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Abstract

We discuss a spectral decomposition formulation for the mechanical statistical characterization
of the anisotropic strain energy density of soft hyperelastic materials embedded with distributed
fibers. We consider a generalized angular probability density function (PDF) of the reinforce-
ment built upon the local eigenvalue and eigenvector system of the Cauchy-Green deformation
tensor. We focus our analysis to material models dependent on the fourth pseudo-invariant of
the deformation, I, and to exponential forms of the fiber strain energy function. Within such
a spectral reference system, we derive the closed-form expression of the PDF for I, generaliz-
ing the multi-value random variable transformation procedure recently developed in Gizzi et
al. 2016. Our formulation bypasses the cumbersome extension-contraction switch, commonly
adopted for shutting down the contribution of contracted fibers in models based on general-
ized structure tensors. Accordingly, we identify analytically the support of the fibers in pure
extension for significant loading conditions. We can readily compute any statistics of the fourth
pseudo-invariant and we can derive the direct definition of the average second Piola-Kirchhoff
stress tensor according to the second order approximation.

1 Keywords: statistical fiber distribution, spectral decomposition, multivariate, fourth
> pseudo-invariant, fiber reinforced materials.
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1 Introduction

In modern applications of biomechanical engineering a paramount role is played by the
constitutive modelling of soft tissues, based often on advanced mathematical methods.
Notable examples include cardiovascular functioning [1,2], cartilage [3], skin [4], gastric
[5] and human cornea [6,7] characterization in the view of surgical planning [8-10], fiber
recruitment [11], growth and remodeling theories [12-17], and others. The accurate consti-
tutive modelling of soft tissues is requested by the patient-specific nature and the intrinsic
complexity of biological tissues that have to accomplish several functions under various
conditions [18]. A reliable constitutive modeling in biomechanics is very challenging and
still incomplete [19,20]: it requires to account for highly nonlinear behaviors, distributed
inhomogeneities of the mechanical properties, multiple length and time scales, and multi-
physics coupling [21].

Robust computational approaches for constitutive models of soft tissues rely on varia-
tional formulations, based on the definition of an appropriate strain energy density to
describe the reversible behaviors. Advanced models try to address explicitly the hierar-
chical nature of the material by introducing several length scale parameters [22], or by
describing in detail the effects of the microstructure. Constitutive models that account
directly for the stochastic spatial distribution of the collagen fibers have originated co-
piously from the approach first proposed by Lanir [23]. The presence of dispersed fibers
confers to the medium a certain degree of anisotropy not easy to be described or quan-
tified, whereas the availability of handy parameters would be highly desirable, especially
in numerical applications. The complex, in some cases unaffordable and computationally
demanding, description of the microstructure has pushed for approximations based on the
homogenization of the microstructure by means of parameters of the collagen distribution
(i.e., average and higher order statistics) in the strain energy density [24-26]. Strong ho-
mogenization techniques, though, may cancel out the features of the microstructure and
compromise the predictive properties of the model at the macroscale [27].

Among countless research papers discussing stochastic models of fiber reinforced materi-
als, only a few contributions have been trying to characterize analytically the probability
distribution functions (PDF) by means of statistical descriptors [9,12,28-30]. In partic-
ular, the recent work by Gizzi et al. [31] has derived the analytical characterization of
the statistics of mechanically significant quantities for soft materials embedded with a
stochastic distribution of reinforcing fibers. The present contribution aims at generalizing
the results of [31] by considering a spectral decomposition approach [32].

The well established theoretical framework considers hyperelastic materials and departs
from the assumption that the anisotropic behavior of the material is described entirely
by the fourth pseudo-invariant I4, i. e., the square of the stretch in the direction of the
fibers, for both planar and three-dimensional cases [33]. Following [32], a generalized
three-dimensional von Mises PDF of the reinforcing fibers is built through the spectral
decomposition of the right Cauchy-Green deformation tensor. This expedient allows to
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generalize the bijective random variable transformation recently introduced in [31] and,
as a notable novel result, to derive the analytic expression of the 1,’s PDF, denoted py, (1),
in a principal reference system.

