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Abstract

This paper deals with the study of size effect on structural strength for quasi-

brittle materials under mode I fracture conditions. By using a linear cohesive

crack model, accurate numerical simulations were performed to compute the

size effect curves for two test configurations – namely, the three-point bending

test with span-to-depth ratio equal to 3 and the center crack panel test –

featuring sharp notches and blunt notches whose width is also scaled with

the specimen dimension.

The analysis of the results shows that, as the specimen size tends to

infinity, the asymptotic behavior depends on the type of notch. For sharp

notches the size effect curve tends asymptotically to Bažant’s Size Effect

Law. On the contrary, for blunt notches the size effect curve tends to a

horizontal asymptote corresponding to the elastic limit. The elastic limit

can be calculated by the tensile strength reduced by the stress concentration

factor at the tip of the blunt notch and it depends on the geometry of the

specimen.
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Furthermore, the numerical results were utilized to derive the expression

of a Generalized Cohesive Size Effect Curve (GCSEC) which agrees well with

Bažant’s Universal Size Effect Law (USEL) and with some experimental data

gathered from the literature.

Keywords: Cohesive Crack Model, Size Effect, Quasi-Brittle Materials,

Cohesive Fracture

1. Introduction

Quasi-brittle materials (concrete, rock, ceramics, etc.) show dependence

of the structural strength, σN , on the structural size D. This phenomenon is

referred to in the literature as size effect. Typically, the structural strength

is defined as a normalized measure of the load carrying capacity (peak load),

and its definition depends on the structural geometry and loading configura-

tions [4].

Based on the cohesive crack model, the size effect for mode I fracture can

be described through the following equation [4, 3, 5]:(
f ′t
σN

)2

= Φ(D/lch) (1)

where lch = EGF/f
′
t
2 is Hillerborg’s characteristic length [2], f ′t = tensile

strength, E = Young’s modulus, and GF = fracture energy. The size effect

relationship represented symbolically by Eq. 1 is termed Cohesive Size Effect

Curve (CSEC) [1].

Various authors developed [1, 3] analytical expressions of the function Φ

by fitting the results of numerical simulations of cohesive crack propagation

in geometrically similar samples of increasing size. However, these studies

analyzed the case of sharp notches only.
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Previous analytical and numerical studies [3], suggested that the CSEC

depends on structural shape, load configuration and boundary conditions,

as well as the type of the cohesive stress versus crack opening relationship,

a.k.a. the Cohesive Crack Law (CCL).

Cusatis and Schauffert [1] analyzed five different structural configurations

of sharp-notched specimens (direct tension on center crack panel, direct ten-

sion on double and single edge notch panels, and three-point bending with

two different span-to-depth ratios). They verified that for small sizes, the

CSEC tends to the plastic limit. Furthermore, they discovered that the CSEC

curves feature a straight line asymptotes which is independent of structural

geometry, boundary conditions, and loading configurations when normalized

by the Linear Elastic Fracture Mechanics (LEFM) dimensionless energy re-

lease parameters, g0 and g′0 [4], corresponding to each particular case. They

showed also that such asymptote coincides with Bažant’s Size Effect Law

(SEL) [6], which can be expressed as:

1

g′0

(
f ′t
σN

)2

=
g0D

g′0lch
+
cF
lch

(2)

where cF is the so called Effective Fracture Process Zone Length (EFPZL).

For cF = 0, the SEL coincides with the size effect provided by LEFM

1

g′0

(
f ′t
σN

)2

=
g0D

g′0lch
(3)

It is worth pointing out that Eqs. 2 and 3 only apply to structures with

positive geometries that are characterized by a dimensionless energy release

rate that increases as the normalized crack length increases: g′0 > 0.

Building upon the work in [5, 11], Cusatis and Schauffert [1] were able to

show that, despite discordant results available in the literature [8, 9, 10, 5],
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cF/lch is independent of geometrical and loading configurations and it is

equal to 0.44 for a linear CCL. This condition, namely that the EFPZL is a

material property, had been assumed previously in typical SEL derivations.

Finally, the results in [1] highlighted that, at the peak load, the Fracture

Process Zone (FPZ) length, i.e. the length of the ligament portion with

cohesive stresses, and notch tip cohesive stress converge for increasing size

to the constant values of 0.71lch (for linear softening) and zero, respectively,

regardless of the structural configuration.

The objective of the study discussed in this paper was to build upon

previous work and to provide a more general formulation of the cohesive size

effect curve to include structural configurations with blunt notches. Such

formulation, entitled Generalized Cohesive Size Effect Curve (GCSEC) can

be derived by fitting accurate numerical simulations of size effect that are

discussed next. It is worth pointing out that an extensive comparison of

the numerical results with experimental results to validate the adoption of

the cohesive crack law was outside the scope of this paper as it had been

pursued by many other authors before. In this work, the cohesive crack

model, particularly in its linear version, was assumed to be a valid model to

simulate the fracturing behavior of a certain class of quasi-brittle materials.

