
 

 

 

 

MATHICSE 

Mathematics Institute of Computational Science and Engineering 

School of Basic Sciences - Section of Mathematics  

 EPFL - SB - MATHICSE (Bâtiment MA) 
Station 8 - CH-1015 - Lausanne - Switzerland 

 

 
http://mathicse.epfl.ch 

Address: 
 

Phone: +41 21 69 37648 
 

 
 

 
Multi space reduced basis  

preconditioners for large-scale 
parametrized PDEs 

 
Niccolo Dal Santo, Simone Deparis, Andrea Manzoni, Alfio Quarteroni  

  

MATHICSE Technical Report 
Nr. 32 .2016 

August 2016 (New 22.05.2017) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://mathicse.epfl.ch/


 



Multi space reduced basis preconditioners for large-scale

parametrized PDEs

N. DAL SANTO1, S. DEPARIS1, A. MANZONI1, A. QUARTERONI1,2

May 22, 2017

1 CMCS, École Polytechnique Fédérale de Lausanne (EPFL),
Station 8, 1015 Lausanne, Switzerland.

2Mox-Laboratory for Modeling and Scienti�c Computing, Department of Mathematics, Politecnico di
Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy (on leave).

Abstract

In this work we introduce a new two-level preconditioner for the e�cient solution of large scale
linear systems arising from the discretization of parametrized PDEs. The proposed preconditioner
combines in a multiplicative way a reduced basis solver, which plays the role of coarse component, and
a "traditional" �ne grid preconditioner, such as one-level Additive Schwarz, block Gauss-Seidel or block
Jacobi preconditioners. The coarse component is built upon a new Multi Space Reduced Basis (MSRB)
method that we introduce for the �rst time in this paper, where a reduced basis space is built through the
proper orthogonal decomposition (POD) algorithm at each step of the iterative method at hand, like the
�exible GMRES method. MSRB strategy consists in building reduced basis (RB) spaces that are well-
suited to perform a single iteration, by addressing the error components which have not been treated yet.
The Krylov iterations employed to solve the resulting preconditioned system targets small tolerances
with a very small iteration count and in a very short time, showing good optimality and scalability
properties. Simulations are carried out to evaluate the performance of the proposed preconditioner in
di�erent large scale computational settings related to parametrized advection di�usion equations and
compared with the current state of the art algebraic multigrid preconditioners.

1 Introduction

The repeated solution of parametric partial di�erential equations (PDEs), that is, PDEs depending on a
vector of parameters, is computationally challenging. When using a high-�delity numerical approximation
method based on Galerkin or Petrov-Galerkin projection on a subspace Vh of dimension Nh (see e.g. [40])
we end up with a parametrized linear system of the form

Ah(µ)uh(µ) = fh(µ), (1)

where uh(µ), fh(µ) ∈ RNh are Nh-dimensional vectors and Ah(µ) ∈ RNh×Nh is the sti�ness matrix; µ ∈
D ⊂ Rp is a vector of p parameters describing physical and/or geometrical properties of the model. Solving
such a problem for a huge number of parameter instances is essential when dealing with sensitivity analysis,
uncertainty quanti�cation for problems with random input data or PDE-constrained optimization. However,
this may become a critical issue because of the extensive CPU time required by each query to the high-
�delity solver. The solution of the high-�delity problem (1) indeed depends on the dimension Nh of the
high-�delity space, which can be of order 106 to 1010 in some extreme cases.

Problem (1) is usually solved by means of suitable preconditioned iterative methods, such as the pre-
conditioned conjugate gradient (CG) or the preconditioned GMRES (see e.g. [42, 51, 57]) methods, whose
cost per iteration is comparable to a matrix-vector multiplication; if suitably preconditioned, these meth-
ods provide scalable and optimal solvers. In general, a vast choice of preconditioners is currently available
for many classes of problems: notable examples are domain decomposition (DD), see e.g. [43, 56, 54], or
multilevel (ML) preconditioners, see e.g. [51, 54, 55]. However, these classical techniques do not generally
take advantage of the parametric dependence of the PDE. Taking advantage of storing repeated solutions
to similar systems can enhance e�ciency in such a context. For instance, several Krylov-subspace recycling
approaches have been introduced [50] to handle sequences of linear systems arising, e.g., from parametrized,
time-dependent and/or nonlinear PDEs. The strategy consists in augmenting the usual Krylov subspace
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with data retrieved from previous cycles (in the case of restarted algorithms) or solves (in the case of prob-
lems with both varying matrices and right hand sides). For instance, the �rst contributions in this �eld
made use of the whole Krylov subspaces of previous solutions of linear systems, see e.g. [26, 45, 46, 48],
yielding however a severe computational and memory e�ort, especially when the problem features a large
dimension and a slow convergence. Consequently, research has focused on truncation methods that select
a limited number of (signi�cant) linear combinations of Krylov vectors. For the solution of a single linear
system of equations, in [19, 20] the authors propose optimal truncation strategies of the GCR (generalized
conjugate residual) method (GCRO), while in [34, 14, 24] de�ation techniques to �nd an approximation of
the eigenvectors associated to the extremal eigenvalues are employed. These techniques have been extended
to the case of a sequence of linear systems with varying right hand sides in [52], where a de�ated version of
the CG algorithm is presented, and in [38] where the GCRO method is combined with de�ated restarting
for sequences of linear systems where both matrices and right hand sides vary.
Krylov subspace methods have been exploited in the context of reduced order modeling (ROM) to deal
with sequences of single linear systems in [5] and in the iterative rational Krylov algorithm (IRKA) for se-
quences of dual linear systems in [1]. More recently, proper orthogonal decomposition (POD)-ROM has been
successfully employed in [13] to truncate the augmented Krylov subspace and retain only the high-energy
modes. This technique, suited for linear systems with symmetric matrices, allows to compute e�ciently
inexact (yet, very accurate) solutions. Although relying on reduced order modeling, the approach
we propose in this paper exploits low-dimensional subspaces to build e�cient preconditioners to speed up
the solution of problems as (1), where both the matrix and the right hand side depend on the parameter
µ. More speci�cally, we do not augment the Krylov subspace for the solution of any linear system; rather,
we propose a new preconditioner which exploits ROM techniques to build an accurate coarse correction to
speed up the solution of the iterative solver. Projection- and interpolatory-based ROM techniques have been
extensively used in the past decade to construct e�cient and accurate low-rank solvers for the solutions of
large-scale parametrized systems, for an in-depth discussion see e.g. [41, 29, 2, 6] and references therein. In
this work we employ the Reduced Basis (RB) method as particular case of ROM technique.

The RBmethod emerged as one of the most successful reduced order modeling paradigms for parametrized
PDEs, and has been employed for multi-query problems such as input/output evaluations, sensitivity anal-
ysis, uncertainty quanti�cation, PDE-constrained optimization, see e.g. [30, 53] and references therein. It
has been successfully applied to elliptic problems, see e.g. [53, 39] and then extended to saddle-point [47],
nonlinear [32, 33, 21, 22, 17], optimal control problems [37, 36], just to mention a few classes of problems
in the context of time-independent PDEs. Given µ ∈ D, the RB method seeks an approximation of the
high-�delity solution uh(µ) ≈ VuN (µ) in a reduced space VN ⊂ Vh that is spanned by a set of N basis
functions given by linear combinations of high-�delity solutions corresponding to di�erent instances of pa-
rameters uh(µi), i = 1, . . . , N, where N � Nh. From an algebraic standpoint, after orthonormalizing of
the RB functions, VN can be represented by a matrix V ∈ RNh×N , V = [ξ1| . . . |ξN ], whose columns are
orthonormal with respect to a prescribed scalar product. Finally, system (1) is replaced by a smaller one

VTAh(µ)VuN (µ) = VT fh(µ), (2)

with uN (µ) ∈ RN being the reduced solution, obtained by performing a projection onto the subspace VN .
We can introduce the reduced arrays, obtained from the corresponding high-�delity arrays, as

AN (µ) = VTAh(µ)V ∈ RN×N , fN (µ) = VT fh(µ) ∈ RN . (3)

Then, the reduced problem becomes

AN (µ)uN (µ) = fN (µ). (4)

The corresponding high-�delity representation of the RB solution uN (µ) can be expressed as

VuN (µ) = VA−1
N (µ)fN = VA−1

N (µ)VT fh(µ) ≈ uh(µ). (5)

We remark that the high-�delity system (1) is large and sparse, whereas the reduced system (4) is small
dense; usually the latter is solved using direct methods, since N � Nh. Indeed, it is well-known that in
many situations the RB method provides an exponential decay of the approximation error with respect to
the dimension N of the RB space; however, the decay ratio is considerably a�ected by the parametrization of
the problem (both in terms of number and nature of parameters), the regularity of the parameter-to-solution
map, the physical nature of the problem and, ultimately, the Kolmogorov n-width of the solution manifold,
an intrisic property of the problem. For instance, advection-di�usion problems where the advection is highly
variable because of the µ-dependence, and possibly dominant, may yield to a slower decay of the error with

2



respect to N .
Another key factor required for RB e�ciency is the a�ne parameter dependence of both operators and data
(see Appendix A, equation (57)). If these assumptions are not veri�ed, an approximated a�ne decomposi-
tion, up to a certain tolerance, must be recovered through proper techniques which could heavily limit the
accuracy or the e�ciency of the RB method.

