combines in series a linear creep model with a rate-dependent fracture

model.

5.1. Time to Failure

First, simulations of sustained load tests on notched and unnotched beams405

(Zhou study [63]) are carried out. The load levels are selected to be the same

as those from the experimental tests: 76%, 80%, 85%, and 92% of the peak load

(Pmax) of the test with a deflection rate of 5 µm/s.

In Section 4 the model calibration was presented based on the mean curves

of three simulations each with different particle placements (seeds). Also for the410

time to failure simulations, three different realizations are run for each problem

resulting in a numerical scatter in the obtained times to failure. The sustained
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load levels for the simulations are based on the mean peak values of the respec-

tive quasi-static simulations.
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Figure 8: Zhou’s notched prism tests: Experimental and numerical crack opening vs. time

curves for different load levels.

Figure 8 shows the crack opening-time curves for the different considered load415

levels. The solid lines represent the mean numerical crack opening evolution

(mean of three repetitions), while the envelope illustrates their scatter. The

simulations are compared to the one experimental curve per load level provided

from Zhou [63], which is represented by the ×markers. In all cases, the available

curve is the one with the highest failure time among all the tests of a given420
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load level. Additionally, Zhou also reported the experimental failure times for

all tests. The vertical red dashed lines in Figure 8 denote the minimum and

maximum experimental time to failure observed.

The comparison between the numerical and experimental results shows ex-

cellent agreement in terms of time to failure and related scatter for all the load425

levels. However, the numerical simulations yield a higher instantaneous crack

opening with respect to the sole full experimental curve available. This fact

may be considered of secondary importance since there are no information on

the experimental scatter in that region, and because the times to failure are

correctly estimated.430

Additionally, also flexural creep tests on unnotched prisms were investigated

based on the available experimental data. Specimens were loaded at 95, 90,

85, 80, 76, 70, and 67% of the reference load. The experimental value of the

reference load, however, was not directly provided in Zhou’s contribution. A

loading rate of 50 N/s was applied on four specimens which took around 40435

seconds to fail. From these, a peak load of around 2 kN can be calculated.

The mean value of the numerically simulated related tests, which could serve as

validation, was equal to 1.83 kN and was used as reference load for the flexural

creep study on unnotched prisms.
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Figure 9: Experimental and numerical time to failure plots of flexural creep for a) notched,

and b) unnotched specimens for Zhou’s data [63].
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In Figure 9, numerical and experimental times to failure are plotted for the440

different load levels for both notched and unnotched prisms. The numerical

results for both cases are in very good agreement with the measured data. In

Figure 9b the results of unnotched beams are shown. The diamond markers

represent the tests which didn’t fail within 10, 000 s (2.78 hours). Nevertheless

for these two load levels, which were 70 and 67%, respectively, the failure times445

were numerically predicted as 17 hours and 2.3 days, respectively.

Furthermore, it is interesting to notice in Figure 9a, for notched beams, the

change of slope at the 76% load level. The slope is diverging from a typical power

law that is assumed to describe the failure in relation to the load level [70]. This

is more pronounced in the case of the unnotched specimens (Figure 9b), where450

also lower load levels are involved. A more detailed analysis is given later on in

this paper.
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Figure 10: Sustained load validation results on specimens under compression loading: a) load

levels that didn’t lead to failure and b) load levels that led to failure.

The experimental results of Rüsch [62] are used for the sustained load vali-

dation performed on dog-bone-like specimens under compression at load levels

of 60, 70, 75, 80, 85, and 90% of the related quasi-static compressive strength455

(Qmax = 517.11 kN; σmax = 34.47 MPa). In Figure 10 both the experimental

and numerical sustained load results are shown. The 80, 85, and 90% load levels
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led to failure within the first 10,000 seconds, see Figure 10b, while the others

didn’t fail during the testing time as confirmed by the numerical simulations,

see Figure 10.460
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Figure 11: Crack opening time histories with and without the loading rate effect for load

levels of a) 76%, and b) 92%.