2. Numerical simulations with Cohesive Crack Law

In this study two different structural configurations were investigated:

the direct tension on center crack panel (CCP) and the three-point bending

(TPB) with a span/depth ratio S/D = 3, shown in Fig. 1a and Fig. 1b,

respectively. For these configurations, the structural strength can be defined

4



as σN = Pu/Dt for CCP and σN = 1.5(S/D)Pu/Dt, for TPB, where Pu =

peak load, D = panel depth, t = panel thickness, and S = beam span [4, 12].

a)

b) P, �

P, �D

3D 3D

D

3D 3D

Figure 1: Test configurations and boundary conditions: a) center crack panel (CCP); b)

three-point bending (TPB).

The numerical simulations were performed by using standard Finite El-

ement Method (FEM) techniques. The bulk of the discretization (Fig. 2b)

was modeled with eight-node, elastic, iso-parametric elements [13], and the

crack line was modeled with cohesive interface elements [14] governed by a

linear CCL.

The FEM relies on discretizing the continuum domain into finite elements

and its accuracy depends greatly on the number of elements used in the dis-

cretization. As the mesh is progressively refined, the solution improves and

converges to the exact one. However, there are situations where the solu-

tion converges poorly with mesh refinement. This is the case when a stress
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singularity exists, for example, at the tip of a sharp notch. As the mesh is re-

fined, the stress at the singular point keeps increasing but it is always a poor

approximation of the singularity. Special FE element formulations can be

used to capture the stress singularity, which, however, remains problematic

in the case of cohesive stress analysis in which the tensile strength, govern-

ing crack initiation, has a finite value. These special formulations consist of

finite elements allowing strong discontinuities in the displacement field and

two broad families can be identified in terms of the support of the enriching

discontinuous displacement modes: (1) the Embedded enrichment Finite El-

ement Method (E-FEM) in which the support for each mode is in the element

formulation [15, 16, 17]; (2) the eXtended Finite Element Method (X-FEM)

in which a nodal enrichment is introduced and the support of each mode is

the one of a given nodal shape function [18, 19, 20].

A different situation arises when the notch is not perfectly sharp and

features a small curvature radius. In this case, the stress is not infinite

anymore, the stress singularity disappears and a finite stress concentration

takes place.

A stress concentration gives similar numerical challenges as stress singu-

larities but the convergence is guaranteed provided that the mesh is suffi-

ciently refined. The level of refinement depends on the radius of curvature

of the notch: the smaller it is, the more refined the mesh must be.

Theoretically, to overcome the problems inherent in cohesive crack sim-

ulations with sharp notches one could simulate the peak load behavior as

the limit of elliptical notches as the elliptical aspect ratio a/b (ratio of the

longer-to-shorter dimensions), tends to infinity (Fig. 2a). While theoretically
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correct, this approach incurs also in numerical difficulties for high values a/b.

Numerically, the best numerical response in presence of sharp notches can

be obtained by modeling notches of small finite width, b, and a semi-circular

tip (Fig. 2a, bottom right). The notch width, b, has to be kept constant

and not to be scaled with specimen size. Although this violates the geo-

metrical similarity of the specimens, it was shown [1] to provide an excellent

approximation of sharp notch cohesive behavior if b/lch � 1.

To study the effect of blunt notches, numerical simulations were per-

formed with geometrical similar specimens featuring semi-elliptic notches.

The notch geometry was characterized by an semi-elliptical curve with the

two semi-axis representing the half-notch width, b, and the notch depth, a,

as shown in Fig. 2a. The perfect geometrical similarity was obtained by

by scaling both notch width, b, and notch depth, a, with the specimen size.

The calculations were carried out for six aspect ratios of the notch: namely,

a/b = 0.5, 1.0, 2.0, 5.0, 8.0, and 15 (Fig. 2a).

For the reasons discussed above the resolution of finite element meshes

utilized to simulate the crack propagation with the cohesive crack model

must be very fine especially in the region close to the notch tip as shown in

Fig. 2b. In all the simulations, the size of the interface elements ahead of

the notch tip and for the entire length of the Fracture Process Zone (FPZ),

was not scaled with the specimen size and it was kept within the relatively

small range of 0.5-1.0 mm (Fig. 2b). In general, for the smaller specimen

sizes the FPZ was modeled with no less than 50 interface elements. For the

larger sizes, instead, the FPZ was modeled with up to five hundred interface

elements. This ensured a similar resolution of the FPZ (which does not scale
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a)
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a

2b
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Figure 2: (a) Typical semi-elliptical notch geometries used in the simulations. (b) Example

of the FE mesh of the simulated specimens including zoom-in of the notch tip to show the

mesh refinement required to capture correctly the stress concentration.

with specimen size) across all specimen sizes.