The aim of this work is to present a new class of two-level preconditioners for parameter dependent
linear systems as (1) arising from the numerical approximation of second order elliptic PDEs, with focus on
advection-di�usion (AD) problems. Our preconditioners are constructed upon the combination of the RB
method, which plays the role of coarse component, and a �ne preconditioner, e.g. Gauss-Seidel, Jacobi or
one-level additive Schwarz preconditioners. Very few attempts to link RB and preconditioning techniques
have been made so far: some works have proposed ad hoc preconditioning techniques for reduced systems
arising from the RB method, see e.g. [16] in the case of the reduced collocation method when dealing with
PDEs with random input data or [23] in the case of the Galerkin RB method. Concerning the precondi-
tioning of parametrized linear system, remarkable e�orts have been devoted to preconditioning strategies
for shifted linear system. At �rst, these techniques compute a preconditioner for the unshifted high-�delity
matrix, and then they suitably modify it for the shifted matrix. This has proven to be particularly helpful
when employing time-advancing schemes with adaptively chosen time steps, see [4, 7, 27]. More recently,
techniques to deal with sequences of (not necessarily shifted) linear systems, which compute approximate
inverse (AINV) preconditioners by interpolation, have been developed in [8]. Furthermore, in [58] a precon-
ditioner for the parametrized high-�delity problem (1) which relies on an interpolation of the matrix inverse
based on a pre-computed basis of matrix inverses corresponding to selected values of the parameter has been
introduced. This latter method stores the basis of inverted matrices as exact factorizations, thus yielding a
huge amount of storage memory, and is computationally e�cient only for relatively small problems. Finally,
in [31], a low-rank tensor approximation of uh(µ) has been exploited to present low-rank tensor variants of
short-recurrence Krylov subspace methods.

Alternatively to the techniques above, the preconditioners we propose in this paper combine in a multi-
plicative way existing preconditioners on the given (�ne) �nite element mesh with a coarse RB solver. The
former guarantees the nonsingularity of the resulting preconditioner, whereas the latter can be regarded as
a coarse correction built upon the RB method meant to boost the convergence of Krylov iterations. The
RB problems must be small in order for their solution to be computationally cheap; to take the best ad-
vantage from the ROM, we rely on a sequence of RB spaces which are iteration-dependent, thus leading to
a procedure that involves the construction of several RB spaces. In particular, the k-th space is trained on
the error equation corresponding to the k-th iteration of the iterative method, up to a prescribed tolerance
δRB,k. We refer to this (new) approach as Multi Space Reduced Basis (MSRB) preconditioning method.
We then show that an iterative method for the large-scale linear system preconditioned with the MSRB
preconditioner requires very few steps to achieve any desired target tolerance, since at every step the error
equation is solved approximately, yet with high accuracy.

We point out that, when dealing with parameter-dependent linear systems, classical preconditioners may
have performances which di�er according to the value of the parameter, e.g. in advection-di�usion problems
when, for certain values of the parameter, the model is advection-dominated or includes a strong anisotropy
e�ect. On the other hand, the use of RB coarse components built upon the parametrized problem at hand
(and trained on the whole parameter range) allows to gain robustness across the whole parameter space,
meaning that the preconditioner e�ciency is almost constant for all parameter values .

The coarse component built upon the RB method depends essentially on the underlying physical prob-
lems, and it is shown to be independent of the size of the high-�delity discretization. For this reason,
employing a parametrized preconditioner allows to solve system (1) very rapidly for any new parameter
instance, even for problems with a large number of degrees of freedom. As iterative solvers for problem (1),
we �rst employ a Richardson iteration, and then adapt the method to the �exible GMRES (FGMRES).
In particular, we employ the former to analyze the properties of the preconditioner and show how the RB
method enters into play, whereas FGMRES is meant to provide a very e�cient tool to tackle large scale
problems arising from real applications.

In the numerical tests presented in this work, we compare the iteration counts and the computational
times provided by our MSRB preconditioner with the ones obtained by relying on an algebraic multigrid
preconditioned Krylov method and the ML-preconditioned GCRO-DR method (both built from the Belos
and ML package of Trilinos, [28]) for advection-di�usion problems. We show that the MSRB preconditioner
is a valuable option in some relevant and involved modeling and numerical settings, namely when the
problem is advection-dominated and/or includes anisotropy, or when the high-�delity dimension Nh is very
large, up to several millions.

The structure of the paper is as follows. In Section 2 we present the class of problems we deal with,
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and how to build a MSRB preconditioner, motivating the introduction of an approach involving several
RB spaces for the Richardson method and detailing the properties of the resulting preconditioner; then we
extend the MSRB preconditioner to the case of the FGMRES methods. In Section 3 we test the MSRB
preconditioner on 3D problems governed by second-order advection-di�usion equations, reporting results
for several modeling and numerical settings; �nally, in Section 4 we draw some conclusions and possible
extensions. In the Appendix A we report a review of the classic RB method, which is meant to provide a
basic background to those readers less-acquainted with this topic.

2 Multi space RB preconditioners for parametrized PDEs

In this paper we focus on parametrized linear elliptic second-order PDEs. Let us denote by D ⊂ Rp, p ≥ 1,
the parameter space and by µ ∈ D a parameter vector encoding physical and/or geometrical properties of
the problem. Our goal is to solve a parametrized PDE which under weak form reads as: given µ ∈ D, �nd
u = u(µ) ∈ V = V (Ω) such that

a(u(µ), v;µ) = f(v;µ) ∀v ∈ V, (6)

being Ω ⊂ Rd, d = 1, 2, 3, a regular domain and V = V (Ω) a Hilbert space. We further assume that for
any µ ∈ D, a(·, ·;µ) is a bilinear, continuous and coercive form, and f(·;µ) a linear and continuous form.
Under these hypotheses, the Lax-Milgram lemma (see e.g. [40]) ensures the existence and uniqueness of a
solution to problem (6), for any µ ∈ D.

Solving problem (6) requires the use of suitable numerical approximation techniques, here called high-
�delity (or full order) approximations, providing a discretized solution which is close to the exact solution
up to a (controllable) discretization error. Examples are the �nite element (FE) method [10, 25, 40] and
spectral methods [11, 40]. All these approaches are built upon the use of a �nite dimensional space Vh ⊂ V ,
with dim(Vh) = Nh, and require to �nd an approximate solution uh(µ) to (6) by solving the following
Galerkin problem: given µ ∈ D, �nd uh(µ) ∈ Vh such that:

a(uh(µ), vh;µ) = f(vh;µ) ∀vh ∈ Vh, (7)

which can be equivalently expressed as (1) in algebraic form.
Our goal is to exploit the RB method to build e�cient preconditioners for the iterative solution of (1)

featuring uniform performances in the parameter space.

2.1 Multi space RB preconditioners

In this section, we �rst detail the construction of the preconditioner to be used for Richardson iterations;
this is primarily done for methodological and theoretical purposes, since it allows to amenably derive the
method and compute theoretical estimates. Consequently, we turn our attention to the FGMRES method
in section 2.2.

2.1.1 Preconditioning the Richardson method

Given two matrices Q1 = Q1(µ), Q2 = Q2(µ) ∈ RNh×Nh , a multiplicative Richardson iteration for the
system (1) can be expressed as{

u(k−1/2)(µ) = u(k−1)(µ) + Q1(µ)r(k−1)(µ),

u(k)(µ) = u(k−1/2)(µ) + Q2(µ)r(k−1/2)(µ), k = 1, 2, . . .
(8)

where u(k) = u(k)(µ) is the µ−dependent iterate at the step k, and r(k) = r(k)(µ) is the corresponding
high-�delity residual of the Richardson method

r(k)(µ) = fh(µ)−Ah(µ)u(k)(µ), k = 1, 2, . . . .

Equations (8) can be equivalently formulated as a single iteration

u(k)(µ) = u(k−1)(µ) + Q(µ)r(k−1)(µ), k = 1, 2, . . . , (9)

where Q(µ) in (9) is de�ned as

Q(µ) = Q1(µ) + Q2(µ)−Q2(µ)Ah(µ)Q1(µ). (10)
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If Q(µ) is non singular, (9) can be regarded as a Richardson iteration, with acceleration constant equal to
1, for the preconditioned system

Q(µ)Ah(µ)uh(µ) = Q(µ)fh(µ), (11)

where the preconditioner is Q−1(µ).
The main idea of our approach is to exploit a standard two level domain decomposition approach relying

on a RB solver as coarse (low-rank) component. Therefore, an intuitive choice for the Richardson method
(8) would be to take

Q1(µ) = P−1
h (µ), Q2(µ) = VA−1

N (µ)VT , (12)

where Ph(µ) ∈ RNh×Nh is a nonsingular matrix which plays the role of �ne preconditioner, which can be
chosen among all existing preconditioners, and VA−1

N (µ)VT is the RB coarse component.
However, we have experienced that the convergence rate of (8) is not faster than the one obtained by

setting Q2(µ) = 0 (i.e. just using Ph(µ) as preconditioner) and taking the RB solution VuN (µ) as initial
guess u(0)(µ). Indeed, determining

Q2(µ)r(k−1/2)(µ) = VA−1
N (µ)VT r(k−1/2)(µ) (13)

can be reinterpreted as the approximate solution of the error equation

Ah(µ)e(k−1/2)(µ) = r(k−1/2)(µ), (14)

through the RB method, where e(k−1/2) = e(k−1/2)(µ) = uh(µ) − u(k−1/2)(µ). In other words, by
computing the quantity in (13), we are implicitly seeking an approximation of e(k−1/2)(µ) in the RB space
VN , that is, expressed as a linear combination of basis functions obtained from snapshots of the high-�delity
problem (1). The main issue related with this approach is that the employed ROM (i.e. the RB space VN )
is tailored only for equation (1), while we are trying to use it to solve approximately equation (14), which
features the same sti�ness matrix Ah(µ) but a di�erent right hand side. Therefore, the space VN is not
well suited to approximate the solution of problem (14), yielding a very poor numerical approximation of
the error, as con�rmed by numerical experiments.