5.2. Creep vs. rate-dependent fracture

It is also worth analyzing the role of the two different sources of time depen-

dence: creep of the material and rate effect on crack opening. Therefore, a nu-

merical study on time-dependent failure, just due to flexural creep, is performed.

In this case, sustained load simulations on unnotched specimens at 92 and 76%465

of the related quasi-static peak load are investigated. The aim of this analysis

is to underline the importance of the loading rate dependency of the damage

model on the time to failure prediction, i.e. tertiary creep. Figure 11 presents

the crack width evolution in time for the two selected load levels. The numeri-

cal analysis considering only creep (dashed line) substantially deviates from the470

results of the full framework combining creep effects with rate-dependent frac-

ture (solid line). For 76% of maximum load the creep-only simulation does not

approach failure within the simulated time frame of 10,000 seconds. However,

the full formulation predicts failure already after 3,000 seconds (11 a) in agree-

29



ment with the experimental data. For 90% of the maximum load the creep-only475

simulation predicts a time-to-failure of two orders of magnitude greater than

the one obtained by the full formulation (11 b). These two examples demon-

strate the importance of considering both sources of time-dependence for all

load levels if concrete time-to-failure has to be predicted. Additionally, these

two examples highlight the importance of the rate-dependency of the damage480

model even for low load levels in which creep plays the major role concerning

the time-dependent behavior and confirms what has been obtained in [17] using

different numerical models.

5.3. Structural time-to-failure

Finally, it is worth performing a predictive study on the notched prisms of485

the Zhou’s experimental investigation on load levels outside the range of tested

values, i.e. 92 to 76%. The motivation of this study can be found in the

ongoing discussion on the allowable sustained load level to ensure the required

life-time of 50 years. The main question concerns the equation that should be

used to extrapolate from test results with reasonably quick failure times at high490

load levels to those at load levels that cause failure at common structural life-

times, e.g. 50 years. Current proposals [71, 72, 73] suggest the use of a linear

trend line in the logarithmic time scale as the long-term creep behavior would

suggest. While there certainly is a range in which the logarithm of the failure

times are increasing linearly with decreasing load level the response at very495

high or very low load levels most likely deviates from this trend. It is obvious

that a sustained load can not exceed the quasi-static load capacity but only

approach it with the asymptotic case of immediate failure (an infinitely short

hold time), represented by an horizontal asymptote in a plot of logarithmic time

for time that tends to zero. Similarly, the existence of a threshold load level500

can be postulated under which no damage develops and, thus, no failure can be

expected, yielding a second horizontal asymptote for times that tend to infinity.

This threshold may be found at the onset of apparent nonlinear viscoelasticity

that is typically defined around 40% of the short-term strength for concrete. In
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any case, for unloaded specimens an infinite life-time should be guaranteed by505

the extrapolation model.

Experimentally it is very difficult to determine the expression of the function

at high load levels due to scatter and the required temporal resolution. On the

other side, it is practically impossible to measure the behavior at low load

levels. The calibrated and validated computational framework, presented in510

this manuscript, provides the opportunity to study these cases numerically and,

thus, gain important insights into this phenomenon.

In this contribution additional load levels of 98, 95, 72, 70, 65, 60, and 50%

of the related quasi-static peak load, are simulated. The numerical simulation

results with failure are indicated by × markers in Figure 12 while the available515

experimental results are marked by circles. The triangle denotes numerical

run-through simulations that did not fail at the indicated time. The typical

structural life-time of 50 years is marked as a vertical dashed line and the no-

damage domain below 40% according to current codes as horizontal dashed line.

The results clearly show a change of slope at high load levels ≥ 90%, as well520

as at load levels ≤ 76%, confirming the postulated existence of two asymptotes

that deviate from the linear trend in the intermediate domain.