For each aspect ratio, the peak load was determined for sixteen sizes from
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D = 5 mm, doubling 15 times up to D = 163, 840 mm. In all cases, the ratio

between the notch depth a, and the panel depth D, was held constant at

α = a/D = 0.125. The numerical analyses were performed with a linear

CCL and the following material properties: E = 24, 000 N/mm2, GF = 0.05

N/mm, f ′t = 2.8 N/mm2, corresponding to lch = 153 mm. It is worth

observing that the size effect curve does not depend on the specific material

properties used in the calculations.

The calculated size effect curves are shown in a log-log plot in Fig. 3a and

Fig. 4a for the CCP and TPB configurations, respectively. In addition to the

size effect curves, the plastic limit, the LEFM limit, and the elastic limits for

each notch aspect ratio, are shown in the plots. The elastic limit is defined as

a stress state where the normal stress at the tip of the notch first reaches the

tensile strength, f ′t , and it corresponds to the cohesive crack initiation. The

nominal stress associated with the elastic limit can be calculated using the

stress concentration factors at the notch tip: σtip
xx = kσN . Since at the elastic

limit σtip
xx = f ′t , the elastic nominal stress is σNe = f ′t/k and its normalized

value is σNe/f
′
t = 1/k.

For the tip of an elliptical hole in a CCP geometry (Fig. 1a), the stress

concentration factor k in a finite-width plate and for 0.5 ≤ a/b ≤ 10.0 can

be calculated approximately with the following equations [24]: k = (C1 +

C2α+C3α
2 +C4α

3)/(1−α), C1 = 1.0+2.0(a/b), C2 = −0.351+0.21
√
a/b−

2.483(a/b), C3 = +3.621 − 5.183
√
a/b + 4.494(a/b), and C4 = −2.27 +

5.204
√
a/b− 4.011(a/b).

For the a/b equal to 0.5, 1.0, 2.0, 5.0, 8.0, and 15 k equals 2.094, 3.071,

5.038, 10.976, 16.933 and 30.862, respectively, and the corresponding normal-

9



ized elastic limit, 1/k, is 0.4775, 0.3257, 0.1985, 0.0911, 0.0591 and 0.0324.

For the unnotched case, a/b = 0, k = 1. It is worth reminding that in

the CCP geometry with infinite plate the stress concentration factor k is

k = 1.0 + 2.0(a/b).

These analytical values were found to match very well the ones computed

numerically.

for the TPB configuration the normalized nominal stress at the elastic

limit were obtained numerically as 0.5568, 0.3736, 0.0964, and 0.0625 for

notch aspect ratios of 0.5, 1.0, 5.0, and 8.0, respectively. For the aspect

ratio equals to 0 the nominal strength coincides with the modulus of rup-

ture, which for pure bending and with the adopted definition of the nominal

stress corresponds to the tensile strength. However, for TPB the modulus of

rupture is expected be to be larger because the stress distribution along the

central cross section is different from that in pure bending [23]. According

to Timoshenko and Goodier [22] the maximum tensile stress is σela
tip = βσN

with β = (1− 0.1773D/S)−1. For the geometry considered in this study one

has β = [1− 0.1773(1− α)/3]−1 = 1.054. At the elastic limit, σela
tip = f ′t , one

obtains σNe = β(1− α)2f ′t = 0.807f ′t .

As expected, the elastic limits are size-independent (they only depend on

α and a/b) and they are plotted as horizontal straight lines in Fig. 3a and

4a, for the TPB and CCP configurations, respectively.

The same plots show the plastic limits as horizontal lines. Furthermore,

it is worth noting that, as shown below, the plastic limit is independent on

the notch aspect ratio and, consequently, one single horizontal straight line

is common to all notch aspect ratios.
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Figure 3: CCP Configuration: (a) size effect curves for elliptically notched geometries,

(b) slope of size effect curves versus normalized size, (c) slope of size effect curves versus

normalized width of elliptical notch, and (d) size effect curve for constant-width notch

geometry.
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Figure 4: TPB Configuration: (a) size effect curves for elliptically notched geometries,

(b) slope of size effect curves versus normalized size, (c) slope of size effect curves versus

normalized width of elliptical notch, and (d) size effect curve for constant-width notch

geometry.
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The plastic limit is defined as a stress state where the entire cross-section

ahead of, and collinear with, the original notch is subject to a uniform stress

state equal to the tensile strength, f ′t .

For the CCP configuration, the nominal stress associated with the plastic

limit can be calculated by considering the free-body diagram of one half of

the panel with a uniform distribution of stress along the central line and by

equating the forces acting at each end: σN tD = f ′t(1 − α)tD. Substituting

σNp for σN and rearranging leads to σNp = f ′t(1− α), and so the normalized

nominal stress associated with the plastic limit is (1− α) = 0.875.