We thus introduce at each step k a new RB space that is trained on equation (14), and where a better
approximation of e(k−1/2)(µ) can be found. Since the error highly depends on the iterate k, it makes sense
to introduce a di�erent RB space VNk

at every iteration k, generated by high-�delity solutions of problem
(14), that is

VNk
= span

{
e(k−1/2)(µj)

}Nk

j=1
, (15)

where e(k−1/2)(µj), j = 1, . . . , Nk are the errors at the (k−1/2)-th iteration, computed for (properly chosen)
instances of the parameters µj , j = 1, . . . , Nk. Following the standard RB method, we can construct the
matrices

Vk = [ξk1 | . . . |ξkN ], ANk
(µ) = VT

kAh(µ)Vk, (16)

where {ξkj }
Nk
j=1 denotes an orthonormalized basis for VNk

, and write the MSRB-preconditioned Richardson
iterations as {

u(k−1/2)(µ) = u(k−1)(µ) + P−1
h (µ)r(k−1)(µ)

u(k)(µ) = u(k−1/2)(µ) + QNk
r(k−1/2)(µ), k = 1, 2, . . . ,

(17)

where QNk
(µ) = VkA

−1
Nk

(µ)VT
k . The formulation (17) leads to

u(k)(µ) = u(k−1)(µ) + QMSRB,k(µ)r(k−1)(µ), k = 1, 2, . . . , (18)

where the matrix QMSRB,k = QMSRB,k(µ) (replacing Q(µ) in (9)) is now

QMSRB,k(µ) = P−1
h (µ) + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
, (19)

and can be regarded as a multiplicative combination of P−1
h (µ) and QNk

(µ).
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Given the error e(k−1/2)(µ), its RB approximation onto VNk
is de�ned by e

(k−1/2)
Nk

(µ) ∈ RNk such that

e
(k−1/2)
Nk

(µ) = A−1
Nk

(µ)VT
k r

(k−1/2)(µ), (20)

and we highlight that its high-�delity representation Vke
(k−1/2)
Nk

(µ) ∈ RNh is computed in (17) as

QNk
(µ)r(k−1/2)(µ) = VkA

−1
Nk

(µ)VT
k r

(k−1/2)(µ) = Vke
(k−1/2)
Nk

(µ). (21)

In this setting, we take as initial guess the (standard) RB approximation u(0) = u(0)(µ) = V0A
−1
N0

(µ)VT
0 fh(µ),

and set VN0
= VN , i.e. the �rst RB space is the one provided by the standard RB method. The subsequent

spaces VNk
, k ≥ 1, aim at damping those components of the error that have not been cured by the previous

RB iterations and cannot be addressed by the application of Ph(µ); they are therefore directly constructed
on the error equation (14).

2.1.2 Nonsingularity of the resulting preconditioner

We show in this section that the matrix QMSRB,k(µ) is invertible. Given a subspace W ⊂ RNh such
that dim(W ) = M and a basis {wj}Mj=1 such that W = span{wj , j = 1, . . . ,M}, we denote by W⊥

the orthogonal complement of W and by W ∈ RNh×M , W = [w1, . . . ,wM ], the matrix of basis vectors.
Moreover, given any nonsingular matrix B ∈ RNh×Nh , we de�ne the following spaces

BW =
{
x ∈ RNh : B−1x ∈W

}
=
{
x ∈ RNh : x = Bz, z ∈W

}
,

BW⊥ =
{
x ∈ RNh : B−1x ∈W⊥

}
=
{
x ∈ RNh : x = Bz, z ∈W⊥

}
.

We remark that RNh = BW ⊕BW⊥, because of the nonsingularity of B.

Lemma 2.1. Let W be aM -dimensional subspace of RNh , {wj}Mj=1 a basis thereof and W = [w1, . . . ,wM ] ∈
RNh×M . Moreover, let B be a nonsingular Nh×Nh matrix and assume that WTBW is nonsingular. Then
the following implication holds:

x ∈ BW and WTx = 0 ⇒ x = 0. (22)

Proof. We take x ∈ BW such that WTx = 0 and show that it must be x = 0. By de�nition of BW ,
B−1x = WzM for some zM ∈ RM . Thanks to the nonsingularity of B, we obtain

0 = WTx = WTBB−1x = WTBWzM .

As WTBW ∈ RM×M is invertible, zM = 0. Finally, we have

0 = WzM = B−1x,

which implies x = 0 thanks to the nonsingularity of B.

In the following we employ Lemma 2.1 by taking W = VNk
, B = Ph(µ), W = Vk in order to prove that

QMSRB,k(µ) is nonsingular. To this aim, we de�ne

V
Ph//
Nk

=
{
x ∈ RNh : P−1

h (µ)x ∈ VNk

}
, V Ph⊥

Nk
=
{
x ∈ RNh : P−1

h (µ)x ∈ V ⊥Nk

}
.

Theorem 2.1. For any µ ∈ D, assume that Ph(µ) ∈ RNh×Nh is a nonsingular matrix such that the matrix
VT
kPh(µ)Vk is nonsingular. Then the matrix QMSRB,k(µ) is nonsingular.

Proof. We want to prove that if QMSRB,k(µ)x = 0, then it must be x = 0. Since any x ∈ RNh can be

expressed as x = x//+ x⊥, where x// ∈ V
Ph//
Nk

, x⊥ ∈ V Ph⊥
Nk

, we �rst compute the result of the application of
QMSRB,k(µ) on x//:

QMSRB,k(µ)x//= P−1
h (µ)x//+ QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x//

Being x//∈ V
Ph//
Nk

, we can write P−1
h (µ)x//= VkzN (µ) for some zNk

(µ) ∈ RNk , yielding

QMSRB,k(µ)x//= VkzN (µ) + QNk
(µ)x//−QNk

(µ)Ah(µ)VkzN (µ) = QNk
(µ)x//, (23)
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since QNk
(µ)Ah(µ)VkzN = VkA

−1
Nk

(µ)VT
kAh(µ)VkzN = VkzN . As of the component x⊥, we have

QMSRB,k(µ)x⊥ = P−1
h (µ)x⊥ + QNk

(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x⊥,

which leads to

0 = QMSRB,k(µ)x = QNk
(µ)x//+ P−1

h (µ)x⊥ + QNk
(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
x⊥. (24)

By rewriting equation (24) as follows

QNk
(µ)
(
x//+ x⊥ + Ah(µ)P−1

h (µ)x⊥

)
= −P−1

h (µ)x⊥, (25)

we can notice that the left hand side is an element of the space VNk
, whereas the right hand side is an

element of its orthogonal complement V ⊥Nk
, so that the only way these two elements are equal is when they

are both zero. Being P−1
h (µ)x⊥ = 0, the nonsingularity of Ph(µ) yields x⊥ = 0, allowing us to rewrite

equation (25) as

0 = QNk
(µ)x//= VkA

−1
Nk

(µ)VT
k x//. (26)

The columns of Vk being linearly independent, equation (26) yields

0 = A−1
Nk

(µ)VT
k x//, (27)

which, thanks to the non singularity of the RB matrix ANk
(µ), see Appendix A, implies

VT
k x//= 0. (28)

Finally, by applying Lemma 2.1 with W = VNk
, W = Vk and B = Ph(µ), we obtain that x//= 0, and thus

the thesis.

Now, since the matrix QMSRB,k(µ) is invertible, we can de�ne the MSRB preconditioner as

PMSRB,k(µ) = Q−1
MSRB,k(µ). (29)

The MSRB preconditioner PMSRB,k(µ) resulting from the combination of Ph(µ) and QNk
(µ), leads to

the generation of a k-dependent RB space (hereon also called level) VNk
. At each iteration k, we seek an

approximation of the error e(k−1/2)(µ) in VNk
. Each VNk

, k = 0, 1, . . . is associated to a pair (Nk, δRB,k);
Nk identi�es the number of basis functions in the space VNk

(and therefore its dimension) and δRB,k is the
tolerance prescribed to construct the space VNk

, e.g. with a greedy algorithm or the POD method, see e.g.
[41]. In particular, in this work we employ the POD for the purpose of space construction, see Appendix
A for further details. In analogy with the standard RB method, the MSRB preconditioner can be split in
an o�ine and an online stage. In the former we construct the reduced structures that are needed by the
algorithm (17), which is then employed in the latter to solve problem (1) for any new parameter instance.

Remark 2.1. The assumption that the matrix VT
kPh(µ)Vk to be nonsingular is fairly mild. For example

it is satis�ed for any matrix Ph(µ) such that xTPh(µ)x 6= 0 for any x 6= 0. This is indeed the case for the
classical preconditioners, like Jacobi, Gauss-Seidel or Additive Schwarz preconditioners.

2.1.3 Convergence results

In this section we prove a priori estimates of the error and the residual decay for the Richardson method
(17). For the ease of notation, hereon we omit the µ−dependence and denote by INh

the identity Nh ×Nh
matrix.

Proposition 2.1. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy the following relation

‖e(k−1/2) −Vke
(k−1/2)
Nk

‖ ≤ δk‖e(k−1/2)‖ k = 1, . . . , L, ∀µ ∈ D, (30)

for given tolerances δk for k = 1, . . . , L. Moreover, let the assumption of Theorem 2.1 be satis�ed. Then
the following estimate holds:

‖e(k)‖ ≤ Ckδ‖e(0)‖, k = 1, . . . , L, ∀µ ∈ D, (31)

with C =
∥∥∥INh

−P−1
h (µ)Ah(µ)

∥∥∥ and δ =
∏k
j=1 δj.
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Proof. We consider equations (17). The error e(k) = uh − u(k) at iteration k can be computed as

e(k) =
(
INh
−QNk

Ah

)
e(k−1/2) = e(k−1/2) −Vke

(k−1/2)
Nk

,

where the equation (21) has been used. Then∥∥∥e(k)
∥∥∥ =

∥∥∥(INh
−QNk

Ah

)
e(k−1/2)

∥∥∥ ≤ δk∥∥∥e(k−1/2)
∥∥∥

= δk

∥∥∥(INh
−P−1

h Ah

)
e(k−1)

∥∥∥ ≤ δk∥∥∥INh
−P−1

h Ah

∥∥∥∥∥∥e(k−1)
∥∥∥.

By proceeding recursively we obtain (31).

A similar result holds for the residuals of the Richardson method.

Proposition 2.2. For any vector norm ‖ · ‖, let the spaces VNk
k = 1, . . . , L satisfy the following relation

‖r(k−1/2) −AhVke
(k−1/2)
Nk

‖ ≤ δk‖r(k−1/2)‖ k = 1, . . . , L, ∀µ ∈ D. (32)

and given tolerances δk for k = 1, . . . , L. Moreover, let the assumption of Theorem 2.1 be satis�ed. Then
the following estimate holds:

‖r(k)‖ ≤ Ckδ‖r(0)‖, k = 1, . . . , L, ∀µ ∈ D, (33)

with C =
∥∥∥INh

−P−1
h Ah

∥∥∥ and δ =
∏k
j=1 δj.