If only the experimentally obtained data is considered and extrapolated us-

ing a linear trend line (red dashed line) hold times less than 10 seconds would

lead to analytically predicted load levels exceeding the short-term capacity. Fur-525

thermore, for a 50-year life-time a load level of not more than 20% would be

admissible and even an unloaded structure would fail after about 3,200 years =

1011 seconds.

Considering the remarkable agreement between numerically predicted failure

times and experiments the numerical results can serve as basis for the investi-

gation of alternative yet still simple extrapolation models. As first approach, a

bilinear fit is explored, (see blue solid line in Figure 12a) which is describe by
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Figure 12: Numerical study of TTF and fitting approaches (a) bilinear (b) sigmoid function.

the Eq. 29.

P/Pmax =

 −4.507 · ln(tcr) + 109.5, P/Pmax ≥ 76%

−1.543 · ln(tcr) + 86.91, P/Pmax < 76%
(29)

This model still violates the two theoretical asymptotes but it is able to repre-

sent all practically relevant data (numerical and experimental). By fitting this530

type of function, a threshold load level at around 55% can be defined below

which no failure within the lifetime (50 years) can be expected. However, the

extrapolation theoretically still leads to failure also for very low load levels, al-

though at very long times. Furthermore, the linear extrapolation to low load

levels passes through the end point of the 50% load level simulation that had535

not yet failed at this point indicating a different functional form.

Alternatively, a function that has both asymptotes and exhibits a nearly lin-

ear intermediate domain in the range of typical loads is investigated. Compared

to the bilinear model with 4 unknown fitting parameters a sigmoid function

with 3 parameters can be introduced as540

P

Pmax
= (1− a) + a ·

(
1

1 + b · tcr

)c
(30)

where 1 − a = load level below which no failure occurs, b, and c are the
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fitting parameters and tcr is the failure time.

The resulting optimum fit is presented as a solid blue line in Figure 12b,

with fitted parameters a = 0.4239, b = 0.0549, and c = 0.1668. The model

perfectly predicts the transition from very high loads to loads around 70% and545

flattens out approaching a horizontal asymptote at 1− a = 58%. Even though

the predicted simulation results can not be perfectly reproduced by the sigmoid

model the approximation is reasonably close and consistent with the literature

recommendations that suggest a maximum sustained load level of 50− 60% for

typical structural life-times [71, 72, 73, 74].550

6. Conclusions

In this contribution the tertiary creep response of concrete has been success-

fully reproduced in a discrete element computational framework, both in tension

and compression. The static parameters of the mechanical constitutive model

LDPM, creep parameters and rate parameters have been calibrated on two dif-555

ferent data sets capturing the main concrete material and creep properties. A

validation in terms of blind predictions was performed on time-to-failure tests,

and on secondary creep data at various load levels showing excellent agreement

with the experimental results. The main conclusions can be summarizes as

follows:560

• The time-dependent response of concrete under tensile (flexural) and com-

pressive sustained loads can be modeled by linear visco-elasticity without

distinction between compression and tension.

• The accurate prediction of failure times under sustained load requires the

introduction of a rate-dependent damage model. In the proposed model565

this is achieved by scaling the tensile boundary based on the strain rate.

• The apparent macroscopic stress-dependence of creep (nonlinear creep)

can be explained by a serial system of linear visco-elasticity and rate de-

pendent damage model. The creep response of several tests with and with-
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out failure was successfully reproduced by the Micro-Prestress-Solidification570

Theory in combination with the rate-dependent Lattice Discrete Particle

Model.

• Time-to-failure curves follow a sigmoid form in logarithmic time with two

theoretical and numerically confirmed asymptotes: (i) a horizontal asymp-

tote at 100% relative load; (ii) a terminal asymptote determined by the575

onset of damage development at infinite time.
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[44] Z. P. Bažant, S. T. Wu, Rate-type creep law of aging concrete based on

maxwell chain, Materials and Structures/Materiaux et Constructions 7 (1)

(1974) 45–60. doi:10.1007/BF02482679.725

[45] M. Alnaggar, G. Di Luzio, G. Cusatis, Modeling time-dependent behav-

ior of concrete affected by alkali silica reaction in variable environmental

conditions, Materials 10 (5). doi:10.3390/ma10050471.