The plastic limit behavior for the TPB configuration is less intuitive to

calculate [4, 10]. In the limit of D → 0 the central cross section with the

cohesive crack law consists of two parts: one of finite depth under tension

with a perfectly plastic uniform distribution of stress and a concentrated

force in the compressed zone which shrinks to a point. This is due to the fact

that the smooth extrapolation to zero size must preserve the property that

the compression stresses on the crack plane continue to be elastic during the

entire loading process.

If one considers the TPB specimen shown in Fig. 2b, at the zero size limit,

one has σ = f ′t = uniform distribution through the entire ligament except a

concentrated compression force Fc = tD(1− α)f ′t acting on the compression

side. In this situation, the bending moment in the notched cross section is

M = 0.5tD2(1 − α)2f ′t , the applied load is Pmax = 4M/S, and the plastic

limit results in σNu = 3(1 − α)2f ′t . Consequently, the normalized nominal

stress at the plastic limit is 3(1− α)2 = 2.2969.

Finally, Fig. 3a and 4a report the LEFM size effect limit (Eq. 3) which
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plot as a straight line with a slope of −1/2 in the log-log scale.

In Fig. 3a, all of the calculated size effect curves for the CCP configuration

tend to the plastic limit for D → 0. As the sample size increases, they

deviate from the plastic limit with slopes that become increasingly negative.

In addition, each curve has an inflection point where the slope begins to

become less negative and tends back towards zero. These changes in slope

are portrayed in Fig. 3b where, for each curve segment of Fig. 3a, the average

normalized size and slope are plotted as [X,Y] pairs. The inflection points of

the Fig. 3a curves correspond to the minimum slope values in the Fig. 3b

plots.

Up to their individual inflection points, all curves in Fig. 3a are essentially

coincident, and this “common” curve tends, for large enough a/b values,

to the LEFM limit. Past their inflection points, each curve departs from

this common curve, and as D → ∞, the size effect behavior tends to the

corresponding elastic limit. Similarly to Fig. 3b, the slopes of the Fig. 3a

curve segments were also plotted as a function of the normalized elliptical

notch width, 2b/lch, and this is shown in Fig. 3c. In this figure, one can

see that the minimum value of slope, which corresponds to the inflection

point in the associated size effect curve, occurs at 2b/lch ≈ 2. Based on these

observations it is clear that the size effect behavior for arbitrary a/b begins an

asymptotic approach towards the LEFM limit, on a size effect path common

to all a/b. However, as the elliptical notch width, 2b, reaches an approximate

value of 2lch, the size effect behavior inflects away from the LEFM limit. As

a/b tends to infinity (i.e. a sharp-notched geometry), b ≈ 0 for all D, and so

the size effect behavior never deflects from the common curve. This is also
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consistent with the fact that for a sharp notch the stress is singular and the

elastic limit is zero, making the horizontal asymptote in the log-log plot to

be located at ∞.

This can be further verified by calculating the size effect curve for sharp-

notch behavior obtained with a constant notch width of 4 mm (� 2.0lch ≈

300 mm). The obtained size effect curve is presented in log-log scale in Fig.

3d. No deviation from an asymptotic approach towards the LEFM limit can

be visually detected. Quantitatively, this is also the case, since the slope of

the last three segments are -0.491, -0.495, and -0.498.

Similarly to the CCP geometry also the TBP geometry displays the same

behavior for blunt notches, i.e. for a/b =constant. Fig. 4a shows all of the

calculated size effect curves which tend to the plastic limit for D → 0 and

to the corresponding elastic limit for D → ∞. Only the size effect curve

for sharp-notched specimens approaches asymptotically towards the LEFM

limit, see Figs. 4a and d.

Similarly, the size effect curves of the TPB configuration with blunt notch

present an inflection point where the slope begins to become less negative

and tends back towards zero. These changes in slope are portrayed in Figs.

4b and c where the inflection points of the Fig. 3a curves correspond to the

minimum slope values in the Fig. 3b plots. One can see in Fig. 3c that

the minimum value of slope, which corresponds to the inflection point in the

associated size effect curve, occurs again at 2b/lch ≈ 2.

It is worth mentioning that similar studies on notch/defect sensitivity

and on the transition from blunt to sharp notches for the fatigue behavior of

metals have been carried out by various authors in the past [27, 28, 29, 30, 31].

15



3. Fracture Process Zone Length

An important indicator of the overall quality of the numerical simulations

is the stress profiles at the crack centerline at peak load. Other than the slope

discontinuity at the leading edge of the fracture process zone, where σxx = f ′t ,

and in close proximity to the point load in a Three-Point Bend test, there

should be no discontinuities in the stress field.

Any scatter, noise or fluctuation in the plots is an indication that the

mesh size is too coarse for the interface elements along the crack path. As

shown in Fig. 5 the stress profiles obtained in the numerical simulations are

smooth and accurate.

The stress profiles along the crack path highlight also a key aspect of the

behavior of quasi-brittle materials related to the FPZ, whose length does not

scale with the size of the specimen.