Proof. We consider equations (17). The residual at iteration k can be computed as

r(k) =
(
INh
−AhQNk

)
r(k−1/2) =

(
INh
−AhVkA

−1
Nk

VT
k

)
r(k−1/2) (34)

= r(k−1/2) −AhVke
(k−1/2)
Nk

.

Thanks to (32) we obtain∥∥∥r(k)
∥∥∥ =

∥∥∥(INh
−AhQNk

)
r(k−1/2)

∥∥∥ ≤ δk∥∥∥r(k−1/2)
∥∥∥

= δk

∥∥∥(INh
−AhP

−1
h

)
r(k−1)

∥∥∥ ≤ δk∥∥∥INh
−AhP

−1
h

∥∥∥∥∥∥r(k−1)
∥∥∥.

By proceeding recursively we end up with (33).

Remark 2.2. We underline that the hypothesis (30) of Proposition 2.1 holds only for a training set Ξtrain ⊂
D when the space VNk

are constructed, for instance, relying upon a greedy algorithm with a prescribed
tolerance δk = δRB,k on the error and ‖ · ‖ = ‖ · ‖Yh

, where Yh is a symmetric positive de�nite matrix used
to orthonormalize the reduced basis functions. On the other hand, the hypothesis (32) holds for Ξtrain ⊂ D if
we build the spaces VNk

upon a weak greedy algorithm with a prescribed tolerance δk = δRB,k on the residual
and ‖ · ‖ = ‖ · ‖Y−1

h
. If we employ POD with a prescribed tolerance δRB,k and the norm ‖ · ‖Yh

for the sake

of space construction (see Appendix A), neither hypothesis (30) or (32) hold, even if they are assessed from
a numerical standpoint. In fact, by solving the reduced problem relying on these reduced space provides an

approximate solution e
(k−1/2)
Nk

whose corresponding relative error ‖e(k−1/2) −Vke
(k−1/2)
Nk

‖Yh
/‖e(k−1/2)‖Yh

and residual ‖r(k−1/2) −AhVke
(k−1/2)
Nk

‖Y−1
h
‖/r(k−1/2)‖Y−1

h
are of the order of δRB,k.

Propositions 2.1 and 2.2 state that the error e(k)(µ) and the residual r(k)(µ) of the Richardson method
decay as the product of the tolerances δRB,j , j = 0, 1, . . . used to build the reduced spaces. If we employ a
stopping criterion based on the relative residual for the Richardson method

• this means that, given a tolerance εr, it reaches convergence at iteration m such that

‖rm(µ)‖2
‖fh(µ)‖2

≤ εr, (35)

• we must build the RB spaces VN0
, . . . , VNk

, such that

δ =

k∏
j=0

δRB,j ≤ εr. (36)
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In other words, we require that the combination of all RB spaces yields an error which is lower than or
equal to the target tolerance εr of the Richardson method.

In the algorithm we propose, we employ POD to build the basis for each reduced space. The construction
of the spaces is performed recursively: at �rst we choose ns values of the parameter

{
µi
}ns

i=1
and compute

the snapshots
{
uh(µi)

}ns

i=1
as the high-�delity solutions of (1) for µ = µi, i = 1, . . . , ns. Following the

standard RB method, we build upon them the �rst space VN0
by performing POD on this set of snapshots.

With the aim of building the subsequent spaces, we express the solution of problem (14) as follows:

e(k−1/2)(µi) = uh(µi)− u(k−1/2)(µi) = e(k−1)(µi)−P−1
h (µi)r

(k−1)(µi) ∀ i = 1, . . . , ns. (37)

Then, given the spaces VN0
, . . . , VNk

, we compute the snapshots errors
{
e(k+1/2)(µi)

}ns

i=1
through the re-

lation (37), and construct the space VNk+1
space by performing POD on those snapshots. We highlight

that the construction of the k-th space, employing equation (37), does not require to solve any additional
linear system. In order to design our algorithm, a POD approach has been preferred to a (weak) greedy
approach because of the intrinsic nona�nity of P−1

h (µ), that appears in relation (37). Indeed, a (weak)
greedy algorithm would build the reduced space relying on a fast evaluation of the error (or a residual-based
a posteriori error bound) for a large number of o�ine parameters in a training set Ξtrain, typically computed
with Nh-independent routines. On the other hand, computing the error or the residual for the equation (37)
requires Nh-dependent operations, which would yield extremely huge o�ine costs for each µ ∈ Ξtrain. Re-
lying on a POD approach makes the proposed technique also feasible in view of more involved applications
(e.g. nonlinear problems) where residual-based a posteriori error bounds are not available.

Regarding the choice of the tolerances δRB,k, k = 0, 1, . . . , (and, consequently, of the number Nk, k =
0, 1, . . . , of basis functions) for each RB space, we can follow two approaches:

• �xed space accuracy: we build each RB space prescribing the same tolerance δRB , i.e. δRB,k =
δRB , k = 0, 1, . . . ;

• �xed space dimension: we build each RB space prescribing the same space dimension N , i.e. Nk =
N, k = 0, 1, . . . .

Since we need to construct a su�ciently large number of spaces such that inequality (36) is satis�ed, in the
former approach we shall implicitly �x the number of spaces larger than dlog(εr)/ log(δRB)e, which however
may lead to a huge number of RB functions employed at each RB space. In the latter, instead, we are not
limiting the number of spaces. The detailed algorithms corresponding to these two approaches are reported
in Algorithms 1 and 2, respectively. In Section 3 we report results for both these approaches. Once the
spaces VNk

, k = 0, 1, . . . , L − 1 have been generated, it is possible to solve the high-�delity system (1) by
Richardson iterations (17), which are expected to converge in less than L iterations. However, since POD
does not explicitly provide any error bound depending on δRB,k, the number of iterations may in practice
exceed L, in which case one can choose either to reuse the space VNL−1

, or to drop the second step of (17)
for the remaining iterations.

Algorithm 1 MSRB - Fixed Accuracy

1: procedure MSRB-fixedAccuracy(
{
µi
}ns

i=1
, εr, δRB)

2: Set the number of RB spaces L = dlog(εr)/ log(δRB)e
3: Compute the high-�delity solutions

{
uh(µi)

}ns

i=1
and set S = [uh(µ1), . . . ,uh(µns

)]
4: Build the basis V0 = POD(S, δRB)
5: for k = 1, . . . , L− 1 do
6: Compute new snapshots e(k−1/2)(µi) = e(k−1)(µi)−P−1

h (µi)r
(k−1)(µi)

7: Set S = [e(k−1/2)(µ1), . . . , e(k−1/2)(µns
)]

8: Build the new basis Vk = POD(S, δRB)
9: end for

10: end procedure

2.2 Multispace RB preconditioners for �exible GMRES

In the previous Section, our MSRB preconditioner has been built over a Richardson iteration mainly for
illustrative reasons. In order to use a more e�cient Krylov iterative method, we opt instead for the �exible
GMRES method, FGMRES [49], since the MSRB preconditioner changes at each iteration. Indeed, the
(classical) preconditioned GMRES algorithm does not ensure convergence in the case the preconditioner
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Algorithm 2 MSRB - Fixed Dimension

1: procedure MSRB-fixedDimension(
{
µi
}ns

i=1
, εr, N)

2: Compute the high-�delity solutions
{
uh(µi)

}ns

i=1
and set S = [uh(µ1), . . . ,uh(µns)], k = 0

3: while
∏
k

δRB,k > εr do

4: Build the new basis Vk = POD(S, N) and set k = k + 1
5: Compute new snapshots e(k−1/2)(µi) = e(k−1)(µi)−P−1

h (µi)r
(k−1)(µi)

6: Set S = [e(k−1/2)(µ1), . . . , e(k−1/2)(µns)]
7: end while

8: end procedure

changes at every iteration, while its �exible variant allows to precondition the system with an iteration-
dependent operator. For ease of presentation, we report in Algorithm 3 the version of this method taken
from [51].

Algorithm 3 Flexible GMRES (as formulated in [51])

1: procedure FGMRES(A, b, u0,
{
Mk

}
k
,m)

2: Compute r0 = b−Au0, β = ‖r0‖2, and v1 = r0/β
3: for k = 1, . . . ,m do

4: Compute zk = M−1
k vk

5: Compute w = Azk
6: for j = 1, . . . , k do
7: hj,k = (w,vj)
8: w = w − hj,kvj
9: end for

10: Compute hk+1,k = ‖w‖ and vk+1 = w/hk+1,k

11: De�ne Zm = [z1, . . . , zm], H̃m = {hj,k}1≤j≤k+1; 1≤k≤m
12: end for

13: Compute ym = arg min
y∈Rm

‖βe1 − H̃my‖2 and um = u0 + Zmym

14: If satis�ed Stop, else set u0 ← um and GoTo 2.
15: end procedure

In Algorithm 3, the preconditioner employed at iteration k is denoted by Mk. Since its inverse is applied
to the k-th element of the Krylov basis vk, we infer that Mk is generally used to �nd an approximation of
ck, which is de�ned as the solution of the following problem:

Ack = vk. (38)

Indeed, if by any chance M−1
k vk = A−1vk, we have that FGMRES converges to the exact solution. In the

MSRB case, we have Mk = Mk(µ) = PMSRB,k(µ), meaning that the action of its inverse on vk can be
computed as

M−1
k (µ)vk = P−1

h (µ)vk + QNk
(µ)
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 1, 2, . . . . (39)

To �nd the right problem for training the k-th RB space, we note that in equation (39) the reduced
component of PMSRB,k is applied to the vector

(
INh
−Ah(µ)P−1

h (µ)
)
vk. In order to suitably precondition

the FGMRES method, the k-th RB space must therefore be trained to solve the following problem

Ah(µ)y(k)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
vk, k = 1, 2, . . . , (40)

yielding a RB space of the form

VNk
= span

{
y(k)(µi)

}Nk

i=1
, k = 1, 2, . . . , (41)

where y(k)(µi) is the solution of equation (40) with µ = µi.
Following a similar argument to the one used for the Richardson method in Section 2.1, and exploiting

the expressions of the Krylov basis given in Algorithm 3, we can �nd an explicit formula for the basis of
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the RB space k. The most suitable initial guess is the solution of the reduced basis system, we therefore set
u(0)(µ) = V0A

−1
N0

(µ)VT
0 fh(µ), which yields

r0(µ) = fh(µ)−Ah(µ)u(0)(µ), β(µ) = ‖r0(µ)‖2, v1 = r0(µ)/β(µ). (42)

Following (40), the �rst preconditioner M−1
1 (µ) must e�ectively precondition the problem

Ah(µ)y(1)(µ) =
(
INh
−Ah(µ)P−1

h (µ)
)
v1 =

1

β(µ)

(
INh
−Ah(µ)P−1

h (µ)
)
r0(µ),

whose true high-�delity solution y1(µ) has the following form:

y(1)(µ) = A−1
h (µ)

(
INh
−Ah(µ)P−1

h (µ)
)
v1 =

1

β(µ)
A−1
h (µ)r0(µ)−P−1

h (µ)v1

=
1

β(µ)
A−1
h (µ)

(
fh(µ)−Ah(µ)u(0)(µ)

)
−P−1

h (µ)v1

=
1

β(µ)
A−1
h (µ)

(
Ah(µ)uh(µ)−Ah(µ)u(0)(µ)

)
−P−1

h (µ)v1

=
1

β(µ)

(
uh(µ)− u(0)(µ)

)
−P−1

h (µ)v1.