This generalized framework allows to derive analytically all the statistics of I4. In par-
ticular, it is possible to identify uniquely the support, or integration domain, of py, (1),
restricted by symmetry properties to half a sphere © € [—7/2,7/2],® € [-7/2,7/2]. For
special cases of loading and mean fiber direction, the formulation recovers well-known
results of the literature. Moreover, it allows to identify the entries (integral coefficients)
of the generalized averaged structural tensor H [24,25] and H [26].

Numerical examples concerning uniaxial tension, biaxial, and simple shear loading can
be worked out for different values of the mean direction of collagen fibers M and PDF
concentration parameter b. A remarkable result is that the approach is able to provide the
analytical expression of the integral coefficients of the selected distribution, known as s, &
coefficients, for uniaxial loading, generalizing the results existing for transverse isotropic
materials [24,25,31]. The range of variability of the k coefficient is generalized and shown
to reduce to the one reported first in [24] only when the mean direction of the fibers and
the loading direction are coincident.

The paper is organized as follows. In Section 2 the models for materials with distributed
fibers considered in this study are illustrated and the closed-form PDF for the fourth
pseudo-invariant is derived by using a generalized random variable transformation. In
Section 3 quantitative comparison between the mechanical response of our novel closed-
form derivations and the one of alternative models are produced. In Section 4 the results
and the limitation of the proposed approach are discussed and commented, and future
extensions are proposed.

2 Methods

The material models for fiber reinforced tissues proposed here require some mathematical
preliminary that is recalled briefly. The following derivation uses the standard notation
for finite elasticity kinematics. For the statistical aspects, we comply with the notation X
and x to denote an aleatoric variable and its occurrence, respectively. A similar notation
is adopted for the fourth pseudo-invariant, indicating the aleatoric variable with I, and
its occurrence with 1.

2.1 Spectral decomposition

Following [32], we begin by considering the spectral decomposition of the right Cauchy
Green deformation tensor C = F”F, where F = RU is the deformation gradient, R the
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rotation tensor, and U the right stretch tensor:
C=XNV,0V,+X V0 Vy+ V38V, (1)

where \; are the eigenvalues and V; the eigenvectors of U. With no loss of generality, for
an assigned deformation the principal stretches can be ordered as \; > Ay > A3. Clearly,
the condition \; = Ay = A3 corresponds to the reference configuration. We deal with
incompressible materials, therefore the constraint \;A\;A3 = 1 is in force.

In the principal stretch reference system, the generic unit vector N is described in terms
of the spherical Eulerian angles © € [0 : 7], ® € [0 : 27] as

N =sin©®cos® V; +sinOsin® V, + cos O Vg, (2)
and the fourth pseudo-invariant Iy = FN-FN = (N ® N) : C as
,(6,®) =sin*O (/\% cos® @ + \3 sin? <I>) + A3 cos’O. (3)

We exclude from our considerations contracted fibers that may violate the stability con-
ditions, and impose the satisfaction of the physical requirement that only the fibers that
attain the condition I, > 1 contribute to the elastic energy and the stress, or, equivalently,
that the fibres attaining I, < 1 are discarded [34].

In most cases, biological tissues are characterized by non planar architecture of reinforc-
ing fibers. The representation of this physical condition requires the adoption of fully
three-dimensional (3D) distributions [30]. Moreover, collagen fibers are usually dispersed
around a mean referential direction, M with components M;, showing either a rotational
symmetry in space or no symmetry at all. In general, M represents the axis of symmetry
of the chosen distribution, e.g. when the concentration parameter b < 0 (these cases are
not considered in the present study). For the applications that we have in mind, in fact,
we consider a generic 3D arrangement based on the generalized von Mises distribution [35]
p(N) = pe.o(N(0, ¢)) function of the angles ©, ® as

_ iexp[Qb(N M)?] - ox SN2
po.a(0,0) —4\/; afiva - V) expb(N- M), (4)

where b is the concentration parameter of the distribution and N(b) is a normalization
factor dependent on b. The symmetry property allows to restrict the study to half sphere
©€-7/2,7/2],® € [-7/2,7/2].