The FPZ is the region on the stress plots where softening cohesive behav-

ior occurs, i.e. from the notch tip (y/D = α0 = 0.125, the dashed line in the

plots of Fig. 5) to the point where σxx/f
′
t = 1.

Let us consider first the behavior of TPB samples with sharp notches

(Fig. 5a and b).

For a D = 5 mm curve, i.e. the smaller size considered in the numerical

simulations, the FPZ comprises approximately 82% of the ligament depth,

and as one can see in Fig. 5a, the stresses in the FPZ are not anywhere

close to a fully-softened state. This is determined by noting where the stress

profile intersects the horizontal line at y/D = α0 = 0.125. The value of the

x-coordinate at this intersection gives the value of the principal normal stress

at the crack tip as a percentage of the tensile strength, f ′t . The stress at the
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Figure 5: Stress profiles along the centerline at the peak load for TPB configuration with

sharp notch (a) and its close-up at the tip (b), and with blunt notch of a/b = 1, i.e.

circular notch, (c) and its close-up at the tip (d).
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crack tip for D = 5 mm is over 80% of f ′t .

For the largest sizes (see Fig. 5b for a close-up at the tip notch), the curve

segments in and near the FPZ are indistinguishable since the size of the FPZ

length at peak load tends to become constant for increasing size (Fig. 6a)

and it occupies smaller and smaller percentage of the ligament depth. For

D = 163, 840 mm, the FPZ extends to approximately y = 0.1257D, which

corresponds to a FPZ length of (0.1257 − 0.125) × 163840 ≈ 107 mm and

only 0.0746% of the ligament depth.

For large size, the stress state in the FPZ symptotically approaches the

fully-softened condition: for example, the stress at the notch tip for D =

163, 840 mm is 3.5% of f ′t .

The normalized values (respect to the characteristic length) of the FPZ

size at peak load are displayed in Fig. 6a.
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The evolution of the stress profile in the ligaments makes it evident why

the nominal stress at peak load must decrease as the structure size increases.

For the TPB configuration, the decrease in nominal stress manifests itself as

a decreasing counter-clockwise rotation away from the y-axis for the bending

stress profile as specimen size increases.

The specimens with blunt notch with different value of a/b have a com-

pletely different asymptotic behavior for D →∞, as discussed in the Section

2. This is also confirmed by the the length of the FPZ and the stress at the

notch tip at peak load. As shown in Figs. 6a and 5d the size of the FPZ

at peak load shrinks and, for very large sizes, becomes almost a point. In

addition, the stress at the notch tip tends to the tensile strength, f ′t (see Figs.

6b and 5d. As a consequence, for specimens with blunt notch the size of the

FPZ at peak load is no more a material property not even for large sizes in

contrast to the case for sharp notches.

In Fig. 6a, the length of the fracture process zone (FPZ) at peak load

is plotted for all data sets. Fig. 6b shows the stress at the notch tip for

all data sets. Both figures display the concept that the length of the FPZ

at peak load asymptotically approaches the fully-softened condition only for

specimens with sharp notch. According to the literature, the size of the FPZ

at peak load, for very large sizes, should be a material property [4]. Therefore,

a quick review of Fig. 6 might suggest that the data is contradicting that

principle: the curves for different values of a/b appear to be approaching

different asymptotes. However, the specimens with a sharp notch clearly

have an asymptote of the size of the FPZ at peak load for D → ∞ and the

notch tip stress is closest to the fully-softened condition. Regardless of the
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details noted in the above paragraph, the length of the FPZ has, in general,

leveled off by size D = 5, 120 mm, and the curve appear to be gradually

approaching some limiting value (i.e. the fully-softened length) as D → ∞.

Since cf also approaches its limiting value as D → ∞, it appears that the

size range D ≥ 5, 120 mm is appropriate for use in estimating cf .

4. GCSEC for a Linear Cohesive Crack Law

An approximated analytical CSEC formula for TPB geometries with

sharp notch was proposed in [1], inspired by the pioneering work of Planas

[4], by interpolation of numerical results obtained with a linear cohesive law.

That analytical expression was designed to match both the small-size (plastic

limit) and large-size (asymptotic) behaviors and has the following expression

f ′2t
g′0σ

2
Nu

=
g0D

g′0lch
+

(
1 + 11

√
g0D

g′0lch

)(
β0 + 25

√
g0D

g′0lch

)−1
(4)

where β0 = 9(1− α)4g′0 and the associated SEL is given in the Eq. 2.