We now proceed by induction, supposing to have built our preconditioner up to step k, and show how to
build the (k + 1)-th step. Following (40), y(k+1)(µ) must have the form

y(k+1)(µ) = A−1
h (µ)vk+1 −P−1

h (µ)vk+1, (43)

where vk+1 is the (k + 1)-th Krylov basis, that we can express through Algorithm 3 as

vk+1 =
1

hk+1,k

(
Ah(µ)M−1

k vk −
k∑
j=1

hj,kvj

)
k = 1, 2, . . . ,

thus yielding

y(k+1)(µ) =
1

hk+1,k

(
M−1

k (µ)vk −
k∑
j=1

hj,kA
−1
h (µ)vj

)
−P−1

h (µ)vk+1 k = 1, 2, . . . .

Finally, recalling that zk = M−1
k vk, and expressing A−1

h (µ)vk = y(k)(µ) + P−1
h (µ)vk from Equation (43)

computed at step k, we generate the recursive formula
β(µ) = ‖fh(µ)−Ah(µ)u(0)(µ)‖2,
y(1)(µ) = 1

β(µ)

(
uh(µ)− v1

)
−P−1

h (µ)v1,

y(k+1)(µ) = 1
hk+1,k

[
zk(µ)−

k∑
j=1

hj,k
(
y(j)(µ) + P−1

h (µ)vj
)]
−P−1

h (µ)vk+1, k ≥ 1.

(44)

The practical construction of the spaces (41) is handled similarly to the case of the Richardson method:
we �rst compute the high-�delity solutions for a set of parameters

{
µi
}ns

i=1
, then we iteratively build the

snapshots of the errors {y(k)(µi)}ns
i=1 following relations (44) and then perform POD on this set of snapshots.

Again, we highlight that the construction of the snapshots only involves the solution of the high-�delity
problem for the step k = 0. Compared to the Richardson case, the snapshots of the k-th step depend on
the snapshots obtained at all the previous steps, hence requiring a (slightly) higher data storage during the
o�ine stage.

3 Numerical experiments

In this section we present the results of numerical experiments related to several test cases governed by
advection-di�usion (AD) equations to investigate the performance of the preconditioner developed so far.
We �rst focus on a pure di�usion problem showing piecewise constant, parameter dependent di�usivities
modeling a heat conduction problem across di�erent materials. In the second test case we turn our attention
to a parametrized advection di�usion equation describing the dynamics of a solute in a blood �ow. We show
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results for the FGMRES method, for which we take into account both the �xed accuracy and �xed dimension
approaches for constructing the RB spaces. On the other hand, results with the Richardson method are
not reported for the sake of information synthesis, since similar conclusions can be drawn. In all the tests
POD is performed with respect to the scalar product induced by the symmetric positive de�nite matrix Yh,
that represents the H1

0 (Ω) scalar product on Vh, see Appendix A. In each case, we use a stopping criterion
for FGMRES based on the Euclidean norm of the FE vector of the residual, rescaled with respect to the
Euclidean norm of the right hand side, with a tolerance that has been set to εr = 10−7 for all test cases.
On the other hand, we compute the RB spaces to ful�ll (36) with δ = 10−9. This is necessary because the
optimality of POD is recovered only on the sum of the snapshots, see Appendix A. Moreover, since each
RB space is suited for a particular iteration up to iteration L − 1, when the number of iterations required
to reach the prescribed tolerance εr exceeds the number of RB spaces, the �nal iterations employ the last
RB space as coarse correction, i.e. PMSRB,k(µ) = PMSRB,L−1 ∀k ≥ L.

As �ne preconditioner, we employ Ph(µ) = PBJ(µ), a Block Jacobi preconditioner, where each block
represents the restrictions to the degrees of freedom of a subdomain. The subdomains are selected by
Parmetis1 at the mesh level. This allows to reduce communication costs for the preconditioner both in the
construction and the application phases.

For all the simulations we report the number of RB spaces L and RB functions Nk, k = 0, 1, . . . produced
by either Algorithm 1 or 2, the results obtained online with the MSRB preconditioner averaging on Nonl =
250 parameters chosen randomly and di�erent from the ones used to construct the RB spaces. Finally, the
number of snapshots ns and the computational time toff required by the o�ine phase are reported for each
simulation.

All our experiments have been carried out using LifeV2 [9] on the cluster Piz-Daint provided by the
Swiss National Supercomputing Center (CSCS) on a Cray XC40 machine.

3.1 Test case 1: di�usion in a blockwise cubic domain

We consider a parametrized di�usion problem in a blockwise cubic domain, including anisotropy e�ects
on the di�usion tensor. This class of problems represents a challenge for the standard RB method when
the problem features a nona�ne dependence on the parameter µ; as a matter of fact, in this case it is
necessary to recover an approximated a�ne dependence, which may however hamper the e�ciency and/or
the accuracy of the RB method.

3.1.1 Problem setting

Given Ω = (0, 1)3 ⊂ R3, such that ∂Ω = ΓD ∪ ΓN with
◦
ΓD ∩

◦
ΓN = ∅, we subdivide it into J subregions

Ωj , j = 1, . . .J s.t. Ω̄ = ∪Jj=1Ω̄j and
◦
Ωi ∩

◦
Ωj , i 6= j. More precisely we set J = 4 and subdivide Ω

such that
◦
Ω1 = (0, 1) × (0, 0.5) × (0, 0.5),

◦
Ω2 = (0, 1) × (0, 0.5) × (0.5, 1),

◦
Ω3 = (0, 1) × (0.5, 1) × (0, 0.5),

◦
Ω4 = (0, 1)× (0.5, 1)× (0.5, 1). Let us consider the following parametrized PDE:

−∇ · (K(µ)∇u(µ)) = f(µ) in Ω

u(µ) = 0 on ΓD,
∂u(µ)
∂n = 0 on ΓN ,

(45)

where the di�usion tensor is K(µ) = K(x;µ) = ν(x)diag(1, 1, 10−2), and ν(x) > 0 is the piecewise constant
material property on each Ωj :

ν(x) =

{
νj if x ∈ Ωj , j = 1, . . . ,J − 1

1 if x ∈ ΩJ .
.

We consider as source term the following parameter dependent function

f(µ) = f(x;µ) = σ +
1

σ
exp

(‖x− y0‖2

σ

)
, (46)

a Gaussian rescaled function centered in y0 ∈ Ω, shifted and squeezed of a factor σ > 0.
Problem (45) is parametrized with respect to the di�usion coe�cients νj , j = 1, . . . ,J − 1, the coordinates

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
2www.lifev.org
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y0 and the scaling factor σ, leading to the 7-dimensional parameter vector:

µ = (ν1, . . . , νJ−1,y0, σ) ∈ D = [0.1, 1]J−1 × [0.4, 0.6]3 × [σmin, 0.5] ⊂ R7, (47)

where σmin > 0. The localized (in space) parametrized nature of f(µ), together with the varying di�usion
coe�cients yield a problem which is challenging from the parameter viewpoint, as it is hardly solvable
accurately by the standard RB method.
For the sake of simplicity, we consider homogeneous Dirichlet and Neumann boundary conditions, although
the whole framework can be easily adapted to the case of nonhomogeneous (parametrized) boundary con-
ditions in a straightforward way. Moreover, in all simulations, we employ linear piecewise continuous FE
tetrahedrals on structured meshes as high-�delity discretization. Examples of solutions obtained for di�erent
values of parameters, are reported in Fig. 1.

(a) µ = (0.1, 0.1, 0.1, 0.4, 0.4, 0.4, 0.05) (b) µ = (1, 1, 1, 0.6, 0.6, 0.6, 0.5) (c) µ = (1, 0.5, 1, 0.5, 0.5, 0.5, 0.2)

Figure 1: Example of solutions with a null Neumann condition on x = 1.

