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Abstract

In this paper, we demonstrate that the capillary thinning dynamics of a weakly viscoelastic jet follow a different timescale than a liquid bridge
of the same fluid between two stationary surfaces for similar geometrical scales. The thinning in the latter case observed with capillary
breakup extensional rheometry (or CaBER) follows a well established scaling of the radius with time for an elasto-capillary (EC) balance of
R � expð�t=3λÞ. However, for the thinning of the filaments between droplets in a jet, it was so far just assumed that the same scaling law
holds. In this paper, we experimentally demonstrate that the jet thinning in a Rayleigh–Ohnesorge jetting extensional rheometer (or ROJER)
follows a different scaling of R � expð�t=2λÞ. This is demonstrated by a direct comparison of the thinning dynamics of weakly viscoelastic
(Oh , 0:01) aqueous solutions of polyethylene oxide in the two experimental setups, covering a wide range of jetting velocities or Weber
numbers of 1–70. We demonstrate outgoing from a momentum balance that includes inertia and elasticity that this difference in scaling is due
to a constant axial tension in the jet arising from the constant creation rate of new surface at the nozzle. Numerical simulations using the
FENE-P model support this theory and demonstrate that in the exponential thinning regime of the jet the elastic stresses are indeed balanced
by the axial tension (rather than by capillary pressure as in the EC balance regime of the CaBER experiment). It is readily shown from the
reduced stress balance that this axial-elastic balance regime in the ROJER experiment leads to a faster exponential thinning, following the
new scaling of R � expð�t=2λÞ that was experimentally observed. Furthermore, we observe both in experiment and simulation that a jet
thinning does not exhibit a self-similar structure of the corner region where the thinning filament connects to the drop as it is generally
observed for a filament with an axial tension decaying with the filament radius as in the CaBER. The resulting difference of 50% in exten-
sional relaxation time λ extracted from ROJER experiments might require one to revisit previously reported ROJER experiments and is
required for the correct evaluation of future jetting rheometry experiments. © 2018 The Society of Rheology.
https://doi.org/10.1122/1.5021834

I. INTRODUCTION

When a liquid is sent through a nozzle at sufficiently high
velocity, a liquid jet is formed that spontaneously disinte-
grates into a series of small droplets under the influence of
surface tension. The cylindrical fluid column that appears
after the nozzle exit is inherently unstable due to capillarity.
Sinusoidal disturbances on the jet surface with a sufficiently
large wavelength reduce the surface area and are thus thermo-
dynamically favorable as they reduce the surface energy. The
amplitude of the instability grows exponentially in time with
a particular growth rate that depends on the wavelength. As
the jet flows downstream, the instability progressively thins
and the jet disintegrates into a series of droplets with sizes
that depend on the wavelength of the perturbation [1,2].

Adding a small amount of flexible polymers to the liquid
considerably alters the thinning dynamics of the jet [3].
Performing a linear stability analysis on a viscoelastic jet
shows that the instabilities grow faster compared to a

Newtonian fluid with the same inertia and zero-shear viscos-
ity [4,5]. However, nonlinear effects quickly dominate the
breakup of these fluids. As the local radius of the jet
decreases, elastic stresses grow and the jet profile consists of
a series of small droplets joined by small threads, which thin
slower than a purely viscous liquid [4,6,7]. This typical
“beads-on-a-string” morphology is displayed in Figs. 1(a)
and 1(b) for aqueous polyethylene oxide (PEO) solutions.

Viscoelastic jets are encountered in various spraying and
dispensing operations [8]. For several processes, small con-
centrations of polymer are included in the fluid formulation
to alter the atomization characteristics. Examples include
high molecular weight polyisobutylene (PIB) that is used to
suppress misting of numerous inflammable liquids [9], or
appropriate concentrations of polymers of a desirable molec-
ular weight that are added to inkjet printing fluids to control
the droplet deposition [10]. Such polymer additions can sup-
press the formation of unwanted satellite drops, which arise
during the capillary breakup of a Newtonian fluid and cause
a reduction in the printing quality [11–14].

Throughout the jetting process, the fluid is subjected to a
complex extensional deformation with rapidly varying strain
rates. The breakup is driven by the capillary pressure within
the thread and is resisted by inertial, viscous or elastic
stresses in the fluid, depending on the fluid characteristics
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and the deformation history. The relative importance of these
resisting stresses determines the temporal evolution of the jet
and can be expressed by dimensionless numbers [8,15]. One
is the Ohnesorge number that compares the viscous and iner-
tial effects

Oh ¼ ηffiffiffiffiffiffiffiffi
ργR

p ; (1)

where η is the viscosity, ρ is the density, γ is the surface
tension, and R is a characteristic radius. The Ohnesorge
number can be considered as the ratio between the viscous
time scale ηR=γ and the Rayleigh time tR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ρR3=γ
p

, which
is the characteristic time scale of an inviscid jet. Others are the
intrinsic Deborah number that represents the ratio of the char-
acteristic relaxation time λ of the fluid to the Rayleigh time

De ¼
ffiffiffiffiffiffiffiffi
λ2γ

ρR3

s
(2)

and the elasto-capillary number, Ec ¼ GR=γ, which is the
ratio between the elastic modulus of the solution and the capil-
lary pressure. With the general relation between modulus,
relaxation time, and polymeric viscosity η ¼ Gλ, it is easily
shown that for polymeric fluids three dimensionless groups
are interrelated via Oh ¼ EcDe. It should be noted that the
dimensionless groups can be determined as a global or a local
number by using either the initial or the local value of the
radius. The global number is often used to make an initial esti-
mate of the overall thinning dynamics, whereas the local
number can be used to predict at which radius a transition

from one thinning regime to another is to be expected.
Another important dimensionless group compares the relevant
thinning velocity to the jet velocity v0 to indicate the transition
between dripping and jetting dispensing [8]. For low viscous
fluids, the Weber number is defined as the squared ratio of the
convective time R0=v0 to the Rayleigh time

We ¼ ρv20R0

γ
: (3)

The weakly viscoelastic jets, which are the subject of this
paper, exhibit global De � 1 and Oh � 1, so viscous stresses
can usually be neglected in the following analysis. The tem-
poral evolution of a single instability of the jet is shown in
Fig. 1(c), where a characteristic picture is included for each
of the four regimes that govern the thinning of the jet. After
exiting the nozzle, the jet initially remains almost cylindrical
and instabilities slowly arise at the wavenumber associated
with the highest growth as predicted by linear stability analy-
sis. The amplitude of this instability grows exponentially and
the fluid deformation becomes eventually too large for the
linear analysis to remain valid. However, nonlinear similarity
solutions to simplified momentum equations can predict the
subsequent thinning of the filament that is formed between
the two beads. In the second regime, the capillary pressure is
dominantly resisted by the inertia of the accelerating fluid
elements, resulting in an evolution of the minimal radius Rm

when approaching the breakup time tp that is described by
the inviscid similarity solution [16–18]:

Rm ¼ 0:64
γ

ρ

� �1=3

t p � t
� �2=3

: (4)

The rapid decrease of the filament radius locally induces
large strain rates that stretch the polymer molecules in the
thread. As a result, the elastic stresses eventually grow large
enough to dominate in the third regime the thinning dynam-
ics, and an exponential thinning of the jet in time is
observed. This elasto-capillary (EC) regime continues until
the polymer chains reach in a fourth regime their finite exten-
sibility limit and the elastic forces cease to grow, which
results in a fast breakup [19].

Monitoring this third (exponential) thinning regime of a
liquid filament offers a convenient way for measuring sub-
microsecond relaxation times in extension. The most popular
device to measure these extensional properties in polymer
solutions is currently the Capillary Breakup Extensional
Rheometer (CaBER, Thermo Scientific) that monitors the
thinning of a liquid filament that connects two static circular
endplates. For this configuration, an analysis of this third
regime bridge has shown that the filament radius decreases
indeed exponentially in time [20–22] as

Rm ¼ GR4
0

2γ

� �1=3

e�t=3λ; (5)

with a distinct time scale of three times the extensional relax-
ation time λ of a viscoelastic solution in this EC balance
regime, which allowed in the past to conveniently determine
λ for a broad variety of (polymeric) fluids [23–28].

FIG. 1. (a) Image of an unexcited jet from the nozzle to breakup at approxi-
mately 30 mm from the nozzle for a 0.1 wt. % PEO solution from a nozzle
with an inner radius Rn ¼ 75 μm at We ¼ 4:0. (b) Image of an excited jet for
a 0.001 wt. % PEO in water/glycerol 60/40 (wt. %) solution from a nozzle
with an inner radius Rn ¼ 100 μm at We ¼ 4:0. The scale bar in both images
represents 2 mm. (c) The radius of an instability of jet (a) as a function of
time. The growth of the instabilities is illustrated with a representative
picture for each of the regimes.
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The CaBER’s detection limit is, however, only 1 ms for
low viscous fluids [29]. This restriction is induced by the
initial stretching step to create the filament that shifts the
position of the narrowest part of the filament away from
the position of the laser micrometer. Different studies
[14,30–33] have worked on improving the detection limit of
these capillary thinning experiments to λ ¼ Oð100 μs) by
monitoring the breakup with a high-speed camera and by
optimizing the initial stretching distance and velocity. Still,
considering that even a limited amount of viscoelasticity has
a profound impact on, for instance, the drop-on-demand
inkjet printing process [10], it is crucial to have reliable
methods to push beyond this limit in order to measure faster
relaxation times.