In this paper a generalization of the expression in Eq. 4 is proposed to

include the size effect of structures with both sharp and blunt notches. Sim-

ilarly to the previous work, the new analytical formula, entitled Generalized

Cohesive Size Effect Curve (GCSEC) is obtained by the interpolation of nu-

merical results obtained with the adoption of a linear cohesive law. Keeping

in mind, as showed in the previous section, that for large size (D →∞) the

GCSEC formula must tends to the Bažant’s SEL for sharp notches and to a

horizontal asymptote, the elastic limit, for blunt notches. In addition, this

analytical expression is formulated in a such way to match the plastic limit

for small sizes.
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The GCSEC can be expressed by the following formula

σNu = f ′t

g0 D
lch

+ g′0

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n
−1/2g0β2

e

D

lch
+

1(
1 + g0β2

e
D
lch

)m
1/2

(5)

Alternatively, the GCSEC can be expressed similarly to CSEC in Eq. 4 as

f ′2t
g′0σ

2
Nu

=

 g0D

g′0lch
+

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n
g0β2

e

D

lch
+

1(
1 + g0β2

e
D
lch

)m
−1

(6)

In both Eq. 5 and Eq. 6, βef
′
t and βpf

′
t are the elastic limit and the plastic

limit nominal stresses, respectively; the parameters n and m depend on the

geometry.

The GCSEC function is plotted in Fig. 7 for CCP geometry and in

Fig. 8 for TPB geometry. The best fitting of the numerical data sets was

obtained with n = 0.45 m = 0.7 and n = 2, m = 0.9 for CCP and TPB

configuration, respectively. Fig. 7a for CCP geometry and in Fig. 8a for

TPB geometry show clearly that the size effect curves merge in a single curve

for different notch shape ratios a/b and for D/lch smaller than 1. However,

the approximation of the GCSEC formula is also good with regard to the

slope of the numerical size effect curves as one can see from Figs. b and

c in 7 for CCP geometry and in 8 for TPB geometry. In Fig. 7d and

in Fig. 8d the GCSEC and numerical data are plotted in the parametric

space given by X = g0D/(g
′
0lch) and Y = f ′2t /(g

′
0σ

2
N) showing again a good

fit. In the small size range (Fig. 7 for CCP geometry and in Fig. 8 for

TPB geometry), the behavior is shown to be different for the two structural

configurations. However, the GCSEC formula is capable of capturing the
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two different asymptotic behavior and value, which differ from the Bažant’s

SEL (red straight line in the Figures).

Sharp notch – size effect of type II. In the case of sharp notch, i.e.

a/b → ∞, the LEFM gives an elastic limit σNe = 0, and so βe = 0. This

means that Eq. 5 as the following expression

σNu = f ′t

g0 D
lch

+ g′0

1 + 11
(

g0D
g′0lch

)n
β2
pg
′
0 + 25

(
g0D
g′0lch

)n
−1/2 (7)

For D →∞, the previous expression, Eq. 7, gives

σNu = f ′t

(
g0
D

lch
+

11

25
g′0

)−1/2
(8)

This means that the GCSEC formula for sharp notches has a large-size

(asymptotic) behavior coinciding with Bažant’s SEL. At the same time, for

D → 0, the nominal strength, σN , in Eq. 7, tends to the plastic limit, i.e.

f ′tβp.

Blunt notch. In the case of blunt notch, for increasing size D and

arbitrary a/b, σN begins an asymptotic approach towards the LEFM limit

with a common path common to all a/b. However, as the elliptical notch

width, b, reaches an approximate value of lch, the size effect behavior inflects

away from the LEFM limit with a deviation of the GCSEC formula from the

SEL to an horizontal asymptote which depends on the actual values of a/b

and α. For D →∞ the the asymptotic value of Eq. 5 is

lim
D→∞

σNu = f ′t

(
g0
D

lch
+

11

25
g′0

)−1/2(
g0β

2
e

D

lch

)1/2

= f ′t
(
β2
e

)1/2
= f ′tβe (9)

It is worthwhile to remark that the normalized energy release rate, g0, and

its derivative, g′0, required for the blunt notch case are the LEFM reference
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values and they are calculated for the sharp notch case with the same α,

as for the GCSEC plotted in 7 for CCP geometry and in Fig. 8 for TPB

geometry.

No notch – size effect of type I. The case of failure that occurs

at crack initiation from a smooth surface is also considered in the GCSEC

formula as a limit case when a/b→ 0. This case is taken into account in the

Eq. 5 with the appropriate value for the elastic limit βe. The asymptotic

behavior for D → ∞ of the GCSEC is the same of Eq. 9. For D → 0, the

nominal strength, σN , in Eq. 5, tends to the plastic limit, i.e. f ′tβp, like in

the case of sharp notch. It is worth noting that both the size effect of type

I and II due to the cohesive crack law tends, for D → 0, to the same value,

i.e. same plastic (or strength) limit. As it can be seen from Figs 7 and 8 for

α = 0.125 the size effect behavior is always the same for D/lch < 1. However,

when α → 0 or a/b → 0 the normalized energy release rate g0 is equal to

zero. As for the blunt notch, also in this case the normalized energy release

rate, g0, and its derivative, g′0, in Eq. 5 are obtained for the sharp notch case

with a certain α and a/b → 0. In any case the GCSEC in Eq. 5 gives the

correct asymptotic behavior also for no notch structure. In fact for g0 → 0

one gets

σNu = f ′t

(
g0
D

lch
+

1

β2
p

)−1/2(
g0β

2
e

D

lch
+ 1

)1/2

(10)

which for D → 0 and for D → ∞ gives σN = f ′tβ
2
p and σN = f ′tβe, respec-

tively, i.e. the plastic and elastic limit.