3.1.2 Analysis with respect to the mesh size

We carry out a �rst analysis with respect to three di�erent grids whose characteristic dimensions are
h = 0.05, 0.025, 0.0125, leading to dimensions Nh = 365′254, 2′887′193 and 22′767′295, respectively, for
the high-�delity FE approximation. We choose σ ∈ [0.25, 0.5] and construct the RB spaces by POD with
ns = 750 snapshots. These simulations have been carried out with 96, 768, 6144 processors, respectively, in
order to maintain a constant number of degrees of freedom (about 3800) per processor. The meshes have
been partitioned in subdomains (independently from the subregions identifying the material properties) by
using Parmetis3. We compare the results with those obtained using an algebraic multigrid preconditioner
PML(µ) from the Trilinos ML package [28], which exploits an exact coarse component and 2-sweeps Gauss-
Seidel smoother and with the GCRO-DR Krylov subspace recycling method proposed in [38], where PML(µ)
is again used as preconditioner, for sequences of linear systems with varying matrices and right hand sides.
The latter method combines the optimal truncation strategy of GCRO [20] with de�ation employed in
GMRES with de�ated restarting, GMRES-DR [34]. Both techniques are obtained with default settings
from the Trilinos library.
The results are reported in Tab. 1, 2. The computational time employed online to solve the linear system
(1) using PMSRB,k as preconditioner for the new instances of the parameter is not highly impacted by the
FE dimension, since the number of RB coarse components and their dimensions are not signi�cantly a�ected
by changing the FE dimension. Indeed, the online computational time tMSRB and the number of iterations
are always lower than the ones obtained either by PML(µ) (tGML) or GCRO-DR (tGCRO-DR), for both the
�xed dimension and the �xed accuracy approaches. Moreover, we notice that the MSRB preconditioner
built with the �xed accuracy approach features a faster online solution and a less expensive o�ine phase
than the one built with the �xed dimension approach. The larger the FE dimension, the more expensive
the o�ine phase, regarding in particular the computational time for snapshots computation tns , while the
time devoted to POD, tPOD, is less a�ected. Also in terms of memory requirements, the �xed accuracy
approach (entailing the storage of about 1050 FE vectors to build the RB spaces for the problem at hand)
is less demanding than the �xed dimension approach ( 1400 FE vectors). These requirements make data
storage related to our preconditioners heavier than the one required by the ML preconditioner, although
this latter is used only for a single-instance of the parameter, if no updating or recycling techniques are

3http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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employed. Nevertheless, compared to the standard RB method, the number of FE vectors stored by our
preconditioners is of the same order.
In Tab. 1, 2 we report the break-even point (BEP), i.e. the number of online evaluation needed to repay
the o�ine phase, which is a decreasing function of the FE dimension. In Fig. 2a and 2b the speedup
obtained with respect to using the most convenient between PML(µ) and GCRO-DR technique and the
break-even point (BEP), i.e. the number of online evaluation needed to repay the o�ine phase, are reported
as function of the FE dimension. The greater the FE dimension, the higher the speedup and the lower the
break-even point. In the case with Nh = 22′767′295 both PML(µ) and GCRO-DR perform very poorly due
to the very large FE dimension and the corresponding huge communication costs; in particular the latter
succeeds in recycling the Krylov subspace in reducing the time of about 10%. On the other hand, the MSRB
preconditioner relies on embarrassingly parallel �ne and coarse components, and the linear system (1) is
solved by the MSRB preconditioned FGMRES up to 70 (resp. 50) faster than either PML(µ) or GCRO-DR
and 1067 (resp. 1240) online evaluations are required to reach the break-even point for the �xed accuracy
(resp. �xed dimension) approach. This is the case for applications involving, e.g., sensitivity analysis or
uncertainty quanti�cation.

Table 1: Grid analysis FGMRES �xed accuracy, L = 3, δRB,k = 0.001, ∀k, ∼ 3800 dofs per CPU.

Ncpu Nk tMSRB(It) tGML(It) tGCRO-DR(It) toff tns tPOD BEP
96 49 296 725 0.34 (5) 0.59 (28) 0.48 (28) 1161.21 1071.66 89.55 4606
768 48 279 721 0.46 (9) 1.91 (41) 2.29 (38) 2872.27 2746.07 126.20 1989
6144 49 269 713 0.75 (12) 55.73 (54) 49.98 (53) 56768.20 56486.86 281.34 1067

Table 2: Grid analysis FGMRES �xed dimension, Nk = 100 ∀k, ∼ 3800 dofs per CPU.

Ncpu L tMSRB(It) tGML(It) tGCRO-DR(It) toff tns tPOD BEP
96 15 0.43 (13) 0.59 (28) 0.48 (28) 4546.21 4390.47 155.74 28448
768 14 0.68 (25) 1.91 (41) 2.29 (38) 6775.94 6597.13 178.81 5517
6144 13 1.19 (40) 55.73 (54) 49.98 (53) 65437.90 64951.30 486.60 1240
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Figure 2: Test case 1: Speed up and break-even point (BEP) as function of Nh.

3.1.3 Comparison with the standard RB method

A natural question arising in this context is about the comparison, in terms of both accuracy and e�ciency,
between the proposed approach (MSRB preconditioning) and the classical RB method. In this latter case,
the solution of system (1) is approximated by the one of the RB problem (4). In this section we compare
the results obtained with the standard RB method and the FGMRES Krylov method preconditioned with
the proposed MSRB preconditioner, showing results for the FE grid with Nh = 2′887′193.
At �rst, we notice that the function (46) nona�nely depends on the parameter µ, leading to a nona�ne right
hand side fh(µ) in (1). The nona�ne dependence of the operators is one of the most limiting bottleneck of
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the standard RB method, as it does not allow to uncouple the RB arrays from the FE dimension and gain the
maximum speed up with respect to the high-�delity simulation. Consequently, the Empirical Interpolation
Method (EIM) [3], or its discrete variants DEIM and MDEIM [15, 35], should be used to construct an
approximated a�ne decomposition. In our case, we employ the DEIM algorithm [15], see Appendix A, to
deal with the nona�ne right hand side. This is approximated as linear combination of properly chosen
DEIM basis functions up to a certain tolerance δdeim, which is plugged in the DEIM algorithm. It is well
known that on one hand the tolerance δdeim limits the accuracy of the RB approximation and, on the other
hand, it may yield a huge overhead in the online phase due to a (possibly) large number of DEIM basis
functions. This is indeed the case of (46) due to the localized (in space) nature of the source term.
We employ the POD-DEIM-RB method with di�erent DEIM tolerances δdeim = 10−1, 10−3, 10−5, 10−7 and
values of σmin = 0.1, 0.05, 0.01, while we build the RB space through POD algorithm by setting a tolerance
of εPOD = 10−9 for all the tests. We choose a number of snapshots equal to ns = 1000 for σmin = 0.1,
ns = 2000 for σmin = 0.05 and ns = 3500 for σmin = 0.01. In Fig. 3a, we report the average relative
residual, which is de�ned as

rRB =
‖fh(µ)−Ah(µ)VuN (µ)‖2

‖fh(µ)‖2
, (48)

evaluated over Nonl = 250 online parameters. The results show that the accuracy of the RB method is
strongly hampered by the tolerance δdeim provided to the DEIM algorithm. In order to obtain a satisfactory
accuracy it is compulsory to use a small δdeim. Moreover, we observe from Fig. 3a that from a certain point
the residual stagnates to a the value 10−5 even if a smaller δdeim has been provided. In Fig. 3b the wall
time employed to assemble and solve the RB problem is reported for the di�erent values of σmin employed.
The total time is largely a�ected by the value of σmin and by the number of DEIM basis functions: the
smaller the tolerance of the DEIM algorithm, the bigger the wall time required to compute the RB solution
(even up to 18.66 s for σmin = 0.01 and δdeim = 10−7). In Fig. 4a, 4b and 4c we measure the computational
wall time distinguishing the di�erent phases of building and solving the corresponding RB problem online
for σmin = 0.1, 0.05, 0.01, respectively. The large wall time required by small DEIM tolerances is caused
by assembling the RB right hand side. The huge number of DEIM functions and the communication
needed to compute the coe�cients Θ̃q

f , q = 1, . . . , Qf in (58) yield an extremely expensive assembling phase
which largely a�ects the computation. The detail of the computations are reported in Tab. 3, 4 and 5
for σmin = 0.1, 0.05, 0.01, respectively. tfN (µ), tAN (µ) and tsolve correspond to the average time needed to
assemble the RB right hand side, the RB matrix and to solve the RB linear system, respectively, while tonl

is the sum of these three stages. tDEIM corresponds to the time needed to run the DEIM algorithm o�ine,
i.e. build the DEIM basis composed of Mf functions, tRB the time to compute the snapshot and run the
POD to build N RB basis functions and toff is the sum of the two.
On the contrary, in the FGMRES preconditioned with the MSRB preconditioner, an approximated a�ne
decomposition of the right hand side is not needed, since we solve the full FE problem. In Tab. 6 the
results obtained setting a �nal relative tolerance for the FGMRES equal to 10−7 are reported for the �xed
dimension approach. For σmin = 0.1, 0.05, 0.01, we have set Nk = 180, 300, 600, respectively. In all cases
the algorithm has built L = 13 RB spaces. The total time needed to solve the FE system (reaching an
accuracy on the relative residual of 2 orders of magnitude lower than in the standard RB case) ranges from
1.0 to 1.6 seconds. The case σ ∈ [0.01, 0.5] is more costly than the other two since the RB coarse corrections
are more expensive due to the bigger dimension of the RB spaces (Nk = 600). Hence, the total o�ine
time toff is larger than the one for the standard RB method, due to the larger number of PODs and the
necessity to build the snapshots errors with (44). This is, however, highly repaid during the online phase,
when the FGMRES with the MSRB preconditioner reaches a much more accurate (100 times) result with a
relevant speedup, up to almost 12 times faster of the standard RB method for the case with σ ∈ [0.01, 0.5].
The MSRB-preconditioned FGMRES is therefore a promising technique to deal with challenging nona�ne
problems, since it allows to exploit the parameter dependence overcoming the need to have an accurate
a�ne decomposition of the right hand side.

Table 3: RB results σ ∈ [0.1, 0.5], ns = 1000.

δdeim rRB N Mf tfN (µ) tAN (µ) tsolve tonl tRB tDEIM toff

1.00e-01 8.58e-02 670 5 0.30 0.04 0.04 0.38 7506.60 383.92 7890.52
1.00e-03 2.59e-03 670 33 0.43 0.04 0.04 0.50 7506.60 284.43 7791.03
1.00e-05 6.03e-05 670 94 0.77 0.04 0.03 0.85 7506.60 306.47 7813.07
1.00e-07 3.03e-05 670 196 1.30 0.04 0.03 1.37 7506.60 407.15 7913.75
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Figure 3: Test case 1: relative residual and average wall time as function of δdeim.
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Figure 4: Test case 1: average wall time for online parameters as function of δdeim.

Table 4: RB results σ ∈ [0.05, 0.5], ns = 2000.