For increasing values of the concentration parameter b, Fig. 1 illustrates the angular
phase plots of the generalized von Mises distribution. Plots refer to three different mean
referential directions M, i. e.,

M; = [1,0,0], M, = [0,0,1], M; =1/v3[1,1,1], (5)

and show that high values of b concentrate the PDF along particular directions, preserv-
ing a non-uniform distribution not implicitly imposed. Changes in the mean referential
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Fig. 1. Angular phase plots of generalized von Mises PDF, Eq. (4), for three different values of
b (columns) and three mean fiber direction M; (rows).

direction draw different landscapes: multiple periodic PDF for M, a single ©-dependent
distribution for M5, interfering aperiodic PDF's for M3. Accordingly, the model is expected
to be characterized by rather different material constants.
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2.2 Random variable transformation

The fourth invariant I, = I,(©, ®) is a function of the two random variables (0, ®) and
inherits from them the random character. Following [31], we can derive the PDF of 14,
i. e., p1, (1), by considering the analytical expression that links I, and ©, ®. To this end,
we make use of a random transformation procedure, cf. [36], and introduce a new random
variable W with occurrence w as

(6)

I4 = I4<@7q))
W=9o

The two-dimensional support of the two aleatoric variables (I;, W) is defined as F =
{[17 )‘ﬂ U [—7T/2,7T/2]}.

Remark Note that the lowerbound for the random variable I is defined by the non-
contracted condition I; = 1 and not by the minimum eigenvalue A2 < 1. The upperbound
of 1, is defined instead by the maximum eigenvalue A3 = max{I,(0,®)} [37].

Depending on the loading, the inverse mapping Eq. (6) may be defined univocally on the
whole domain F (bijective transformation)

eF, (7)

6 = O(L, W)
O=W

or on m subdomains Y°; C {[1,\] U [-7/2,7/2]} with ¢ = 1...m such that U%; >, = F
(multivalued transformation)

{@ =0l W) 5, (8)

=W

We discuss the two cases separately.

2.2.1 Bijective Transformation

When the inverse mapping is bijective (2.2), we begin by evaluating the Jacobian of the
transformation, which reduces to the derivative of I, with respect to 0:

9ly 9l 0ly 014
_ 100 96| _ |30 90 oI
[J] = bw ow | = 90 99 | et J = —-. (9)
90 06 0 1
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The joint PDF pr, w(l4,w) of the two transformed random variables (I4, W) is related to
the joint PDF of the two random angle variables peo ¢ (6, ¢) as [31]

: -1
po.o(0,¢)sind , 0l
1 = = = 0 0 — 1
PI4,W( 4 w) det J 9:2g47w> p@ﬂ)( ’¢) S11 90 S ) ( 0)
= ods,
thus the PDF of I; can be evaluated as the marginal density of pr, w(ly, w), i. e.,
/2 ' oI, -1
o) = [ poa(8.¢)sing (1 dw. (11)
—7/2 00 0=0(I4,w)
Pp=w

For the general case in a 3D setting, it is possible to obtain the inverse mapping by using
Eq. (3)

I, — \2
.92 4 3
e =
S A2 cos2 ® + A3sin® & — A3 (12)
20 MNcos?®+ A2sin®® — 1,
cos?© =
A cos? @ 4 AZsin® @ — A3
thus
I, — )2
© = =+ arcsi : : 13
aresin \J A cos? @ + A3sin® @ — A3 (13)

Note that the inverse mapping will be bijective or multivalued according to the values
assumed by the eigenvalues \;. However, in this section we are considering only bijective
transformations. To obtain py,(I4), we manipulate Eq. (11) as