To highlight the accuracy of the proposed formula beyond the numerical

simulations used for its development, the GCSEC was also utilized to fit

the numerical results of Planas et al [3] on notched beams under TPB with
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Figure 7: CCP Configuration: a) size effect curves for elliptically notched geometries;

b) slope of size effect curves versus normalized size; c) slope of size effect curves versus

normalized width of elliptical notch; d) size effect curve for constant-width notch geometry.
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Figure 8: TPB Configuration: a) size effect curves for elliptically notched geometries;

b) slope of size effect curves versus normalized size; c) slope of size effect curves versus

normalized width of elliptical notch; d) size effect curve for constant-width notch geometry.
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linear softening. Fig. 9 shows the results for a beam with span-to-depth

ratio of 4 and with different notch-to-depth ratio spanning from 0.1 to 0.7.

The proposed interpolating GCSEC equation fits accurately the numerical

results for all notch depths assuming n = 0.45 and m = 0.25.

D=lch

10-2 10-1 100 101 102

<
N
=
f

0 t

10-2

10-1

100

101

,=0.7
,=0.5
,=0.3
,=0.1
GCSEC

Figure 9: Comparison between the GCSEC formula and TPB numerical simulations for

different notch-to-depth ratio of [3].

4.1. Comparison with the Universal Size Effect Law

Hoover and Bažant [33] formulated the so-called Universal Size-shape

Effect Law (USEL) which describes the dependence of nominal strength on

structural size and notch depth with the transition from Type 1 to Type 2

size effect. The deterministic version of the USEL reads

σNu =

[
EGf

g0D + (1− λ)cfg′0 + λEGf/f 2
r∞

]−1/2(
1 +

rλDb

D̄ + lp

)1/r

(11)
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It is worth observing that the USEL was derived on the basis of asymptotic

matching considerations and by fitting a large data set of experimental data.

The derivation was completely independent on the cohesive crack model.

Figure 10 compares the USEL and the GCSEC for the two cases of TPB

with no notch (r = 0.5, g0 = 0, λ = 1, D̄ = D, Db=43 mm and lp = 35 mm)

and TPB with sharp notch (r = 0.5, α = 0.125, λ = 0, g0 = 0.353, g′0 = 2.732,

E = 24, 000 N/mm2, Gf = 0.05 N/mm, f ′t = 2.8 N/mm2, and cf = 0.2lch.).

For large enough sizes the two curves are virtually indistinguishable. This

demonstrates that, despite the completely different derivation, the USEL and

the cohesive crack model provide equivalent results for large sizes. Shauffert

and Cusatis [1] drew the same conclusion but limited to the case of sharp

notches.

It is also instructive to observe in Fig. 10b the different behavior for very

small size of the GCSEC and the USEL. In this case for D → 0, contrarily

to the GSEC, the USEL does not match the plastic limit.

4.2. Comparison with Experimental Data

Even though the objective of the current study was to study the size-effect

predictions associated with the cohesive crack model rather them to validate

the cohesive crack model against experimental data, it is still instructive to

compare the accuracy of GSEC in fitting the nominal strengths of sample

with different size and different notch depth.

Among the results available in the literature, the most exhaustive set of

data is the one of Hoover et al [34] on concrete, which included tests on

three-point-bending setups with various notch depths and four different sizes

spanning a large size range of 1:12.5. Figure 11 shows the plot of experimental
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Figure 10: Comparison between the GCSEC and USEL for all the dimensional scale (a)

and for very small scale (b).

nominal strength σN versus the sample dimension D and the the GCSEC

best fitting. The best fitting was obtained with f ′t =4.5 MPa, lch =119 mm,

n = 0.5, and m = 0.42 and as one can see the proposed interpolating GCSEC

formula fits very well the experimental data for all notch depths greater than

zero.

5. Conclusions

In this study, the size dependence of structural strength was analyzed

via an extensive computational analysis of the size effect implied by a linear

cohesive crack law. The primary objective of the study was to understand

the effect of different types of notch: blunt and sharp. This work significantly

extends the results of a previous study [1] for the following reasons. (a) The

size effect behavior was studied for two different structural configurations
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Figure 11: Comparison between the GCSEC formula and the TPB experimental data of

[34] in natural (a) and logarithmic (b) scale.

(the three-point bending with span/depth ratio equal to 3 and the center

crack panel) and featuring an elliptical blunt notch with constant aspect ratio

to preserve geometric similarity. (b) The response associated with different

values of the notch aspect ratio was calculated and compared with the size

effect behavior of the same geometry with sharp notch.