Unlike the filament thinning setup, a continuous jet does
not require an initial axial deformation and it should, there-
fore, be a more appropriate experimental configuration for
measuring relaxation times in the microsecond range. A
jetting rheometer was originally proposed by Schümmer and
Tebel [6], who perturbed the jet at set frequencies and cap-
tured the thinning behavior with high-speed photography.
Although the theory on the nonlinear behavior of viscoelastic
jets was in its infancy, the extensional behavior of polymer
solutions could be compared by determining the evolution of
the apparent extensional viscosity. In the following decades,
the characteristic “beads-on-a-string” structure was simulated
and the exponential necking of the ligament connecting the
beads was linked to material parameters with various nonlin-
ear constitutive models [20,21]. These results were first
applied to extract a relaxation time with a free jetting rheome-
ter by Christanti and Walker [34].

Recently, McKinley and co-workers [35,36] introduced
the Rayleigh Ohnesorge Jetting Extensional Rheometer
(ROJER) as a new technique to specifically probe the exten-
sional behavior of weakly viscoelastic liquids. In this setup,
the cylindrical jet is excited by a piezo-actuator to create a
controlled disturbance and the thinning dynamics are visual-
ized with stroboscopic imaging. By selecting a wavenumber
that is larger than the most unstable one, the formation of
secondary beads between the large droplets is suppressed,
resulting in a more precise measurement of the filament
radius [37]. Relaxation times down to values as small as
60 μs have been determined with this setup by fitting the 3λ
timescale of Eq. (5) to the exponential decrease of the
radius [36,38].

However, the use of Eq. (5) to extract the relaxation time
is questionable in light of the findings of a recent study by
Clasen et al. that focused on the dripping to jetting transition
regime at We � 1 of weakly elastic solutions of dilute high
molecular weight polymers [39]. While for dripping
(We � 1) the timescale 3λ has been confirmed [18], with
increasing velocity and We � 1 eventually a jet develops
with a beads-on-a-string morphology where the beads are
swallowed by a large terminal drop, which periodically
grows and pinches off [39]. Under these conditions, where
the EC balance is yet to be established, the thread between
the beads should theoretically thin at a different rate,
Rm � expð�t=2λÞ, and experimentally observed radii appear
to follow this new scaling [39].

Naturally, the question arises whether this new time scale
of 2λ describes also other jetting experiments (as the ROJER
technique), or if the so far also for jetting experiments
employed time scale of 3λ [34,36,37,40] remains correct at
higher jet velocities We � 1. Quantitative experiments of
viscoelastic fluids are scarce [2] and the only direct compari-
son of relaxation times obtained with jetting and regular cap-
illary thinning experiments on the same fluid has recently
been reported by Harlen and co-workers [41]. A reason for
this scarcity of experimental data is that the two experiments
are probing very different time scales. Despite the fact that
jetting rheometry is a suitable measurement technique for
weakly viscoelastic liquids, for increasing elasticity the jet
quickly becomes too long for resolving the filament radius
over the complete exponential thinning regime. This problem
does not arise for static thinning filaments in CaBER type
devices that are thus suitable for the detection of longer
relaxation times. On the other hand, CaBER devices reach
their limits for the investigation of short relaxation times due
to a fast filament breakup, that is, however, easily captured in
a jetting experiment.

A direct and quantitative comparison of the ROJER and
CaBER technique to probe the applicable relaxation time
scaling laws (which is the aim of this paper) requires the
selection of model fluids that exhibit relaxation times that are
located near the lower detection boundary of the capillary
thinning device. Such a set of model polymer solutions is
introduced in Sec. II as well as the employed experimental
techniques. The experimental observations of the static capil-
lary thinning and jetting experiments are presented in Sec. III
and discussed in Sec. IV, utilizing a numerical and analytical
analysis of the filament thinning to demonstrate that there is
indeed a difference in the thinning rates in the exponential
thinning regime that needs be taken into account in order to
extract the correct relaxation time from a ROJER experiment.

II. MATERIALS AND METHODS

A. Samples

The model fluids consist of a series of dilute solutions of
PEO (Sigma Aldrich, Bornem, Belgium) with a weight
average molecular weight Mw of 106 g/mol in water. A first
set of solutions with three different weight concentrations c
of 0.05, 0.075, and 0.1 wt. % are prepared by allowing the
polymer to dissolve in distilled water on a rolling bench for
24 h. The samples are shielded from light and all experi-
ments are performed within 72 h after preparation to mini-
mize degradation of the polymer molecules. The relevant
physical and rheological parameters of this first set of model
fluids at a temperature of 22 �C are summarized in Table I.
The static interfacial tension γ is measured using a Pt/Ir
Wilhelmy plate connected to an electrobalance (KSV
Instruments, Helsinki, Finland). The addition of PEO causes
a decrease of the surface tension to a value of 62.4 mN/m,
which is independent of the polymer concentration. The
shear viscosity η is measured with an Ubbelohde viscometer
with a capillary with a diameter of 0.53 mm (Schott
Instruments) and the same capillary was used to determine
the intrinsic viscosity ½η� of the polymer. The value of ½η�
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was found by extrapolating a linear fit of six data points of a
concentration series of aqueous PEO solutions with relative
viscosities ηr between 1.25 and 2.5. The intrinsic viscosity is
used to evaluate the critical overlap concentration c	 of the
polymer coils with the expression provided by Graessley
[42]: c	 ¼ 0:77=½η�. The c	 values in Table I are all in the
dilute regime, so that their viscoelastic properties are domi-
nated by the hydrodynamic interactions of the isolated
polymer coils and the solvent. For dilute solutions, the elastic
modulus G is only a function of the number density of the
polymer chains in solution n ¼ c NA=Mw:

G ¼ nkBT ¼ c NAkBT

Mw
; (6)

where NA is the Avogadro number, kB is the Boltzmann cons-
tant, and T is the absolute temperature [43]. The finite exten-
sibility parameter L, representing the ratio of a fully extended
polymer coil to its equilibrium length, can be described in
terms of molecular parameters as [30]:

L ¼
ffiffiffi
3

p j sin2 θb=2ð ÞMw

C1Mu

� �1�ν

; (7)

where θb is the average bond angle in the monomer, j is the
number of bonds of a monomer of molar mass Mu, and C1
is the characteristic ratio for a given polymer-solvent system.
The values for PEO are θb ¼ 109:4� (for which the C-C bond
angle was taken), j ¼ 3, Mu ¼ 44 g/mol, and C1 ¼ 4:1 [44].

To extend the results obtained with the model fluids to
different molecular weights and solvent viscosities, a second
series of solutions is used to quantitatively compare CaBER
and jetting experiments in which the jet is excited by a
piezo-actuator for the higher viscous solutions. The samples
consist of dilute solutions of PEO with average molecular
weights of 3
 105, 6
 105, and 106 g/mol in water-glycerol
solutions, with 25 and 40 wt. % glycerol contents, respec-
tively. According to the evaluated c	, all solutions are in the
diluted regime and the reduced concentrations vary between
0.007 and 0.33. Shear viscosities are determined with a
stress-controlled rheometer (AR-G2, TA Instruments) and a
double-wall Couette geometry. The static surface tension is
measured using the pendant drop method (CAM 200, KSV
Instruments). The relevant physical properties of these solu-
tions are summarized in Table IV.

B. Capillary breakup experiments

The necking of a single liquid bridge is monitored with
the CaBER-1 (Thermo Haake GmbH, Karlsruhe, Germany).
The experiments are executed at an ambient temperature of

22 �C with circular disks of radius R0 ¼ 2 mm and with an
initial gap distance of L0 ¼ 2 mm. These small disks are
chosen to reduce gravitational sagging. Gravitational effects
lead to a weak axial flow, such that more than half of the
initial sample volume is found below the mid-plane. Since
the analysis of the filament thinning always presumes an
axial symmetry, this drainage should be minimized. For the
CaBER experiment, the Eötvös or Bond number
Eo ¼ Bo ¼ ρgR0L0=γ, which expresses the ratio of gravita-
tional to capillary forces, has an initial value of Bo � 1 for
the given dimensions. During the thinning process, the fila-
ment radius and thus the local Bond number will decrease,
so the filament is eventually only drained by capillary forces
[45]. The fluid samples are carefully loaded between the
plates with a syringe to avoid air bubbles in the fluid.

The unstable liquid bridge is created by stretching in a
linear motion over a timespan of 50 ms. The initial gap is
kept fixed at L0 ¼ R0 ¼ 2 mm, and the final gap height
equals L1 ¼ 5 mm, which is only slightly above the upper
stability limit L1 ¼ 2:25 R0 of a liquid cylinder [46]. This
small stretch step creates very short filaments with an inher-
ently high axial curvature, so that initially the self-similar
scaling laws do not apply, as they are based on a slenderness
approximation [30]. As the filament gets thinner, it evolves
to a slender shape and the extracted radii can eventually be
used to determine the extensional flow properties from the
appropriate similarity solution.