-1
sin 6 <%;4>

where a = A2 cos? w+ A2 sin? w. The composition of N with M, adopted in the generalized
von Mises distribution (4), allows to write

- : (14)

s=osw 2y/(a— M)a— L)

N - M =sin O(M; cos ® + Mysin ®) + Mz cos O, (15)

and py, (1) derives as

I — A2 =y b
/2 exp{Zb[ 4 3 (M cosw + Mysinw) + My i 1 }
dw (16)

=50 | S -
P11y J, V0a—N)(a— 1)

Eq. (16) is a novel result obtained through the spectral decomposition, and it generalizes
the derivation obtained in [31].
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2.2.2  Multivalued Transformation

When the inverse mapping is multivalued (2.2) it is necessary in general to define m
subdomains where bijectivity is satisfied. The joint probability density pr, w(l4, w) of the
transformed random variables (I,, W) is related to the joint probability density pe ¢ (6, ¢)
as

) = i po.o(0,¢)sind (17)

m o (on\7!
prow (L, w otytrg) > res(d,¢)sind (06’4>

0=0;(I4.w)
dp=w

and the PDF density of I4 can be evaluated as

I — A =k
) exp 1 2b (M cosw + My sinw) + My =
a— N3 a— A3
d

m w;(14)
pr (1) = N(b) Y /
—w;(I4) \/(CL - )‘%)(a - I4)

w

=1

(18)

where the limits of the integral, required for the saturation of w, depend on the occurrence
of the aleatoric variable I, itself.

Remark. The integration intervals [—w;(1y), w;(14)] are determined from the properties
of the arcsin function (see Eq. (13)), thus each of them is identified on the basis of the
value of the fourth invariant. We provide a detailed analysis on this point in the next
section. Note that to build py, (I4) it is necessary to perform a numerical integration for
each deformation state.

2.2.3 Determination of the integral bounds of a multivariate mapping

From the mapping © = O(Iy, \;)

Iy — A2
A cos2 @ + A3sin® @ — A3

© = £ arcsin \J

we obtain the range of variability of the arcsin argument

1< L=\ <1 (19)
TN = A3 = (A2 = \3)sin?d

which, in the real domain, leads to the inequalities

Iy — \2
A2 — A3 — (A — \})sin® @ =0
L — A2 (20)

A — 22— (A2 — \d)sin? @
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Using Eq. (8) trite algebraic calculations give

2 A qin? =N e M
I, > A3 Nsin w<>\2_)\2ﬂsm w<)\2_)\2
1= A2 1= A2 921
2 [y PR g 2
I < A Nsin®w > N sin®w <
e A - N

where the equality sign has been removed to exclude null denominator. Condition (21),
holds only for I, = 1 and corresponds to a degenerate case with no deformation.

By imposing the strict inequality for the eigenvalues, A\ > Ay > A3, and using the upper
and lower bounds of 1, inequality (21); reduces to

z2

N3

sin?w <

i A #£ A (22)

valid on the entire support of 1. Equation (22) allows for the direct identification of the
integral bounds in Eq. (18) as

—04(14) <w < 04(14) (23)
YT,

Py
by imposing the condition of positive square roots in Eq. (18)

where «(1;) = arcsin . It is possible to prove that the same result is recovered

(a—A)(a—14)>0.
Remark. If the condition \; = ), is satisfied, the dependence of Eq. (20) on ® and W is
excluded and w can be integrated over the whole domain.

Remark. The arcsin function leads to (i) continuous mapping (monotonicity), (ii) sym-
metric intervals.

On the basis of the previous considerations, pr,(I;) can be evaluated always by means of
the relationship

a— N3 a— A3

) V0e=23)(a— 1)

L= 2 — 12
a(ls) €XP {25 [ LT3 ( M, cosw + My sinw) + M S ] }
pr(1s) = N(b) .