δdeim rRB N Mf tfN (µ) tAN (µ) tsolve tonl tRB tDEIM toff

1.00e-01 1.35e-01 1055 8 0.29 0.12 0.11 0.53 16289.37 811.15 17100.52
1.00e-03 2.51e-03 1055 59 0.72 0.11 0.10 0.94 16289.37 765.92 17055.29
1.00e-05 4.95e-05 1055 172 1.77 0.11 0.10 1.98 16289.37 620.45 16909.82
1.00e-07 2.22e-05 1055 341 3.44 0.11 0.10 3.65 16289.37 1272.94 17562.31

Table 5: RB results σ ∈ [0.01, 0.5], ns = 3500.

δdeim rRB N Mf tfN (µ) tAN (µ) tsolve tonl tRB tDEIM toff

1.00e-01 1.98e-01 2143 24 0.86 0.69 0.66 2.21 21983.40 2110.75 24094.15
1.00e-03 3.39e-03 2143 203 3.83 0.64 0.63 5.10 21983.40 1494.40 23477.80
1.00e-05 1.10e-04 2143 562 9.95 0.63 0.60 11.19 21983.40 2369.54 24352.94
1.00e-07 6.52e-05 2143 1060 18.66 0.62 0.59 19.87 21983.40 8820.92 30804.32

Table 6: MSRB results Fixed dimension.

L Nk tMSRB(It) ns toff tns tPOD

σ ∈ [0.1, 0.5] 13 180 1.0458 (22) 1000 13820 12791.51 1028.49
σ ∈ [0.05, 0.5] 13 300 1.0049 (15) 2000 26406.4 23213.01 3193.39
σ ∈ [0.01, 0.5] 13 600 1.5889 (17) 3500 50973.7 40561 10412.7
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3.2 Test case 2: solute dynamics in blood �ow and arterial walls

We investigate here the dynamics of a solute by focusing on the solution of a �uid-wall mass-transport
model which describes the exchange of substances between blood in the lumen and arterial wall. In this
context, the solute is regarded as a passive scalar transported along the artery by the blood, which is
modeled as a Newtonian �uid and governs the exchange of the solute through the stress produced on the
arterial wall. We take into account the so-called steady wall-free model for the absorption of the solute,
[44], which couples the steady Navier-Stokes equations, which describe the velocity and pressure �elds,
with an advection di�usion equation governing the concentration of the solute. This model is parametrized
with respect to the permeability of the arterial wall and the di�usion coe�cient of the solute in the blood,
whereas the concentration of the solute in the wall is considered to be constant. This problem has been
largely addressed and studied in the literature, see e.g. [12, 44] and the references therein for an extensive
description.

3.2.1 The physical model and its FE discretization

We consider an open bounded domain Ωf ∈ R3, such that ∂Ωf = Γw ∪ Γout ∪ Γin. Here, Γw, Γout and Γin
denote the artery wall, the outlet and the inlet, respectively, see Fig. 5a. The physical domain Ωf describes
the carotid bifurcation with an average section radius r = 0.3 cm. We de�ne Cf ∈ [0, 1] as the normalized
concentration of the solute, whose dynamics is governed by the following advection di�usion equation:

−∇ · (νf∇Cf ) + ũ · ∇Cf = 0, x ∈ Ωf

n · (νf∇Cf ) + ξCf = ξkw on Γw

Cf = 1 on Γin

n · (νf∇Cf ) = 0 on Γout,

(49)

where νf is the di�usivity coe�cient of the solute, ξ and kw are the permeability and the concentration
in the arterial wall, respectively. We model the permeability of the wall as ξ = ξ(ũ) = β(1 + τw(ũ)),
being τw(ũ) the wall shear stress (WSS) distribution on Γw, and we choose as vector of parameters µ =
(νf , β) ∈ [5 · 10−5, 5 · 10−2] × [10−4, 10−3]. On the other hand, we �x the value of kw = 0.5 for all the
simulations. The advection �eld ũ = ũ(x) describes the velocity of the blood �ow, and it is governed by the
steady Navier-Stokes (NS) equations corresponding to the systolic peak. As boundary conditions for the NS
equations we set a no-slip condition on Γw, homogeneous Neumann conditions on Γout and a parabolic inlet
velocity, with a peak 22.5 cm s−1, on Γin. Finally we consider a constant kinematic viscosity of the blood
ν = 0.035 cm2s−1. We remark that in our model the NS equations are not parametrized, their solution only
representing a datum for problem (49).

Here we consider the solution of problem (49) for very small values of νf which yield huge Péclet numbers
Pe = |ũ|r

2νf
, and since the standard FE method may lead to oscillations for such convective dominant problems,

we employ a stabilized FE formulation. Hence, contrarily to the Test case 1 described in Section 3.1, where
the weak formulation yielding the high-�delity approximation (1) is straightforward, we report the weak
formulation of problem (49), which reads: �nd Cf ∈ V = V (Ωf ) =

{
v ∈ H1(Ωf ) : v|Γin = 1

}
such that∫

Ωf

(νf∇Cf∇w + ũ · ∇Cfw) +

∫
Γw

ξCfw =

∫
Γw

ξkww, ∀w ∈ H1
Γin

(Ωf ), (50)

where H1
Γin

(Ωf ) =
{
v ∈ H1(Ωf ) : v|Γin

= 0
}
. As high-�delity discretization, we employ a streamline-

upwind/Petrov-Galerkin (SUPG) stabilized FE formulation. To this aim, we introduce a conforming parti-
tion Th of Ωf and the FE space

Xr
h =

{
wh ∈ C0(Ω̄f ) : wh|K ∈ Pr(K)∀K ∈ Th

}
, (51)

where Pr(K) denotes the space of polynomials with degree lower than or equal to r on the element K.
Then, the SUPG-FE formulation reads: �nd Cf,h ∈ Vh = Xr

h ∩ V such that∫
Ωf

(νf∇Cf,h∇wh+ũ · ∇Cf,hwh) +

∫
Γw

ξCf,hwh +
∑
K∈Th

(
ũ · ∇Cf,h −∇ · (νf∇Cf )τK ũ · ∇wh

)
K

(52)

=

∫
Γw

ξkwwh, ∀wh ∈Wh = Xr
h ∩H1

Γin
(Ωf );
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here (·, ·)K denotes the L2(K) scalar product on K ∈ Th, whereas

τK = δS
hK
|ũ|

, (53)

being δS a positive constant and hK the diameter of the element K ∈ Th.
A quantity of interest we are interested to evaluate for di�erent values of the parameters is the Sherwood

number, which measures the non-dimensional mass �ux through the vessel wall, see e.g. [18], and is de�ned
as

Sh =
−2r(∇Cf · n)

Cf,in − kw
,

where r = 0.3 cm is the reference radius of the artery and Cf,in = 1 is the inlet concentration.
Concerning the numerical setting, we employ a mesh with boundary layer, and a P2−P1 FE discretization

for the NS equations, whose resulting velocity �eld is reported in Figure 5c. Concerning the discretization
of equation (52), we analyze the performance of PMSRB,k(µ) with respect to the employment of P1 and P2

FE, resulting in 429'892 and 3'467'673 degrees of freedom, respectively. We are particularly interested in the
case of quadratic (P2) FE because the evaluation of quantities involving the gradient of the concentration,
as the Sherwood number, need a very accurate computation of the derivatives of the unknown. In Fig.6 we
report the Sherwood number obtained for di�erent instances of the parameter: we notice that employing
quadratic FE polynomials can yield signi�cantly more precise values. As in the previous test case, we use a
stopping criterion based on the euclidean norm of the FE residual rescaled with respect to the right hand
side for the iterative method, with a tolerance equal to εr = 10−7.

(a) Physical domain Ωf . (b) Velocity inlet and grid. (c) Velocity �eld.

Figure 5: Physical domain and inlet velocity pro�le with mesh and velocity �eld.

3.2.2 Numerical results with the MSRB preconditioner

We now assess the computational performance of the MSRB preconditioner for the test case 2. We show
results for both �xed accuracy (with δRB,k = 0.001, k = 0, 1, . . . ) and �xed dimension (with Nk = 20, k =

(a) µ = (5 · 10−5, 10−4) (b) µ = (5 · 10−2, 10−3)

Figure 6: Sherwood number distribution for values of the parameter vector.
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0, 1, . . . ) approaches, see Tables 7 and 8, respectively, employing a number of processor Ncpu = 96, 192, 384.
We �rst remark that very similar results are obtained either with the �xed accuracy or the �xed dimension
approach. In both cases, the FGMRES method with the MSRB preconditioner converges in 3 iterations
(or even less), both for P1 and P2 �nite element: employing di�erent FE degrees does not impact on the
dimension of the reduced spaces, and consequently on the time needed for the solution online of the reduced
problems. On the other hand, employing P2 FE has a huge impact on the performances of the PML(µ)
preconditioner: the iteration count is three times higher and the overall computational times largely increase.
Moreover, thanks to the small sizes of the RB spaces, the computational times obtained with PMSRB,k(µ)
in the online phase are mainly governed by the construction of the �ne preconditioner PBJ(µ), which is
embarrassingly parallel, thus yielding a very good overall scalability, see Fig. 7a. Indeed, the computational
time is mainly governed by the LU factorizations of the local matrices in PBJ(µ). On the other hand,
solving the linear system with PML(µ) (and consequently the o�ine phase as it mainly involves snapshots
computation) results in a larger time when using 384 CPUs due to the communication costs of the ML
preconditioner. In Fig. 7b we report the speedup in computational time obtained by employing PML(µ)
and PMSRB,k(µ): increasing the number of processors we solve the problem online up to 14 times faster
than ML in the case of P1 elements and 35 in the case of P2 elements. In this case the break-even point
(BEP) of online evaluations decreases with the number of processors up to about 450 (resp. about 500) for
P2 (resp. P1) elements.

Table 7: Test case 2: results for FGMRES, �xed accuracy approach, ns = 300.

Ncpu L Nk tMSRB (It) tGML (It) toff tns tPOD BEP
P1 96 3 8 22 46 0.12852 (2) 0.35 (57) 260.85 258.37 2.48 1178
P1 192 3 8 22 45 0.0456 (2) 0.34 (62) 185.31 183.16 2.15 619
P1 384 3 8 22 44 0.0282 (2) 0.42 (67) 188.47 186.34 2.13 482
P2 96 3 9 24 50 3.2651 (2) 15.86 (177) 9172.65 9158.77 13.88 729
P2 192 3 9 23 49 1.1635 (2) 9.13 (195) 4935.78 4927.46 8.32 620
P2 384 3 9 23 49 0.4188 (2) 14.12 (401) 5877.46 5872.17 5.29 429

Table 8: Test case 2: results for FGMRES, �xed dimension approach, ns = 300.