The evolution of the minimal filament radius Rm is not
monitored with the laser micrometer of the CaBER. The laser
micrometer only captures the mid-point radius, which is not
necessarily the minimal radius for low viscous, complex fluid
threads [29]. Instead, the thinning dynamics are determined
with a high-speed camera (Fastcam SA2, Photron, USA) to
better capture the heterogeneous nature of the filament near
breakup. The camera is connected to a tube lens system
equipped with 5
 microscopic objectives (Olympus, Japan) to
obtain high resolution images (1.9 μm/pixel). Illumination is
provided with a fiber-optic illuminator Fiber-Lite DC-950
(Dolan-Jenner Industries, Boxborough, MA, USA) and a 50
mm condenser lens. Images are taken at a rate of 3000 fps with
a shutter time of 10 μs and are analyzed with the self-written,
MATLAB-based image processing algorithm EdgeHog [31].

C. Jetting experiments

Figure 2 shows the experimental setup used to study the jet
breakup of a polymer solution. A syringe containing 50 ml of
the sample fluids is placed in a syringe pump (Harvard
Apparatus, Holliston, MA, USA) to deliver fluid at a constant
flow rate and is connected with a flexible tube to a nozzle

TABLE I. Physical and rheological properties of the model fluids from the CaBER experiments at a temperature of 22 �C. The relaxation time λ is obtained from
fitting Eq. (5) to the experimental data of Fig. 3.

c (wt. %) ½η� (ml/g) c=c	 η (mPa s) ρ (kg/m3) γ (mN/m) G (Pa) λ (ms) Oh De L

0:05 621 0:40 1:31 998 62:4 1.08 0:97+ 0:03 0:0052 0:24 121
0:075 621 0:60 1:51 998 62:4 1.62 1:36+ 0:05 0:0061 0:34 121
0:1 621 0:80 1:72 998 62:4 2.16 1:78+ 0:11 0:0069 0:45 121
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(Nordson EFD precision tips). In a first set of jetting experi-
ments with the model fluids, two different nozzles with diam-
eters of 0.15 and 0.25 mm are used throughout the
experiments and the most unstable perturbation is allowed to
grow naturally on the jet surface. For the second set of experi-
ments with higher viscous water-glycerol solutions, a 0.20mm
nozzle clamped against a piezoelectric stack actuator (Pst 150,
APC International) is used in order to force a controlled dis-
turbance on the jet. Frequency, shape, and amplitude of the
periodic perturbation are specified through a function generator
(1250 Frequency Response Analyser, Schlumberger) and a
voltage amplifier (S-100 MK II, Thomann). The thinning
dynamics of the jet are visualized with a high-speed camera
(Fastcam SA-2, Photron, San Diego, CA, USA) connected to
one of two employed lens systems. The first lens system, a
tube lens/microscopic objective assembly, is the same as
employed for the CaBER in order to directly compare
variations in the filament shape evolution between the two
experiments. Consequently, the field of view of this lens is
limited to 1:46
 2:37 mm and the jet was captured with
multiple images. For this, the nozzle is mounted on a two-
dimensional linear stage driven by a micrometer screw, allow-
ing a precise displacement of 50mm in the vertical direction.
The second lens system is a lower magnification 55 mm focal
length telecentric lens (TEC-M55 Computar, CBC, Tokyo,
Japan) with a spatial resolution of 9.5 μm/pixel and a
maximum field of view of 15
 15 mm2 and is used to capture
the breakup mechanism of jets with higher velocities.

All experiments are executed according to the same proto-
col: first a stable flow is ensured by waiting 90 s and the jet
is subsequently captured by taking a series of pictures of its
different sections. The images are taken at rates ranging from
3000 to 3600 frames/s with a shutter time of 2.7 μs. A
typical image of a jet thinning without application of an
external frequency and thus asperities developing at the
natural frequency is shown in Fig. 1(a). A slight nonequidis-
tance between the beads arises from ambient nose. Figure

1(b) depicts then a jet excited with its natural frequency and
equidistant beads.

The image processing is carried out with a self-written
MATLAB-based algorithm. The edges of the jet are detected
with a robust Canny edge detector [47] and the local jet
radius is used to determine the position of the instabilities in
each frame. For each instability, the minimal radius Rm is
determined with sub-pixel accuracy using a modified
Marr–Hildreth algorithm [31,48]. Because the jet velocity can
be determined from the flow rate and the initial jet radius, the
minimal radii of the same instability can be tracked over the
subsequent images, so that the minimum radius is directly
linked to a location on the jet, usually expressed as a distance
from the nozzle. The temporal evolution of each single insta-
bility is thus separately obtained. The presented data extracted
from each single instability evolution is then averaged over at
least 10 single experiments for each flow rate. It should be
noted that this procedure is different from the ROJER experi-
ments performed by McKinley and co-workers [36,40],
where they used a stroboscopic technique with a slight differ-
ence between a multiple of the strobing frequency and the
excitation frequency of the jet to observe the instabilities and
their Rm at slightly varying positions (distances from the
needle). Their approach is, however, not following the same
instability along the jet as the strobing frequency is much
lower than the excitation frequency. Our approach, on the
other hand, allows to observe also an unexcited jet, as slight
variations in the natural frequency of instability development,
as observed, for example, in Fig. 6(a), do not matter when
tracing a single instability over multiple images.

III. EXPERIMENTAL RESULTS

A. Capillary breakup experiments

The extensional flow properties of the model fluids are
first characterized with CaBER experiments. The large
spatial and temporal resolution of the setup allows an

FIG. 2. Schematic image of the experimental setup for the jetting tests.
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accurate determination of the characteristic relaxation time of
the fluids, which is used in Sec. III B to evaluate the time
scales during the jet breakup. Figure 3 shows the evolution
of the minimal radius of the filament during the experiment
for the three solutions of PEO. The initial type of decrease of
the filament radius is predicted by the global Ohnesorge
numbers in Table I, which are calculated using the estimated
radius at the cessation of stretching that was determined by a
lubrication solution for a Newtonian fluid

Rm ¼ R0
L1
L0

� ��3=4

; (8)

with L0 and L1 being the initial and the final gap, respectively
[49]. By comparing the characteristic thinning velocities of
the viscosity and inertia dominated regimes, the boundary
between the two regimes is located at a critical value Oh	 ¼
0:2077 [30]. The values for the model solutions in Table I are
far below this critical value, so the capillary pressure is ini-
tially only resisted by fluid inertia. The fluid continues to
accelerate and appears to approach a finite-time singularity at
the pinching time t p, as described by Eq. (4) and represented
by the dashed line in Fig. 3. The increasing strain rate in the
fluid neck is eventually high enough to stretch the polymers
and to generate a buildup of elastic stresses that start to domi-
nate the fluid inertia and suppress the singularity. This transi-
tion marks the onset of the EC regime where the filament
radius decreases exponentially in time following Eq. (5),
resulting in a constant strain rate, which is inversely propor-
tional to the longest relaxation time λ. In order to better dis-
tinguish the differences in the EC regime, the curves in Fig. 3
are shifted by t p along the time axis, so that the initial inertia-
capillary regimes collapse for the three fluids. For lower
polymer concentrations, the transition occurs at smaller radii,
suggesting that a higher strain is necessary to reach suffi-
ciently high elastic stresses. The characteristic relaxation time
λ of each solution is extracted from the thinning rate in the
EC regime using the 3λ time scale of Eq. (5). The relaxation
time increases with polymer concentration and the values are
listed with the standard deviation (obtained from at least 10
different experiments for each concentration) in Table I.

The onset of the EC regime can also be seen in the shape
of the filament in Fig. 4. The asymmetric shape that charac-
terizes inertia resisted thinning disappears at the start of the
EC regime and a cylindrically shaped filament emerges. The
shape remains axially uniform for the two highest concen-
trations, whereas the 0.05 wt. % solution shows significant
necking at both the top and the bottom droplet, generating a
large bead in the middle of the filament. Criteria for the
occurrence of a central satellite bead in viscoelastic filaments
were introduced by Wagner et al. [50], based on the asymme-
try induced by the self-similarity of the pinching process.
Small differences in radius and hence in capillary pressure
between the short filaments above and below this central
bead impel the bead to coalesce with one of the two fluid res-
ervoirs. The formation of a central bead was also observed
by Tirtaatmadja et al. [18] during dripping experiments on a
series of dilute solutions of PEO with varying molecular
weight in glycerol-water mixtures. The bead disappeared for

the higher molecular weight samples, which exhibited higher
relaxation times λ and thus higher Deborah numbers. Bhat
et al. [15] found a comparable trend in simulations of the
breakup of viscoelastic filaments. Satellite beads only
appeared in the case of sufficient inertia (Oh , 1) and mod-
erate elasticity (De , 0:3). In fluids with a comparable
Ohnesorge number as our model fluids, bead formation is
more pronounced for lower Deborah numbers, which agrees
with our observations. Moreover, the presence of the bead
does not appear to affect the thinning dynamics, as no devia-
tions from the exponential decay are observed in Fig. 3. The
minimal radius can be tracked for all solutions until a value
of 5 μm. At this point the filament morphology changes dra-
matically, forming a characteristic blistering structure as
described by Oliveira et al. [51] and Sattler et al. [52],
caused by a relaxation of the fully stressed state into a par-
tially relaxed state of the filament before pinching off.