(24)
The integration intervals identified in Eq. (23) generalize the calculation proposed in [31]
and provide a unique set of inequalities, independent of the direction of the local loading,
which can be applied readily to any deformation state. We will provide some example in
the following.
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Note that the support of I; changes according to the loading pattern. In the following we
highlight the uniaxial, biaxial and shear cases.

2.3 Closed-form statistics of 1

The explicit expression of the pr, (1) PDF in Eq. (24) allows to obtain all the statistics
of 1. The average and variance, in particular, are given by the relations

X
() =1I; = ) Iy pr,(1s) dly, (25a)
Af
(=1 =0t = [ (L= 1)" g (L) di. (25b)

that can be used directly to provide the stress tensor in computational applications, cf.
7,11,26,33]. In Appendix A we provide a simple example of usage of I} and o7 .

3 Numerical Analysis

We investigate isochoric deformations, based on the incompressibility assumption, under
uniaxial, biaxial and shear loading patterns for three values of the concentration pa-
rameter, by = 0.1, by = 2, and b3 = 10. The parameters are chosen to describe isotropic,
dispersed and aligned distributions of the fiber reinforcement. We consider the three mean
orientations of the distribution in Eq. (5), exploring the aspects of py, (1) for all the rele-
vant combinations of mean direction, concentration parameter, and loading pattern. We
omit the results for the direction [0, 1, 0], equivalent to Mj.

15 15 15
_10F _1oF _10F
T f T f T °f
T [ T [ T [
o 05 o 05 o 05
(=) L o L (=] N
c L f - C -
I [ IS [ I [
0.0 | T Q0 T 0.0
c N o [ c L
S 3 S b S r
® I ® I ® I
505 505 505
2 I 2 I 2 I
£ [ £ £ [

-1.0 | 1.0 1.0

15 B b e 15 ) 1 Lhy 1 S e

1 1.5 2 25 3 3.5 4 1 1.2 1.4 1.6 1.8 2 1 1.1 12 13 14 15
14 14 14
(a) Uniaxial (A = 2) (b) Biaxial (A = 1.4, Ay = 1.2) (c) Shear (A = 1.25)

Fig. 2. Implicit plots of the integral condition (26) for (a) uniaxial, (b) biaxial and (c) shear
loading. The gray area visualize the contour of the admissible integration ranges.
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3.1 Uniaxial Loading

We start from the generalized uniaxial loading with principal stretches:

for which condition (23) becomes:

1 1
— arcsin ?\/ —1414 + 56 < w(ly) < arcsin ?\/—1414 + 56. (26)

The bounded region is shown in Fig. 2(a) in the form of an implicit plot of the bound
condition w = w(I). The internal grey area represents the integration domain where
p1,(I4) has to be computed. In particular, the lower bound coincides with the stability
limit, Iy = 1, while the upper bound is given by I, = \2.

Figs. 3(a-c) visualize the results of the numerical integration of Eq. (24), where w is satu-
rated according to the integral domain defined in Eq. (26). Plots compare the computed
value of py, (1) for the three fiber orientations (5) and three values of the concentration pa-
rameter b. Note that pr, ([) reveals opposite peak for M; and My, whereas more complex
nonlinear trends are observed for Ms.

3.2 DBiazial Loading

Next we consider the generic biaxial loading case with stretches

for which condition (23) reduces to

— arcsin/—1.921, +3.76 < w(ly) < arcsin/—1.92, + 3.76.

Fig. 2(b) visualizes the implicit plot of the bound conditions w = w(ly). Unlike the
uniaxial case, here the whole integration range of w is considered, i. e. /2. In addition
the support of Iy presents lower and upper bounds equal to A3 = 1.44 and \? = 1.96,
respectively, thus excluding both A\3 < 1 and I, = 1.

Figs. 3(d-f) visualizes the results of the numerical integration of Eq. (24) for the three
fiber orientation (5) and for three values of the concentration parameter b. The behaviors
for the biaxial loading (with a marked difference between the two stretches) are rather
similar behaviors to ones corresponding to the uniaxial loading, except for the orientation
M; that reveals a smoother behavior.