Ncpu L Nk tMSRB (It) tGML (It) toff tns tPOD BEP
P1 96 4 20 0.12868 (2) 0.35 (57) 314.01 307.74 6.27 1419
P1 192 4 20 0.04576 (2) 0.34 (62) 208.85 205.67 3.18 698
P1 384 4 20 0.02896 (2) 0.42 (67) 201.1 198.05 3.05 515
P2 96 4 20 3.2818 (3) 15.86 (177) 10391.4 10370.12 21.28 827
P2 192 4 20 1.1689 (3) 9.13 (195) 5363.1 5350.8 12.3 674
P2 384 4 20 0.4264 (3) 14.12 (401) 6095.57 6087.78 7.79 446
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Figure 7: Test case 2: Scalability and speedup as function of the number of processors Ncpu.

4 Conclusions

In this paper we have proposed and analyzed a new two-level preconditioner based on the combination of a
RB coarse component and a �ne preconditioner for large-scale FE problems. In order to gain the maximum
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e�ciency from the reduced order model, instead of employing the standard RB method we have introduced
an iteration-dependent coarse component, which at the k-th step of the iterative method is tailored to solve
the k-th error equation. By employing such a strategy, we are able to tune the decay of the error at each
step of the iterative method. We have �rst proposed the preconditioner and analyzed its properties in
the amenable case of Richardson method; then, we have suitably modi�ed it to accelerate the convergence
rate of FGMRES iterations. We have proposed two approaches for constructing the RB spaces: i) a �xed
accuracy approach, which ensures a constant decay of the error, and ii) a �xed dimension approach, which
instead guarantees a limited number of basis functions for each RB space. We carried out several numerical
tests to verify the performance of the MSRB preconditioner in the case of parametrized advection di�usion
equations, showing that the proposed preconditioner, which is based on the parametrized physical model,
enhances signi�cantly the convergence of the preconditioned iterative method.
We have extensively investigated the performance of the MSRB preconditioner with respect to the grid
size and the FE degree, highlighting a numerical independence of the dimension of the high-�delity space,
due to the use of RB coarse components that are indeed independent of this latter. We have carried out
a comparison with the standard RB method for a problem featuring a nona�ne parameter dependence,
for which the MSRB preconditioner has given better results in less computational time than the standard
RB method. Finally, results show that the MSRB preconditioner is a promising technique, overcoming a
severe computational bottleneck of the RB method, which requires the use of hyper-reduction techniques,
and competitive with AMG and Krylov subspace recycling methods for challenging modeling and numerical
scenarios.

A The reduced basis method for parametrized PDEs

The reduced basis (RB) method relies on the idea that the µ-dependent solution of the Nh × Nh high-
�delity problem (1) can be well approximated by a linear combination of N � Nh high-�delity solutions
corresponding to (suitably chosen) parameter values. We report a a brief overview of the method to make the
paper self-contained and fully understandable to those readers less acquainted with reduced order modeling.

The RB method is based on an o�ine/ online splitting: in the former phase a reduced space VN ⊂ Vh,
whose dimension is N � Nh, is built, algebraically represented by the matrix V ∈ RNh×N , V = [ξ1| . . . |ξN ];
in the latter, the high-�delity problem (1) is replaced by the reduced problem (4) for any new instance of
the parameter µ. For an extensive introduction to the RB method see, e.g., [41, 29]; here we limit ourselves
to recall the most remarkable points of this technique.

The construction of the RB space VN can be performed by means of a (weak) greedy algorithm or
proper orthogonal decomposition (POD). In particular, we recall the de�nitions and basic principles of
the latter, since it is employed in the algorithms we propose. We start by computing ns high-�delity
solutions {uh(µi)}ns

i=1 (called snapshots) corresponding to selected parameter values {µi}ns
i=1. POD then

aims at compressing the snapshots data by �nding the best N -dimensional subspace, with N ≤ ns, that
approximates the space Vns

= span{uh(µi), i = 1, . . . , ns}. This is pursued by performing a singular value
decomposition of the snapshot matrix S = [uh(µ1),uh(µ2), . . . ,uh(µns)], such that Vns = Col(S), and
resulting in a factorization

S = UΣZT ,

where U ∈ RNh×Nh , Z ∈ Rns×ns and Σ ∈ RNh×ns , such that Σii = σi, i = 1, . . . ns, Σij = 0, i 6= j. Then,
the �rst N columns of the matrix U, V = U(:, 1 : N), form an orthonormal basis of a N−th dimensional
subspace of Vh, that is, Col(V) = VN . This space results as the bestN -dimensional approximation subspace,
according to the following Proposition (see e.g. [41])

Proposition A.1. Let VN = {W ∈ RNh×N : WTW = IN} be the set of all N-dimensional orthonormal
bases. Then

ns∑
i=1

‖uh(µi)−VVTuh(µi)‖22 = min
W∈VN

ns∑
i=1

‖uh(µi)−WWTuh(µi)‖22 =

ns∑
i=N+1

σ2
i . (54)

Hence, the RB space VN minimizes the projection error of the snapshots onto the reduced subspace of
dimension N , among all possible N -dimensional subspaces of Vh. The POD method can be generalized to
any matrix-induced norm. Speci�cally, given a symmetric positive de�nite matrix Yh ∈ RNh×Nh , we can
de�ne the scalar product (x,y)Yh

= (Yhx,y)2, x,y ∈ RNh , inducing the norm ‖x‖2Yh
= (x,x)Yh

, and

consider the SVD decomposition of Y1/2
h S. Then, the following proposition holds.
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Proposition A.2. Let VN = {W ∈ RNh×N : WTYhW = IN} be the set of all N-dimensional Yh-
orthonormal bases. Then

ns∑
i=1

‖uh(µi)−VVTYhuh(µi)‖2Yh
= min

W∈VN

ns∑
i=1

‖uh(µi)−WWTYhuh(µi)‖2Yh
=

ns∑
i=N+1

σ2
i . (55)

In other words, the POD method allows to compute the space of dimension N , that minimizes the
Yh-projection error of the snapshots in the Yh-norm. Typically, in the Galerkin RB (G-RB) method
for second-order elliptic PDEs, Yh encodes the H1(Ω) scalar product on the space Vh, that is, (Yh)ij =

(φj , φi)H1(Ω), i, j = 1, . . . , Nh, where
{
φi
}Nh

i=1
denote the FE basis.

From a practical standpoint, POD is performed by solving an eigenvalue problem associated to the
correlation matrix C = STYhS, whose eigenvalues directly provide the singular values squared σ2

i , i =
1, . . . , ns. Through the eigenvectors wi, i = 1, . . . , ns of C one can build a Yh-orthonormal basis

{
ξi
}ns

i=1
of the snapshots subspace Vns

ξi =
1

σi
Swi, i = 1, . . . , ns. (56)

Finally, the reduced space VN ⊂ Vns is built selecting the �rst N eigenvectors, given by the SVD, see [41] for
the details. According to Proposition A.2, constructing the RB space with the �rst N eigenvectors yields a

relative approximation accuracy on the snapshots equal to δ2
RB =

ns∑
i=N+1

σ2
i /

ns∑
i=1

σ2
i .

Therefore, if we aim at building a RB space relying on POD we can follow two approaches:

• POD(S,Yh, δRB): given a target accuracy δRB , we choose the �rst N = N(δRB) columns of U as

basis for the RB space VN , where N is such that
N∑
i=1

σ2
i /

ns∑
i=1

σ2
i ≥ 1− δ2

RB ;

• POD(S,Yh, N): given a �xed dimension N > 0, we select the �rst N vectors.

Depending on the reducibility of the problem at hand, the relation between N and δRB can signi�cantly
vary. Once the RB space has been built, for any new instance of the parameter µ, the high-�delity problem
(1) is replaced by the reduced problem (4) which can be easily assembled and solved inexpensively, usually
with direct methods. We underline that the matrix AN (µ) inherits the properties of Ah(µ), being positive-
de�nite for coercive problems, and therefore nonsingular. We point out that the matrix VA−1

N (µ)VT is the
pseudoinverse matrix of Ah(µ), and approximates exactly A−1

h (µ) on the subspace VN . Indeed, should the
high-�delity solution uh(µ) belong to the reduced space, that is uh(µ) = VuN (µ), it can be recovered as
A−1
h (µ)fh(µ) = uh(µ) = VuN (µ) = VA−1

N (µ)VT fh(µ). However, we generally have uh(µ) ≈ VuN (µ),
that is, uh(µ) does not belong to VN .

A vital assumption that allows to speed up the RB method is made by requiring that Ah(µ) and fh(µ)
depend a�nely on the parameter µ, i.e. that they can be expressed as

Ah(µ) =

Qa∑
q=1

Θq
a(µ)Aq

h, fh(µ) =

Qf∑
q=1

Θq
f (µ)fqh, (57)

where Θq
a : D → R, q = 1, . . . , Qa and Θq

f : D → R, q = 1, . . . , Qf are µ-dependent functions, while the
matrices Aq

h ∈ RNh×Nh and the vectors fqh ∈ RNh are µ-independent. This property is crucial to achieve
the full independence of the assembling of the RB arrays from the size Nh of the high-�delity problem. In
the case (57) is not automatically satis�ed, such a�ne parametric dependence can be recovered through the
use of algorithms based on the empirical interpolation method (EIM) and its discrete variants DEIM and
M-DEIM, see [3, 15, 35], meaning that instead of equations (57) we have

Ah(µ) '
Ma∑
q=1

Θ̃q
a(µ)Aq

h, fh(µ) '
Mf∑
q=1

Θ̃q
f (µ)fqh, (58)

up to a certain tolerance, with Ma and Mf the number of selected basis computed by the corresponding
algorithms. In the case of DEIM (resp. M-DEIM), the basis are again built through POD on a set of
vector (resp. matrix) snapshots, and the coe�cients Θ̃q

f (resp. Θ̃q
a) are computed through an interpolation

problem.
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