B. Jetting experiments

Following the study of the CaBER breakup behavior of
the three polymer solutions and the characterization of the
relaxation times in the EC balance, jetting flows of the model
fluids are examined in three sets of experiments. In a first set,
the three PEO solutions are emitted at approximately the
same jet velocity (We � 8). Despite the fact that the same
flow rate is chosen for all solutions, small differences in the
initial radius R0 of the jet after exiting the nozzle cause slight
variations in the actual jet velocity. A higher polymer con-
centration increases the initial jet radius and hence lowers the
actual jet velocity expressed by the Weber number (see
Table II). As shown in Fig. 5, all fluids exhibit a similar thin-
ning behavior as in the regular CaBER capillary thinning
experiments. Only the initial radius of the filament is notably
smaller, because the jet originates from a nozzle with an
inner radius Rn ¼ 75 μm. Similar to the CaBER experiments,
the jetting tests exhibit an exponential thinning of the radius
at intermediate times:

Rm � e�t=θ: (9)

FIG. 3. Temporal evolution of the minimal filament radius during capillary
breakup experiments of three polymer solutions. The dashed line indicates a
power law fit of the inertia-capillary regime [Eq. (4)] and the straight lines
represent an exponential fit used to extract the dominant relaxation time λ
[Eq. (5)].
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The more concentrated solutions thin at a lower rate, reveal-
ing an increase of the time scale θ in the exponential thinning
regime. However, it is striking that the minimal jet radius Rm

decreases faster for the same sample in comparison to the
CaBER experiments. The different thinning rate in the expo-
nential regime of both experiments is emphasized in the inset
of Fig. 5 where the time is rescaled with the relaxation time
λ that was obtained during the CaBER experiments, and the
radius with REC at the onset of an exponential thinning.
Using these scalings the filament radii of the three solutions
measured using the CaBER devise exhibit the same slope of
�1=3 logðeÞ in the inset.

In contrast, the jetting experiments display a steeper slope,
which is approximately the same for all samples. This obser-
vation demonstrates that the time scale θ in the exponential
regime of the jetting experiments is proportional to the relax-
ation time λ. To accurately determine this scale, at least ten
instabilities are followed in time for each sample to obtain an
average value of θ, which is listed with the standard

deviation in Table II. The time scale is determined with a
reduced accuracy of only two significant digits because the
fits of the exponential decay are less precise than for the
CaBER experiments. This lower precision is caused by the
lower resolution of the telecentric lens that is used for the
jetting experiments. The ratio of the time scale with the relax-
ation time θ=λ is determined for each sample and an approxi-
mation of the standard deviation of the ratio of two normally
distributed variables is included in Table II [53,54]. A time
scale θ � 2λ is observed during the jetting of all samples. As
a result, the reference slope of �1=2 logðeÞ agrees quantita-
tively with the decay measured using the ROJER.

Further jetting experiments are conducted to investigate
the effect of the Weber number. The 0.1 wt. % PEO solution
is examined for a range of Weber numbers, and the evolution
of the minimal filament radius Rm is shown as a function of
the distance from the needle in Fig. 6(b). The lowest flow
rate (We ¼ 1:3) was chosen close to the dripping–jetting
transition and some of the beads still appear to coalesce just
before breakup at this flow rate [see Fig. 6(a)]. This experi-
ment is thus performed at the boundary of the gobbling
regime for which a thinning with a time scale of 2λ was ini-
tially proposed [39].

The evolution of the minimal radius Rm is followed
during the exponential thinning regime for all flow rates
using the optical setup that is able to capture a section of the
jet with a length of approximately 15 m. However, for small
Weber numbers this field of view is sufficient to monitor the

FIG. 4. Capillary thinning and breakup of a filament in a CaBER setup for aqueous PEO solutions of (a) 0.05 wt. %, (b) 0.075 wt. %, and (c) 0.1 wt. %. The
shifted time t � tp (ms) is displayed and the scale bar represents a distance of 200 μm. The dashed line indicates the resolution limit of the lens.

TABLE II. Overview of the parameters of the jetting experiments with the
three PEO solutions.

c (wt. %) _Q (ml/min) R0 (μm) We θ (ms) θ=λ

0.05 3.17 80 8.9 2:0+ 0:1 2:1+ 0:1
0.075 3.17 82 8.3 2:7+ 0:1 2:0+ 0:1
0.10 3.17 85 7.2 3:7+ 0:1 2:1+ 0:2
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complete nonlinear thinning dynamics of the jet, including
the inertia resisted regime. A single frame can capture a
segment of the jet from the origin of the capillary instability
until the late stages of the exponential thinning regime. As
the Weber number increases, the initial straight segment
lengthens, which is shown in the images as well as in the
position of the onset of the exponential thinning in Fig. 6(b).
Additionally, the length of the exponential thinning regime
increases due to the higher jet velocity and the jet becomes
too long to track the complete thinning of an instability for
intermediate flow rates (We . 5).

Further increasing the flow rate results in the acquisition
of even fewer data points and eventually the exponential
regime can only be partially captured in a single image for
high flow rates (We . 15). Since the diameter of larger fila-
ments can be determined more accurately, we focus on the
beginning of the exponential thinning regime for these flow
rates. Jetting experiments could be carried out until the
Weber number reaches a value of 70. At this highest jet
velocity, the instability can only be followed for seven con-
secutive frames, which is the lower boundary for reliably
fitting the exponential thinning regime (Table III).

The same data set of jetting experiments is presented in
Fig. 7 as a function of time after exiting the nozzle, rescaled
with the relaxation time λ from the CaBER measurements.
All jetting experiments exhibit the same thinning behavior in
the exponential regime. The average slope of the decreasing
radii in the exponential thinning regime agrees with the refer-
ence slope of �1=2 logðeÞ for all We (see Table III). Note
that only part of the exponential thinning regime can be
observed for the two highest flow rates, yielding a larger
standard deviation.

We now investigate the effect of nozzle radius. The initial
jet radius R0 is larger than the nozzle radius for all our jetting
experiments due to the extrudate swell effect. The swell is
more pronounced for more concentrated samples, since these
have longer relaxation times and thus display stronger elastic

behavior. The swelling further depends on the needle size
because the shear rate near the needle wall rapidly increases
as the needle radius decreases. Figure 8 compares the evolu-
tion of the minimal filament radius Rm for jets of the same
0.1 wt. % PEO solution exiting from two different needles.
The initial jet radius R0 is clearly different for both experi-
ments and appears to scale with the nozzle radius Rn.
Additionally, the larger nozzle causes the IC regime as well
as the exponential thinning to start at a larger radius. The
time scale θ of the exponential decrease of the jet radius is,
however, identical for both nozzle sizes with θ � 2λ.

Lastly, the observation of the thinning timescale θ � 2λ
for jets is verified for a range of polymer molecular weights,
concentrations, and solvent viscosities. These jetting experi-
ments are performed on solutions of PEO with Mw ¼
3
 105 to 1
 106 g/mol in water-glycerol mixtures of
different compositions and concentration from 0.001 to
0.1 wt. % (exact compositions and resulting viscosities are
given in Table IV), while applying a periodic disturbance to

FIG. 5. Development of the minimal filament radius during the exponential
thinning regime in a regular CaBER capillary thinning experiments, and in
jetting experiments at We � 8 and from a nozzle of 0:15 mm diameter for
three PEO solutions. The evolution of the radius is presented in the same
way as in Fig. 3. In the inserted graph, the radius is rescaled with the radius
REC at the onset of an exponential thinning, and the time is rescaled with the
relaxation time λ obtained with the CaBER, to emphasize the different time
scales in both experiments.

FIG. 6. Thinning dynamics of the 0.1 wt. % PEO solution jetted from a
nozzle of 0.15 mm diameter for different Weber numbers. (a) Images of the
different jets with the Weber number in the bottom corner. (b) Development
of Rm of single filament instabilities for different Weber numbers, each fol-
lowed over the whole field of view of 15 mm and represented as a function
of the distance from the needle. For this, the imaging system was moved
along the jet to focus on the exponential thinning regime before filament
breakup.
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be able to measure the higher viscosity solutions. The
imposed frequency is always chosen approximately 100–
200 Hz higher than the frequency corresponding to the most
unstable wavelength, calculated from the dispersion relation
for viscoelastic jets derived by [4]. A typical image of such a
jet is given in Fig. 1(b). The relaxation times are calculated
from the jetting experiments using the new time scale in Eq.
(9) of θ ¼ 2λ. The results are presented in Fig. 9, scaled for
convenience with the Zimm time λZimm ¼ 0:463 ηS½η�Mw

NAkbT
to

compare different molecular weights and solvent viscosities
on the same master curve as function of the reduced concen-
tration, in agreement with the correlation λ

λZimm
� ð cc	Þm ini-

tially proposed by [18]. Figure 9 shows the scaled relaxation
times for both jetting and for separately conducted CaBER
experiments (using θ ¼ 3λ) on the same solutions. The
experimental data show a very good agreement, evidence that
the new time scale for jetting experiments of θ ¼ 2λ is also
recovered for different molecular weights up Mw ¼ 106 g/
mol and different solvent viscosities, as well as when a con-
trolled disturbance is applied.

To summarize, we have detected a significant difference
between the thinning rates of regular capillary breakup and
jetting experiments. Contrary to the generally employed
assumption that the final thinning dynamics of these free-
surface flows are similar, the experiments presented in this
section clearly demonstrate that a weakly viscoelastic jet (as
utilized in a ROJER experiment) breaks up faster than a cap-
illary bridge of the same liquid in a CaBER experiment. The
difference is mainly situated in the exponential thinning
regime, where in the ROJER experiment a different time
scale for the exponential decrease of the filament radius is
observed:

Rm � expð�t=2λÞ: (10)

This new time scale θ ¼ 2λ was already suggested for capil-
lary jets near the dripping–jetting transition (We � 1) [39],
but it is here demonstrated that this scaling is valid for low to
moderate Weber numbers up to We ¼ 70.