[46] G. Di Luzio, G. Cusatis, Solidification-microprestressmicroplane (SMM)

theory for concrete at early age: Theory, validation and application.,730

39

http://dx.doi.org/10.1617/s11527-014-0486-1
http://dx.doi.org/10.1617/s11527-014-0516-z
http://dx.doi.org/10.1617/s11527-014-0516-z
http://dx.doi.org/10.1617/s11527-014-0516-z
http://dx.doi.org/10.1617/s11527-014-0515-0
http://dx.doi.org/10.1007/BF02482679
http://dx.doi.org/10.3390/ma10050471


International Journal of Solids and Structures 50 (6) (2013) 957–975.

doi:10.1016/j.ijsolstr.2012.11.022.

[47] L. Wan, R. Wendner, B. Liang, G. Cusatis, Analysis of the behavior of ultra

high performance concrete at early age, Cement and Concrete Composites

74 (2016) 120–135.735

[48] L. Wan-Wendner, R. Wan-Wendner, G. Cusatis, Age-dependent size effect

and fracture characteristics of ultra-high performance concrete, Cement

and Concrete Composites 85 (Supplement C) (2018) 67 – 82. doi:https:

//doi.org/10.1016/j.cemconcomp.2017.09.010.
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[51] Z. P. Bažant, G. Cusatis, L. Cedolin, Temperature effect on concrete creep

modeled by microprestress- solidification theory, Journal of Engineering

Mechanics 130 (6) (2004) 691–699.

[52] D. Watstein, Effect of straining rate on the compressive strength and elastic

properties of concrete, ACI Journal 49 (4).750

[53] B. P. Hughes, R. Gregory, Concrete subjected to high rates of loading in

compression, Magazine of Concrete Research 24 (78) (1972) 25–36. doi:

10.1680/macr.1972.24.78.25.

[54] J.-H. Yon, N. M. Hawkins, A. S. Kobayashi, Strain-rate sensitivity of con-

crete mechanical properties, ACI Materials Journal 89 (2).755

[55] H. W. Reinhardt, Strain rate effects on the tensile strength of concrete as

predicted by thermodynamic and fracture mechanics models, MRS Pro-

ceedings 64 (1985) 1. doi:10.1557/PROC-64-1.

40

http://dx.doi.org/10.1016/j.ijsolstr.2012.11.022
http://dx.doi.org/https://doi.org/10.1016/j.cemconcomp.2017.09.010
http://dx.doi.org/https://doi.org/10.1016/j.cemconcomp.2017.09.010
http://dx.doi.org/https://doi.org/10.1016/j.cemconcomp.2017.09.010
http://dx.doi.org/10.1680/macr.1972.24.78.25
http://dx.doi.org/10.1680/macr.1972.24.78.25
http://dx.doi.org/10.1680/macr.1972.24.78.25
http://dx.doi.org/10.1557/PROC-64-1


[56] R. J. Mainstone, Properties of materials at high rates of straining or

loading, Matériaux et Construction 8 (2) (1975) 102–116. doi:10.1007/760

BF02476328.

[57] W. H. Dilger, R. Koch, R. Kowalczyk, Ductility of plain and confined

concrete under different strain rates, ACI Journal 81 (1).

[58] P. H. Bischoff, S. H. Perry, Compressive behaviour of concrete at high

strain rates, Materials and Structures 24 (6) (1991) 425–450. doi:10.765

1007/BF02472016.

[59] J. Smith, G. Cusatis, Numerical analysis of projectile penetration and per-

foration of plain and fiber reinforced concrete slabs, International Journal

for Numerical and Analytical Methods in Geomechanics 41 (3) (2016) 315–

337. doi:10.1002/nag.2555.770
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