Based on the obtained results, the following conclusions can be drawn

1. For specimens with blunt notches, the cohesive size effect curves are

characterized by a continuous transition from the plastic behavior for

small sizes to the purely brittle behavior with failure at crack initiation

for large sizes. Hence, these size effect curves tend asymptotically to

the elastic limit.

2. For specimens with blunt notches, in a double logarithmic plot, the

cohesive size effect curves feature a point of inflection where the curve
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curvatures transition from negative to positive. At this inflection point

the curve slope approaches the LEFM slope of -1/2 for increasing stress

concentration at the notch tip.

3. The point of inflection occurs when the notch width is approximately

equal to twice the material characteristic length, 2lch.

4. In the case of sharp notches, for which the elastic limit is zero, the elas-

tic asymptote is located, theoretically, at −∞ in a double logarithmic

plot. In this condition the size effect curve does not have an inflection

point and it approaches asymptotically the LEFM limit.

5. For sharp notches, the crack stress profiles at the peak load for different

sizes reveal that the FPZ length converges to constant a value of 0.71lch

(for linear softening) and the and notch tip cohesive stress converges

to zero as the structural size increases. For blunt notches, however, the

behavior is completely different. In fact, at the peak load the length

of the FPZ first increases and then it shrinks for increasing structural

size. Asymptotically, it becomes a mathematical point and the stress

at the notch tip tends to the tensile strength, f ′t . As a consequence, for

specimens with blunt notch and contrarily to the case of sharp notches,

the size of the FPZ at peak load is not a material property.

6. The numerical results on structural strength can be approximated ac-

curately with an analytical equation, entitled Generalized Cohesive Size

Effect Curve (GCSEC), which is valid for different structural configu-

rations with both blunt or sharp notch.

7. The GCSEC applies to both type I and II size effect.

8. The GCSEC depends on the cohesive crack parameters such as the
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tensile strength, f ′t , the fracture energy, Gf , and, as a consequence, the

characteristic length, lch. The GCSEC takes into account the effect of

different structural configurations through the LEFM nondimensional

energy release rate and its derivative.

9. The GSEC provides size effect estimates that agree very well with the

Universal Size Effect Law and the associated experimental data.
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[4] Bažant, Z.P., Planas, J., 1998. Fracture and size effect in concrete and

other quasibrittle materials. Boca Raton and London: CRC Press.

31



[5] Cedolin, L., Cusatis, G. 2008. Identification of concrete fracture param-

eters through size effect experiments, Cement and Concrete Composites,

30(9), 788-797.
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[20] Moës, N., Belytschko, T., 2002. Extended finite element method for

cohesive crack growth. Engineering fracture mechanics, 69, 813-833.

33



[21] Tada, H., Paris, P.C., Irwin, G.R., 2000. The stress analysis of cracks

handbook. New York: The American Society of Mechanical Engineers.

[22] Timoshenko, S. P., Goodier, J. N., 1970.Theory of elasticity. McGraw-

Hill, New York.

[23] Planas, J., Guinea, G.V., Elices, M., 1995. Rupture modulus and frac-

ture properties of concrete. In: Fracture Mechanics of Concrete Struc-

tures (Edited by F. H. Wittmann), Vol. I, pp. 95-110. Aedificatio Pub-

lishers, Freiburg, Germany.

[24] Young, W. C., Richard G. B., 2002. Roark’s Formulas for Stress and

Strain. Seventh Edition. McGraw-Hill.

[25] Inglis, C.E., 1913. Stresses in a plate due to the presence of cracks and

sharp corners. Trans. Inst. Naval Archit., 55(1), 219-241.

[26] Neuber, H., 1958. Theory of Notch Stresses, Springer-VErlag, Berlin.

[27] Kitagawa H., Takahashi S., 1976. Applicability of fracture mechanics to

very small cracks in the early stage, Proceedings of the 2nd International

Conference on Mechanical Behaviour of Materials, 627-631.

[28] Smith R.A., Miller K.J., 1978. Prediction of fatigue regimes in notched

components, International Journal of Mechanical Sciences, 20, 201-206.

[29] El-Haddad M.H., Topper T.H., Smith K.N., 1979. Prediction of Non-

Propagating Cracks, Engineering Fracture Mechanics, 11, 573-584.

34



[30] Atzori B., Lazzarin P., 2001. Notch sensitivity and defect sensitivity

under fatigue loading: two sides of the same medal International Journal

of Fracture, 107(1), 1-8.

[31] Atzori B., Lazzarin P., Meneghetti G., 2003. Fracture mechanics and

notch sensitivity. Fatigue & Fracture of Engineering Materials & Struc-

tures, 26, 257-267.

[32] Guinea, G. V., Pastor, J. Y., Planas, J., Elices, M., 1998. Stress intensity

factor, compliance, and CMOD for a general three-point-bend beam.

International Journal of Fracture, 89, 103-116.
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