IV. DISCUSSION

To determine the origin of this difference in breakup
dynamics, an analytical and numerical analysis of the thin-
ning filament is conducted for both setups. We start our anal-
ysis from a simple zero-dimensional force balance that is
introduced in Sec. IV A.

FIG. 7. Thinning dynamics of the 0.1 wt. % PEO solution for different
Weber numbers. The data points of Fig. 6(b) are shown as a function of the
ratio of time to the relaxation time λ obtained with the CaBER. The radii
appear to collapse in the exponential thinning regime for different Weber
numbers and the slope in this regime corresponds to the reference slope, rep-
resenting a thinning with a time scale of 2λ.

TABLE III. Overview of the jetting experiments with the 0.1 wt. % aqueous
PEO solution from a nozzle of 0.15 mm diameter. The jet velocity is varied
from a value near the dripping–jetting transition (We ¼ 1:3) to the
experimental limit of the setup (We ¼ 70).

_Q

(ml/min)
R0

(μm) We

θ

(ms) θ=λ

1.60 95 1.3 1:8+ 0:1 2:0+ 0:2
1.90 93 2.0 1:8+ 0:1 2:0+ 0:2
2.22 91 2.9 1:9+ 0:2 2:2+ 0:2
2.54 89 4.0 1:8+ 0:1 2:1+ 0:2
2.85 88 5.3 1:8+ 0:1 2:1+ 0:2
3.17 85 7.2 1:8+ 0:1 2:1+ 0:2
3.70 83 10 1:9+ 0:1 2:1+ 0:2
4.23 81 15 1:8+ 0:1 2:1+ 0:2
5.29 79 25 1:9+ 0:1 2:1+ 0:2
6.34 78 38 2:0+ 0:2 2:3+ 0:3

8.46 77 70 2:0+ 0:2 2:2+ 0:3

FIG. 8. Comparison of the thinning dynamics of a 0.1 wt. % PEO jet with
two different nozzles at We � 3.

TABLE IV. Composition of the solutions for jetting experiments with different
molecular weight of PEO, concentrations, and solvent viscosities used in Fig. 9.

Mw

(kg/mol)
c

(wt. %) c/c*
Water/glycerol

ratio
η

(mPa s)
ρ

(kg/m3)
γ

(mN/m)

300 0.100 0.340 75/25 2:30 1059:2 62.0
600 0.053 0.010 75/25 2:12 1059:2 62.5
600 0.010 0.053 60/40 3:61 1098:8 63.4

600 0.025 0.133 60/40 3:60 1098:8 63.4
1000 0.005 0.037 75/25 1:99 1059:2 62.5
1000 0.001 0.007 60/40 3:57 1098:8 63.3
1000 0.005 0.037 60/40 3:57 1098:8 63.4
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A. Stress balance for a viscoelastic filament

We start our analysis from the Navier–Stokes equation for
an incompressible fluid by assuming that the filament or jet
is a slender axisymmetric volume. The flow in the slender fil-
ament is then described with the full leading order momen-
tum balance, taking the full description of the curvature into
account, as introduced by Eggers and Dupont [55], including
an inertial term as well as a polymeric stress contribution [22]:

@

@τ
h2�v
� �þ @

@�z
h2�v2
� �

¼ @

@�z
h2 K þ 3Ohs

@�v

@�z
þ �Δσp þ

_h
2

2

 ! !
� h2Bo

¼ 1
π

@ �Fz

@�z
:

(11)

To identify the relative importance of the different terms in
this balance, the parameters have been nondimensionalized
by introducing the dimensionless radius h ¼ R=R0 (and the
dimensionless derivative thereof _h, utilizing the dimension-

less time τ ¼ t=tR, where tR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρR3

0=γ
q

is the Rayleigh time
scale), the dimensionless velocity �v ¼ vtR=R0 and axial coor-
dinate �z ¼ z=R0, the dimensionless axial force
�Fz ¼ Fz=ðγR0Þ, and the dimensionless polymeric normal
stress difference Δ�σp ¼ ΔσpR0=γ, where
Δσ p ¼ σ p;zz � σ p;rr. The Ohnesorge number Ohs is based on
Eq. (1) but uses the solvent viscosity and is related to the
other dimensionless groups as

Ohs ¼ EcDe

ηsp
(12)

with ηsp ¼ ðη� ηsÞ=ηs. K is the curvature term that is

defined as [22,56,57]

K ¼ 1

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@h=@�zÞ2

q þ @2h=@�z2

ð1þ ð@h=@�zÞ2Þ3=2
: (13)

Since we focus on the elasticity controlled thinning regime,
in which the filament forms a uniform cylindrical column
with a constant radius R, the mean curvature reduces here to
K ¼ 1=h. Full curvature can be included in the following
analysis and does not change the physical picture.
Gravitational acceleration is negligible for the small dimen-
sions of the jet considered here, which can be easily deter-
mined from the Bond number Bo ¼ ρgR0

2=γ, so that we
drop this term on the right-hand side of Eq. (11) for the fol-
lowing analysis.

The left-hand side of Eq. (11) is the material derivate of a
Lagrangian element of the fluid filament, whereas the term in
brackets on the right-hand side represents the axial force Fz

acting on a cross section of the filament. A simple integra-
tion, dropping the inertial terms on the left-hand side, results
in the stress balance:

�Fz

πh2
¼ 1

h
þ

_h
2

2
� 6Ohs

_h

h
þ Δ�σp: (14)

In addition to the polymeric stress contribution Δ�σp [22], the

expression contains also an inertial contribution _h
2
=2 that

arises from the moving boundary of the free surface [18,45].
This can be understood by recognizing that in the actual
axial force of Eq. (11)

�Fz

πh2
¼ ��Pþ 2Ohs

@�v

@�z
þ �σ p;zz þ 2

h
; (15)

the nondimensional isotropic pressure �P ¼ PR0=γ can be
replaced by the radial components of the stress boundary
condition at the free surface

��Pþ 2Ohs
@�v

@�r
þ �σ p;rr ¼ � 1

h
þ

_h
2

2
: (16)

The total axial force in Eq. (14) is thus composed of the bulk
contributions of isotropic pressure and axial viscous and
polymeric contributions, as well as a line tension term 2=h. It
is the radial boundary condition that contains, in addition to
the surface pressure 1=h, the inertial term _h

2
=2 arising from

the movement of the boundary, as introduced in a similar
manner by Tirtaatmadja et al. [18]. With the general relation
of the axial and radial velocities to the extensional deforma-
tion rate for an incompressible cylindrical fluid filament of
@�v
@�z ¼ �2 @�v

@�r ¼ �2 _h=h, inserting Eq. (16) into Eq. (15) directly
results in Eq. (14) with the stress difference
Δ�σp ¼ �σ p;zz � �σ p;rr, the characteristic Trouton ratio Tr ¼ 3
that appears in the front factor 6 of the viscous term, and the
radial thinning rates _ετ ¼ �2 _h=h. The combination of the
line tension 2=h of Eq. (15) and the surface pressure �1=h of
Eq. (16) results in the sign of the single term 1=h in Eq. (14)
as explained in [22].

In order to describe the evolution of the elastic stress term
�σ p;zz in Eq. (14), Entov and Hinch [21] employed an elastic
dumbbell constitutive model (FENE-P) to express the elastic

FIG. 9. Scaled relaxation times λ=λZimm as function of reduced concentra-
tion c=c	 for different PEO molecular weights and solvent viscosities as
detailed in Table IV. For jetting experiments, the Weber numbers vary
between 15 and 25, and the imposed frequency is in the range 3–5 kHz. The
jetting relaxation times are determined with Eq. (9) and θ ¼ 2λ, whereas the
λ obtained with the CaBER use θ ¼ 3λ.
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nature of the dilute polymer solution [58]. The FENE model
assumes that the polymer solution consists of a Newtonian
solvent containing a dilute suspension of polymer chains that
are modeled as nonlinear elastic springs with a maximum
extensibility L2. Entov and Hinch [21] have used this model
to demonstrate that only the slowest relaxation mode of the
entire molecule and the associated timescale is relevant in
capillary breakup. We will, therefore, consider only a single
relaxation mode in the following. The elastic deformation of
the polymer coils is described with the conformation tensor
A, and the polymeric stress that is generated by deforming
these dumbbells is expressed in tensorial form as

σp ¼ G ZA� Ið Þ: (17)

The parameter Z is the correction term accounting for the
nonlinearity and the finite extensibility L of the dumbbell as

Z ¼ L2

L2 � trðAÞ (18)

with trðAÞ being the trace of the conformation tensor.
The elastic deformation of the polymer coils under flow is

correlated to the creation of polymeric stress by the micro-
structural evolution equation:

DA
Dt

� Arv�rvTA ¼ � 1
λ

ZA� Ið Þ (19)

that utilizes the upper-convected derivative to describe the
confirmation changes in the dumbbell. Due to the radial sym-
metry and the uniaxial extensional flow field, the tensorial
evolution equation [Eq. (19)] reduces to a set of two differen-
tial equations, one for the axial (Azz) and one for the radial
(Arr) components:

_Azz ¼ �4
_h

h
Azz � 1

De
ðZAzz � 1Þ; (20)

_Arr ¼ 2
_h

h
Arr � 1

De
ðZArr � 1Þ: (21)

In these equations, the dotted symbols _Azz and _Arr represent
the dimensionless time derivative of the respective polymer
stretch, and the relaxation time is captured by the dimension-
less Deborah number of Eq. (2).