11
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3.8  Shear Loading

For the case of simple shear we assign the following principal stretches as

1
)\1 :)\: 125, )\2:1, )\3:X:08,
for which condition (23) becomes
— arcsin \/—1.781, + 2.78 < w(l;) < arcsin /—1.781, + 2.78. (27)

Fig. 2(c) visualizes condition (27), which results as a combination of uniaxial and biaxial
conditions since it is expressed in the principal stretch reference system. In particular, the
w(ly) spans over the whole integration range with lower bound I, = 1 and upper bound
I, = 2. Fig. 3(g-i) visualizes the results of the numerical integration of Eq. (24) for the
three fiber orientation (5) and for three values of the concentration parameter. Also the
resulting pr, (1) mixes the features of uniaxial and biaxial loading.

4 Conclusions

The aim of this work is to derive the probability distribution function of the fourth pseudo-
invariant I, of the deformation gradient by means of the random variable procedure in-
troduced in [31] and within the general spectral decomposition framework [32].

The methodology is general and applicable to soft biological collagen-reinforced tissues
characterized by the local presence of either three-dimensional or planar distributions of
the collagen fibers [33], that can be found in several organs, e.g., the human cornea.

The framework allows to derive in analytical form the statistical structure of I, inherited
from the probabilistic distribution of the collagen orientation, and to apply the stability
condition to exclude contracted fibers. The results provide a sound theoretical basis for the
development of new material models, apt to describe the behavior of biological tissues and
suitable to be used in efficient computational algorithms in the view of patient-specific
applications in biomechanics. The interest in the development of these models derives
mainly from the need of extremely reliable models to be used in the prediction of the
outcomes of refractive surgery [7].

Future extensions of the present work will deal with compressible material models, such to
avoid restrictions of the principal stretches relations. The inclusion of inelastic phenomena
associated to the fiber distribution, e. g. growth, remodeling and active dynamics, can
be straightforwardly incorporated holding the spectral statistical framework that can be
further generalized to multiphasic heterogeneous media.

12
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Fig. 3. PDFs of the fourth pseudo-invariant, pr, (I4), under different loading condition, visualized
for three mean directions of the fiber distribution, M,M5, and M3, and for three values of
the dispersion parameter b, corresponding to by = 0.1, isotropic distribution, b2 = 2, highly
dispersed distribution, and b3 = 10 transversely anisotropic distribution (cf. Eq. (24)). (a-c)
Uniaxial loading. (d-f) Biaxial loading. (g-i) Shear loading.
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A Application to a uniaxial tensile deformation

We consider an incompressible material characterized by a transversely isotropic distribu-
tion of fibers with mean direction M = e3 and apply a homogeneous uniaxial deformation
)\3 =X

M] =[0,0,1]7,  [F] = diag[A\"/2, A71/2 )] (A1)

A generic unit vector N with components
[N] = [sin(©) cos(®), sin(O) sin(®), cos(O)]* (A.2)

is inclined of an angle © with respect to M. This particular choice allows to write the
fourth pseudo-invariant as a function of the sole variable © as

L(6) = A2 + (i - /\2> sin(©)? = i 4 A R L os(0)2. (A.3)

The local stability condition for Eq. (A.3) has been explicitly derived in [31]. For the
particular case A > 1 the stability condition reads

0 <O <arccos ——— U 7 — arccos ©<m, for ©€|0,2n] (A4)

— <
1T+ A+ A2 L+ A+~

Because of the symmetry of the arccos function, we can define the PDF in the reduced
range © € [—7/2,7/2]. Under this condition, Eq. (A.4) reduces to

1
—arccos ———— < 0 < arccos

Vitare = NS el

The close-form of pr,(I4) can be readily derived, i.e.:

) | M, — 1
o L b (25 —1]. A6
pr,(1y) NI4\/)\3—1\//\]4—18XP[ ( A3_1> ] (A.6)