Inserting the expression of Eq. (17) for the polymeric
normal stress difference Δσ p ¼ σ p;zz � σ p;rr in its dimen-
sionless form into Eq. (14) results in the following expres-
sion for the stress balance:

�Fz

πh2
¼ 1

h
þ

_h
2

2
� 6Ohs

_h

h
þ Ec ZðAzz � ArrÞ; (22)

where the scaling of the elastic modulus of the dilute solution
with the initial capillary pressure returns again the dimen-
sionless (global) elastocapillary number,

Ec ¼ GR0=γ: (23)

The dimensionless numbers for the 0.1 wt. % PEO model
solution are listed in Table V for both the CaBER and jetting
experiments, where the latter values are calculated with

R ¼ 85 μm. The microstructural evolution equations (20) and
(21) coupled with the stress balance (22) form a set of ODEs
that can be solved to determine the evolution of the filament
diameter in the CaBER experiment.

An elegant analytical solution for the evolution equation
itself has been presented by Entov and Hinch [21], assuming
that the axial stretch of the polymer chain is large (Azz � 1
& Azz � Arr). This assumption implies that only Eq. (20)
needs to be solved of the two in order to describe the
increase of elastic stresses. Furthermore, they assumed that
during the EC balance the deformation is still small com-
pared to the maximal extension (Azz � L2), so that the finite
extensibility does not play a role and Z � 1. Both these
assumptions refer, in principle, to the phenomenological
description of the polymer deformation state in the third thin-
ning regime in the discussion of Fig. 1(c). Under the assump-
tion that the initial value of the axial stretch equals one
(A0

zz ¼ 1), a solution for the polymeric stretch was derived as

Azz ¼ 1
h4

exp � τ

De

� �
: (24)

Inserting this into Eq. (22) (with the required assumptions
that Azz � Arr and Z � 1) gives then a simplified stress
balance for the third thinning regime of Fig. 1(c)

�Fz

πh2
¼ 1

h
þ

_h
2

2
� 6Ohs

_h

h
þ Ec

h4
exp � τ

De

� �
(25)

that will be used in the following to obtain analytical solu-
tions for the thinning dynamics of the CaBER or ROJER
experiments in this regime.

B. Tensile force of a viscoelastic filament in CaBER
vs ROJER type experiments

In order to determine the evolution of stresses and thin-
ning dynamics of the filament from the stress balance of
Eq. (14) [or Eqs. (22) or (25)], the (unknown) axial tension
Fz and its evolution needs to be determined. In the case of a
uniform cylindrical viscous filament [so dropping inertial
terms and polymeric contributions when integrating Eq.
(11)], assuming that the bulk stresses in Eq. (14) are balanced
by only the surface pressure, this axial tension �Fz is equal to
the line tension contribution 2πh or dimensional Fz ¼ 2πγR
and thus linearly dependent on the filament radius R.

For a viscous filament generated by a CaBER experiment,
the filament is connected to two fluid drops on the stationary
end plates. These drops act as quasi-static reservoirs that soak
up the fluid drained into them from the thinning filament.
They also diminish the no-slip boundary condition at the end
plates, which would otherwise induce a radial shear flow
near the ends of the radially contracting fluid thread [59].

TABLE V. Dimensionless numbers of the CaBER and jetting experiments
for the 0.1 wt. % PEO solution.

R0ðμm) Ohs De Ec

CaBER 1000 0.0040 0.445 0.0029
Jetting 85 0.0137 18.0 0.0346
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The curvature at the transition to the droplets disturbs unifor-
mity and adds an extra contribution to the axial tension (in
addition to the line tension), which can only be compensated
in Eq. (14) by a change of the extension rate in the viscous
term. McKinley et al. [45] showed that the observed thinning
dynamics of a viscous filament do indicate a linear relation
of the axial tension to the minimal radius, however, with a
different front factor such that Fz ¼ 2XπγRm. Furthermore,
they showed that their observed factor was close to the one
theoretically predicted by Papageorgiou [60] from a similar-
ity analysis of the evolution of a viscous filament connected
to spherical end drops, which gave X ¼ 0.7127.

For a viscoelastic liquid (that incorporates the polymeric
stress), Entov and Hinch [21] assumed again a cylindrical fil-
ament but neglected the line tension term h=2 in Eq. (15)
and consequently set the total axial tension in the jet to be
equal to the bulk contribution, which they assumed to
vanish. While this gave the correct scaling of the filament
thinning dynamics, Clasen et al. [22] showed later that for a
quantitative description of the filament evolution the correct
Fz needs to be evaluated. They solved the stress balance with
an asymptotical analysis in the center of the thread and on
the end drops, and a complete expression for the tensile force
is obtained with a similarity analysis in the corner region
where the filament is attached to the end drops. This analysis
showed that the tensile force in the filament for a CaBER
experiment evolves as �Fz ¼ 3πh or

Fz ¼ 3πγRm; (26)

so that axial tension is also linearly related to the filament
diameter in the viscoelastic CaBER case, albeit again with a
different front factor.

Both the analysis of Entov and Hinch [21] as well as the
one from Clasen et al. [22] (and follow-up simulations by
Bhat et al. [61] or Ardekani et al. [37]) that conclude in the
axial force of Eq. (26) do not distinguish between a single
liquid bridge and a continuous jet. We have, however, shown
different exponential thinning dynamics between these two
experimental setups in Sec. III, and will demonstrate in the fol-
lowing that this can be explained by a difference in the axial
force in the jetting case compared to the single liquid bridge.

A different approach for acquiring an expression for the
tensile force in a jet was already suggested in the research on
the gobbling phenomenon [39]. Following this, we cannot
evaluate the tensile force solely based on a single Lagrangian
element, but have to consider the entire jet.

The axial force in a jet can be estimated by integrating the
one-dimensional momentum equation [Eq. (11)] over a
control volume that is shown in Fig. 10. One boundary of the
control volume is located at a stationary location right below
the point where the jet is attached to the nozzle, so in the
stable section where the jet is still uniform [indicated as (1)].
The other boundary is positioned right after the final droplet
forming on the jet [indicated as (2)]. The integrated equation
is given by

@

@τ

ð�z2
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h2�v
� �

d�z
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@�v

@�z
þ �Δσp þ
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2

2
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�z2

�z1

¼
�Fz

π

				
�z2

�z1

:

(27)

By averaging this equation over a time interval that is substan-
tially longer than the time between two beads passing across
any given cross section of the jet, the first term on the left-
hand side can be dropped. Moreover, following the approach
of Clanet and Lasheras [62] for describing the momentum
loss in a jet, the time averaging implies that the convective
term can be rewritten in function of the flow rate �Q ¼ �vh2

through the jet into the control volume at (1), and the detach-
ing droplets leaving at (2)

h2�v2
�z2

�z1
¼

�Q�v

π
�

�Q�vdrop
π

: (28)

This change in momentum of the detaching droplets is
balanced by the net force on the control volume. As the con-
nectivity between droplets at (2) is lost, the tension across
the boundary at (2) is zero, so that the force on the right-hand
side of Eq. (27) is just

�Fz

π

				
�z2

�z1

¼ h2 K þ 3Ohs
@�v

@�z
þ �Δσp þ

_h
2

2

 !
� 0: (29)

Since in this uniform section of the jet at (1) the inertial,
viscous, and elastic contribution on the right-hand side of
Eq. (30) can be neglected, and since the straight jet shape
implies h2K ¼ 1, it follows that the net force on the control
volume and thus the tension in the jet at (1) is

�Fz

π
¼ 1 (30)

or in dimensional form

Fz ¼ πR0γ: (31)

The velocity of the jet within the control volume remains
constant up to the last connected drop. This can be experi-
mentally observed from the constant jet diameter in the
initial, uniform part of the jet, as well as from the constant
velocity of the Lagrangian asperities that develop eventually
into the droplets, and the minimum filament radius
in-between. Figure 11 shows exemplarily such a constant
velocity of the asperities along the jet. It is only the last
connected drop that experiences a deceleration to �vdrop from
the constant tension in the remaining filament, up to the
point where the connecting filament breaks. A constant

FIG. 10. Control volumes of the viscoelastic jet. Dotted line: control
volume with stationary boundaries in the uniform part of the jet (1) and after
the last connected drop (2). Dashed line: control volume with boundaries
moving with the velocity of the jet in the uniform part (1) and the mid-
filament point between two asperities forming on the jet (3).
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velocity of asperities/droplets along the jet, as well as a
deceleration of only the final droplet has also been observed
by Clasen et al. [39] for lower Weber numbers and jet veloci-
ties close to the jetting/dripping transition. In their case, the
low velocities caused the final drop not only to be deceler-
ated by the constant tension, but also to be reaccelerated
towards the nozzle, while still maintaining a constant velocity
along the jet.

This constant velocity of the jet and asperities allows
to draw a second control volume (dashed line in Fig. 10)
where the first boundary position (1) is the same as for the
previous case, but where the other boundary (indicated as (3)
in Fig. 10) is located at a minimum between two
droplets, and where both boundaries move now with the
same constant velocity of the Lagrangian fluid elements at
(1) and (3). In this case since there is no momentum in- or
out-flux, the net force from Eq. (27) on this control volume
is zero. Since this implies that the tensile forces at the bound-
aries (1) and (3) are balanced, and since Eq. (30) showed
that the tensile force in the uniform part of the jet at (1) is
constant, the tensile force at the minimum (3) will be
constant at any position of the minimum along the jet, and
equal to πR0γ.

C. Analytical solutions for the thinning dynamics in
a CaBER type experiment

Inserting now for the CaBER case the force of Eq. (26) in
its dimensionless form �Fz ¼ 3πh into the stress balance of
Eq. (25) gives

3
h
¼ 1

h
þ

_h
2

2
� 6Ohs

_h

h
þ Ec

h4
exp � τ

De

� �
: (32)

With the assumption that, once elastic contributions grow
sufficiently large, the inertial and viscous term can be
neglected, the stress balance reduces to the EC balance:

2
h
¼ Ec

h4
exp � τ

De

� �
: (33)

Solving this for the radius finally yields:

h ¼ Ec

2

� �1=3

exp � τ

3De

� �
: (34)

This is the result that Clasen et al. [22] obtained, which is,
apart from the prefactor of 2�1=3 [that arises when using the
correct force of Eq. (26)], equivalent to the original solution
of Entov and Hinch [21]. Furthermore, this is also equivalent
to Eq. (5) that was used to process the CaBER experiments.
According to this expression, the ligament radius will only
reach zero at an infinite time, since the finite extensibility of
the polymer molecules is not taken into account. Entering
Eq. (34) into Eq. (24), the elastic stretch as well as the poly-
meric stress appear to be growing unrestrictedly. However,
when the axial stretch Azz approaches the squared finite
extensibility parameter L2, the nonlinear correction term Z
will lead to an upper bound of the polymeric stress and the
finite extension will determine the final breakup of the
filament.

D. Elastic balance in the ROJER

To assess the thinning rate of the jet in the elasticity domi-
nated regime, the expression for the constant force of Eq.
(31) in its dimensionless form �Fz ¼ π inserted into the stress
balance of Eq. (25) generates the stress balance for the visco-
elastic jet:

1
h2

¼ 1
h
þ

_h
2

2
� 6Ohs

_h

h
þ Ec

h4
exp � τ

De

� �
: (35)

This stress balance is different from the balance for the gob-
bling phenomenon [39], since the inertial term is taken into
account instead of only the viscous dissipation. Different
from the stress balance for the capillary breakup of a single
bridge of Eq. (32), an additional term 1=h2 appears in the
stress balance originating from the constant force along the
jet. This constant force will grow increasingly important
close to breakup as the area of the liquid column rapidly
reduces.

Similar to the analysis for the CaBER experiment, we can
first simplify the stress balance in this regime by neglecting
the inertial and viscous term to

1
h2

¼ 1
h
þ Ec

h4
exp � τ

De

� �
: (36)

Furthermore, approaching small filament dimensions also
the capillary pressure term 1=h in Eq. (35) becomes subdom-
inant in comparison to the now constant force term 1=h2, so
that the dominant balance is established between the axial
stress and the elastic stress (called “AE balance” in the
following):

1
h2

¼ Ec

h4
exp � τ

De

� �
: (37)

While it is initially unintuitive not to directly have a Laplace
pressure term 1/h in the balance that drives the capillary thin-
ning, it should be noted that is still the line tension of the jet
that sets the constant tension that is eventually balancing
polymer elasticity. Solving now for the radius evolution of

FIG. 11. Position of asperities or forming droplets as a function of time for
a jetting experiment of a PEO solution of 1000 kg/mol, c = 0.001 wt. %, in
water-glycerol 60-40. The insert gives the velocity of the droplet at each
position along the jet.
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the jet during the AE balance regime one obtains

h ¼
ffiffiffiffiffiffi
Ec

p
exp � τ

2De

� �
: (38)

This is the same expression that was found for the gobbling
phenomenon, where the viscous term was neglected in the
stress balance instead of the inertial term [39]. Like in the
previous analysis for the CaBER, the radius decreases expo-
nentially in the elasticity dominated regime, however, the
time scale in the AE balance regime is different from the EC
balance. The creation of new surface near the nozzle gener-
ates a constant tensile force in the jet, which changes the
thinning dynamics. The introduction of this constant force
into the stress balance changes the dimensionless time scale
from 3De to 2De, which is the value that was observed
throughout all jetting experiments.

Verifying a different tensile force during jetting is chal-
lenging (compared to during a CaBER experiment, which
has been done by Willenbacher and co-workers [63]).
However, we can analyze the shape of the corner region,
where a filament is attached to the neighboring drops. When
the tensile force decreases exponentially in time, as it does
for a single liquid bridge since FzðtÞ � RmðtÞ, simulations
and experiments have shown that this corner should reveal a
self-similar structure [22,61]. To examine the existence of
this similarity region, all lengths are scaled with a

characteristic length scale, the minimal radius Rm, giving

R	 ¼ R

Rm
; (39)

z	 ¼ z� z0
Rm

: (40)

The axial origin z0 is asymptotically located in the corner
region. These rescaled free-surface profiles are shown next to
the original profiles in Figs. 12(a) and 12(b) for CaBER cap-
illary breakup experiments of the 0.1 wt. % PEO solutions.
The experimental profiles converge in both cases onto a
master curve with increasing thinning time, demonstrating
the self-similar structure of the corner. This suggests that the
tensile force is exponentially decreasing as expected for the
CaBER experiment.

Also the profiles of an excited jet experiment on the same
solution are rescaled, using the same scales. To obtain suffi-
cient resolution in the corner region, the thinning jet was
visualized with the same microscopic objective that was used
for the CaBER experiments. Due to the limited field of view
of this setup, a low Weber number of We = 2.9 was chosen to
be able follow a sufficient number of instabilities within the
observation window. Figure 12(c) shows a sequence of free-

FIG. 12. Experimental filament profiles of the 0.005 wt. % PEO solution of Mw = 1000 kg/mol in water/glycerol 60/40 during the different free-surface experi-
ments, with the times for each profile indicated in the legend. The profiles R are shown as a function of the axial coordinate z for the (a) CaBER and (c) excited
jetting experiments, respectively. The rescaled edge profiles of the corner region exhibit a similar shape for (b) the CaBER experiments, whereas (d) the rescaled
jetting profiles of a ROJER type experiment does not show the same self-similarity.
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surface profiles of the jet. The consecutive corner regions are
rescaled in Fig. 12(d) and do not form a master curve. The
absence of a similarity region for both jetting experiments
suggests a different tensile force in the thread that does not
decrease exponentially in time as in the CaBER experiments,
and leads to different thinning rates in both experiments.

E. Numerical simulations

The combination of the full stress balance of Eq. (22)
with the evolution equation [Eqs. (20)–(21)] (and the respec-
tive axial force for either the CaBER or the ROJER case)
makes an initial value problem that can be used to describe
the complete thinning of the inertia-elastic filament. This
simple model is used to explore the transitions between dif-
ferent thinning regimes in both CaBER and jetting flows. By
solving the microstructural evolution equation, the growth of
the axial stretch Azz provides insight into the polymer defor-
mation in the uniaxial extensional flow field. The equations
are solved in MATLAB with an implicit BDF-solver (routine
ode15s) to cope with the stiffness of the system. The transi-
tion from the inertia to the elasticity dominated regime
causes an abrupt change in the polymeric deformation, so the
absolute and relative tolerances are chosen at a low value of
10�10. It should be noted that the approach for these simula-
tions is different from earlier works [19], as it explicitly
includes the inertial term _h

2
=2 in Eq. (22), which is neces-

sary in order to capture the initial thinning regime before the

onset of the exponential thinning regime, which is dominated
by inertia (as indicated by the low global Ohnesorge
numbers in Tables I and V).

A first set of results of the numerical simulation for both
setups are presented in Fig. 13, using an ideal state of unde-
formed polymer coils as the initial conditions at the start of
the experiments, so that the initial value of the three dimen-
sionless variables are all equal to one: h0 ¼ 1, A0

zz ¼ 1, and
A0
rr ¼ 1. A reference radius R0 is chosen to resemble the

experimental observation and, therefore, the dimensionless
groups in Table V are used for the calculations. Fig. 13(a)
compares the evolution the dimensionless filament radius h as
a function of time, which has been scaled with the relaxation
time to emphasize the different time scales in the exponential
thinning regime. When finite extensibility effects are
neglected (L ¼ 1), the time scales of 3λ and 2λ are recovered
over a long period for the CaBER and ROJER type experi-
ment, respectively, in agreement with the experimental obser-
vations and the analytical derivation in Secs. IV C and IV D.

For the CaBER simulations, the transition for the IC to an
EC regime can be explained by the temporal evolution of the
stress contributions in Eq. (33) that is shown in Fig. 13(c).
Initially, the polymer chains are close to the equilibrium con-
formation and the inertial acceleration balances the capillary
pressure in the fluid column. This balance results in a fast
decay of the radius, inducing strong stretching of the polymer
as shown in Fig. 13(b). The elastic stress in the column rises
quickly to balance the capillary pressure and the inertial

FIG. 13. Numerical simulation of capillary breakup in the jetting and CaBER setup with the dimensionless parameters listed in Table V. (a) The evolution of
the filament radius, (b) the axial stretch of the polymer chains and the evolution of the stresses for L ¼ 1 in (c) the CaBER and (d) the jetting setup, in which
the insert focusses on the transition from the IC to the elastic balance regime.
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contribution drops to a negligible value. As a result of this
EC balance, the growth of the axial deformation of the
chains suddenly slows down to an exponential increase with
a time constant corresponding to three times the relaxation
time of the fluid: Azz � expðt=3λÞ.