An useful application of the closed form statistics of 14 is the following.
When dealing with the generalized von Mises PDF, pg ¢ (6, ¢), it is necessary to evaluate
the averaged generalized structure tensor H as (cf. [30])

T /2
H-— / / ,Po:a(0,)Asin i, (A7)
0 —7/2

When the generic orientation N defined in Eq. (2) is used, the six independent components
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of H read

/2
11 —/ / ) po.o(0 81n39c082¢d9d¢
/2

/2
Q19 —/ / y pe.s(0, ¢)sin® §sin ¢ cos ¢ dfde
/2

/2
Qg = / / po.a(0,®)sin® O sin® ¢ dfdg

/2

w/2
Qo3 = / / pe.a(0,®) sin®  cos  sin ¢ dOde

/2

w/2
Q33 = / / pe,( ¢) cos® §sin 0 dfd¢

w/2

w/2
13 —/ / y pe,s(0 ¢) sin’ 0 cos 0 cos ¢ dOde
/2

When the model specializes to transversely isotropic fiber distributions, i. e., pe ¢ (0, ¢) =
pe(0)ps(d) = pe(0)/2m, it is possible to assume the direction V3 as preferred direction
ay, cf. [24]. In this case the tensor H assumes the well known diagonal form H,, where

app =ap =K, az3=1—-2k, ap=o03=ay3=>0

with
_ 1/”%(9) sin*0do .
4 Jo

Similarly, for the variance model proposed in [26], it is necessary to introduce an additional
coefficient & defined as

N .5
= 16/0 pe(0)sin®ddb .

Remark To provide the applicability of our generalized approach in the case of trans-
versely isotropic fiber distributions, it is important to denote the preferred direction ag in
a different way with respect to [24]. In fact, the particular spectral decomposition used in
this approach requires to name the principal stretches in decreasing order A\ > Ay > A3.
Thus, to model the application of a uniaxial stretch in the preferred direction of the fibers,
the averaged generalized second order structural tensor H must be derived by considering
the distribution of the fibers around the principal direction V;. In a transversely isotropic
framework, this means considering a distribution uniform with respect to the angle © and
a von Mises-like distribution for the angle ®. These assumptions allow the derivation of
the generalized structure tensor H = Hg and of their integral coefficients.

According to (A.1), the closed-form statistics of I allow to calculate directly the integral
coefficients k and /. In particular, for transversely isotropic distributions the coefficients
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are given by

AT — 22)
R = m s (A8a)
XM = N30 — N2+ 02)
K = 8()\34_ 1>2 4 (A8b)

The functional dependence of the integral coefficients x and & on I} and o7 ., respectively,
is visualized in Fig. A.1 for a given value of A = 1.2. Plots highlight a linear relation
between k and I in the range of admissible values [0.333,0], as well as between # and
o7, Note that & assumes negative values for large o7 .

35F 02} 14=1.0
0.3 : - 14=1.1
3 i — 14=1.2
030 0.0 — 14=1.3
025:__ B — 4=1.4
0.20 Kk 02
K g
0.15 F |
g 0.4
0.10 F [
0.05 06
0'00;—1‘H‘IHHIHHIHHIH 4 b by b b b
1.0 141 12 13 14 00 05 10 15 20 25 3.0
" 2
I gy,
(a) (b)

Fig. A.1. Functional dependence of x on I} and & on 0%4, cf. Egs. (A.8a)-(A.8b), respectively,
for A = 1.2 and different values of I.

Remark For transversally isotropic distributions, the s plot corresponds to the one re-
ported in [31]. Interestingly, the derivation of pr, (1) allows to compute the integral coef-
ficients of the average structure tensors H, H by simple integration of pr, (14).

Remark The coefficients x and & coincide with the original ones proposed in [24] and
[26], respectively, only if N is oriented as in Eq. (A.2) and F is as in Eq. (A.1). In general,
the relation can be only written in integral form.
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