The respective elastic and capillary stresses in Fig. 13(c)
match this exponential increase. If the finite extensibility
effects are included in the analysis, at later times a deviation
from the exponential decrease of the filament radius is
observed in Fig. 13(a) at h � 0:02, which corresponds to an
axial stretch Azz � 0:1L2. As the axial deformation
approaches the finite extensibility parameter, the nonlinear
correction term Z increases considerably, resulting in a
sudden breakup.

The numerical simulations for the CaBER are also com-
pared with experimentally obtained filament radii in Fig. 14.
The model solution for the CaBER case using R0 ¼ 1 mm
displays a very similar shape as the experimental curve,
however, the onset of the EC regime occurs at a higher
radius. This inconsistency in the transition radius was also
encountered in previous studies [18,64]: the IC regime typi-
cally demonstrates necking near the end droplets and cannot
be described with a zero-dimensional model that furthermore
neglects the gravitational component in Eq. (11) in the initial
regime where in the CaBER case the Bond number is still

close to unity. Furthermore, recent studies by Prabhakar and
co-workers [65,66] showed that stretch-induced changes in
hydrodynamic screening will affect the thinning dynamics
even before the onset of the coil-stretch transition as
described by our simplified model. A better agreement of
0-D models to the experimental EC regime is usually found
by choosing a smaller value for the reference radius R0 as
done in Fig. 14(a). While decreasing the reference radius
results in a poor description of the inertia-capillary regime, it
captures the thinning dynamics in the EC regime well.

In the jetting simulations of a ROJER type experiment in
Fig. 13(a), again using undeformed polymer coils as an
initial state, the filament radius decays initially much faster in
comparison to the CaBER case before reaching an exponen-
tial thinning regime, and also initially much faster than what
is experimentally observed for the ROJER experiments, for
example, in Fig. 5. This fast decay originates from the differ-
ent stress balance of which the evolution of the different rele-
vant terms is shown in Fig. 13(d). The term driving the
filament breakup is the stress from the constant axial force as
indicated in Eq. (36). This term scales with the inverse
squared radius and, therefore, increases more quickly than
the capillary stress, and it is thus this contribution that bal-
ances the inertial stresses as can be seen in the inset of Fig 5
(d). Moreover, this larger axial driving stress requires the
polymer chains to be stretched much further from their initial
undeformed state to produce sufficient elastic stress to even-
tually balance this axial stress. When this happens, Fig. 13(b)
shows that at this point the axial deformation of the initially
undeformed chains is 3 orders of magnitude larger than at
the onset of the EC balance in the CaBER case. Still,
once this balance is reached, the axial stretch and the elastic
stress increase exponentially when L ¼ 1, and with the
experimentally observed smaller time constant:
Azz � expðt=λÞ. However, including finite extensibility
effects in the jetting experiment, an exponential decrease of
the filament radius is not observed. As can be seen in
Fig. 13(b) when setting L ¼ 121 for the jetting case, the
initial polymer deformation Azz in the inertial regime is
already close to the maximum stretch L2, so that it is directly
followed by a nonlinear elastic stress buildup, leading to a
very fast breakup of the filament.

These two discrepancies of the ROJER simulations in
comparison to experiments, the too late onset of the elastic
balance regime and the too strong deformation of the
polymer at this onset to observe an exponential thinning,
indicate that the initial assumption of undeformed polymer
coils is not correct. Indeed, a deformation of the polymer
coils when passing through the contraction flow at the nozzle
entrance, as well as in the relatively high shear rates experi-
enced inside the nozzle, that persists in the jet when exiting
the nozzle, has been previously discussed for jet thinning
dynamics of polymer solutions [39,67]. Furthermore, it is
probable that the polymer chains are partially oriented and
elongated after exiting the nozzle. At this point, the velocity
field in the jet undergoes an abrupt change from a Poiseuille
flow inside the tube to a plug flow in the initial straight
section of the jet. This stick-slip singularity at the nozzle exit
results in potentially large initial elastic stresses in the jet

FIG. 14. Comparison of the experimental evolution of the minimal radii
with numerical simulations. (a) For the CaBER setup, an agreement between
experiment and model is found by lowering the initial radius R0. (b) The
jetting simulations are matched to the experimental observations by changing
the initial axial stretch A0

zz of the polymer molecules.
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[68]. Since the Deborah number in Table V is sufficiently
large (De � 1), effects of this initial configuration can prop-
agate along the jet while the fluid column begins to exhibit
the linear instabilities [39].

Such a pre-stretch at the nozzle exit can be included in the
jetting model by changing the initial chain confirmation
(A0

zz . 1, A0
rr ¼ A0�1=2

zz ). By incorporating this additional
elastic contribution, the initial axial stress in the jet is

Fz

πR2
0

¼ γ

R0
þ Ec Z A0

zz � A0�1=2

zz

� �
: (41)

The initial conormation A0
zz and the associated initial stress

are new initial values for the numerical simulations of the
coupled differential equations for the jet [Eqs. (20), (21),
(22), and the constant axial force �Fz ¼ π]. A0

zz becomes thus
an extra parameter to fit the experimental observations. The
results for ROJER simulations that include a predeformation
of the polymers at the nozzle are compared to experimental
thinning data in Fig. 14(b). By employing a larger pre-stretch
A0
zz ¼ 1000, an axial-elastic balance is immediately estab-

lished at the initial radius and the appearance of an initial
inertia-capillary thinning and fast initial decay of the filament
radius is suppressed. A more consistent description is
acquired by reducing the initial axial stretch to A0

zz ¼ 125.
The modeled radius shows a more gradual drop from the
initial value and subsequently approaches the experimental
data points. The driving axial stress is not solely balanced by
the elastic stress for times t , 2λ, leading to a fairly long
transition zone where the capillary term still affects the thin-
ning. The elastic stress only matches the driving stress after
this period and then an exponential decrease of the filament
radius is retrieved. It should be noted that time scale
observed in the exponential AE regime is in all cases the
new time scale of two times the relaxation time, independent
of the predeformation value for A0

zz, and matching the experi-
mental radius decay.

During the AE balance, the polymer chains are still
stretched at a faster rate than in the CaBER case [see
Fig. 13(b)]. Hence breakup occurs slightly sooner than in
the experiments when finite extensibility effects are
included in the model. However, in both the CaBER and
the jetting case, the finite extensibility of the polymer
chains affects the thinning dynamics sooner in the simula-
tions than in the experiments. A comparable difference
between the modeled and experimental finite extensibility
effects is also encountered in other studies on capillary
breakup of similar polymer solutions [69,70]. Two possible
explanations have been proposed for the earlier onset of
these finite extensibility effects. The former assumes a dif-
ference between the theoretical finite extensibility L that
was calculated based on molecular parameters [see Eq. (7)]
and the experimentally observed L [71]. The latter states
that pre-averaging of the connector vector Q in the Peterlin
approximation of the FENE model overpredicts the elastic
stresses in a uniaxial extensional flow compared to the full
FENE model [72].

V. CONCLUSION

In this paper, we have investigated the instability growth
and the resulting breakup of weakly viscoelastic jets with
low Ohnesorge numbers. Jetting experiments were executed
for three model solutions over a range of Weber numbers
from the dripping–jetting transition at We ¼ Oð1Þ to long
stable jets at We ¼ 80, which corresponds to the experimen-
tal limit of our setup. We have focused on this important
elasticity controlled thinning regime where the minimal
radius of the instability decreases exponentially in time. The
thinning dynamics during this regime are compared with
CaBER capillary breakup experiments of single liquid fila-
ments, and a different time scale for the exponential decay is
identified for both free-surface flows. Whereas the generally
employed time scale θ ¼ 3λ is observed for the CaBER
experiments, the jetting experiments exhibit a time scale
θ ¼ 2λ, which was previously only suggested for jets in the
vicinity of the dripping to jetting transition. This new scaling
remains valid for all examined Weber numbers (We . 1).

Both time scales are explained with a stress balance over
the viscoelastic filament. The different scaling in the jet is
attributed to a constant axial force in the jet, which is caused
by the creation of new surface under the nozzle. This results
for the jet in a balance of the constant axial force and elastic-
ity (AE balance) during the exponential thinning regime, in
contrast to an EC balance in the CaBER experiment in this
regime. Numerical simulations of the jet breakup with the
FENE model are in agreement with the experimental obser-
vation by selecting a proper value for the initial deformation
of the polymer molecules A0

zz. Additionally, the experimental
profiles of the corner region where the filament is connected
to the droplet are rescaled according to the scales proposed by
Clasen et al. [22]. The self-similar structure present in the
CaBER experiments is not observed during the jetting experi-
ments, indicating that the axial force is indeed not decaying
with the filament radius. The existence of a different scaling in
the exponential thinning regime in a continuous jet is not only
of fundamental interest, but it also strongly affects the result
interpretation of new jetting rheometers as the ROJER [36],
resulting in a 50% increase of the extracted relaxation time.
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