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SUMMARY

In this work we describe a machine learning pipeline for facies
classification based on wireline logging measurements. The al-
gorithm has been designed to work even with a relatively small
training set and amount of features. The method is based on
a gradient boosting classifier which demonstrated to be effec-
tive in such a circumstance. A key aspect of the algorithm is
feature augmentation, which resulted in a significant boost in
accuracy.

The algorithm has been tested also through participation to the
SEG machine learning contest.

INTRODUCTION

Facies (i.e., lithofacies) classification consists in assigning a
rock type or class to a specific sample on the basis of mea-
sured features. Classification of different lithofacies is crucial
in seismic interpretation because different rocks have different
permeability and fluid saturation for a given porosity.

The ideal sources for lithofacies classification are core sam-
ples of rocks extracted from wells. Nevertheless, core samples
cannot always be obtained due to associated costs. Therefore,
a method for classifying facies from indirect measurements
(e.g., wireline logs) is necessary.

The conventional method consists in manually assigning litho-
facies by human interpreters and is a very tedious and time
consuming process. Therefore, several alternative approaches
to the issue of facies classification from well data have been
proposed. The first works were based on classical multivari-
ate statistical methods (Wolf et al.| |1982; |Busch et al., [1987).
Later, |Wolf et al.|(1982); Busch et al.|(1987) proposed the use
of neural networks for rock classification (Baldwin et al.,|1990;
Rogers et al.,|1992).

Meanwhile, especially in the last few years, encouraged by the
growth of the so called big data and by the increased com-
putational power, there has been an increasing renewed inter-
est in machine learning techniques. Recently these method-
ologies have been increasingly explored, for different appli-
cations, also by the geophysical community (Smith and Trei-
tel, [2010; [Zhang et al.| [2014; |Zhao et al.| [2015} [Kobrunov and’
Priezzhev, [2016).

In this context |Hall| (2016) proposed a Geophysical Tutorial
where he showed a simple application of machine learning
techniques for facies classification. In particular he used a
small dataset of seven wireline logs and associated interpreted
facies extracted from ten wells of the Hugoton gas field in
southwest Kansas (Dubois et al.;|2007), in order to predict ge-
ologic facies in two additional wells based on wireline mea-
surements. On the same occasion, he announced a machine
learning contest inviting readers to propose alternative solution

for the same task. Results of the machine learning contest are
resumed in a paper written by the organizers (Hall and Hall,
2017) and all submitted code is available onlind*}

In this paper we describe the machine learning pipeline we
used for our submission to the facies classification challenge,
highlighting the main characteristics that enable our method
to achieve promising results. Specifically, our main contribu-
tion, as recognized by the organizers (Hall and Halll 2017),
has been a feature augmentation framework which has been
subsequently used by all top scored teams.

In the following, we first formalize the facies recognition prob-
lem given for the SEG machine learning contest. Next, we de-
scribe the proposed facies classification algorithm. Finally, we
discuss the results and draw our conclusions.

PROBLEM FORMULATION

Well logging is common practice whenever ground stratifica-
tion characteristics must be studied (e.g., preliminary explo-
ration of new fields). Through logging, it is possible to obtain
a detailed description of rock formations at different depth lev-
els by measuring a wide variety of rock properties. From this
premises, the goal of facies classification is to detect the facies
present at a given depth in the ground, from the analysis of a
set of well log measurements obtained at the considered depth
(Halll 2016).

Assuming the same setup presented in the facies classifica-
tion challenge (Hall, 2016) and previous studies (Bohling and
Dubois| [2003; Dubois et al., [2007), we consider that at each
depth d of each well indexed by w, a set of seven scalar at-
tributes is available:

e Gamma ray ( fdc'vli) measures natural formation radioac-
tivity; '
e Resistivity (f gff) measures the subsurface ability to im-

pede the flow of electric current;

e Photoelectric effect ( fg_ ';:v) measures electrons emission
of a facies illuminated by light rays;

e Neutron-density porosity difference ( fygiff) and aver-

age neutron-density porosity ( f;i}vg) are measurements
correlated to facies density;

e Nonmarine/marine indicator ( fgvl\f) is a binary flag at-

tributed by experts to distinguish between marine and
nonmarine facies upon data inspection;

e Relative position ( fiﬁ,) is the integer index of each
layer depth starting from 1 for the top layer, and in-
creasing with depth.

*https://github.com/seg/2016-ml-contest
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Figure 1: Pipeline of the proposed algorithm, highlighting
training and test phases.

Additionally, facies characterizing the layer at depth d of the
w-th well can be one of the following nine ones:

Nonmarine sandstone (SS);
Nonmarine coarse siltstone (CSiS);
Nonmarine fine siltstone (FSiS);
Marine siltstone and shale (SiSh);
Mudstone (MS);

Wackestone (WS);

Dolomite (D);
Packstone-grainstone (PS);

Phylloid-algal bafflestone (BS).
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From the machine learning point of view, this means we can
concatenate the available seven attributes and associate to each
depth and well a feature vector defined as
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Moreover, we can associate to each depth and well a class la-
bel cg,, € {SS,CSiS,FSiS,SiSh,MS, WS, D,PS,BS}, indicat-
ing the facies associated to the layer. We can then define our
set of observations as all tuples

{fd,W7 Cd,w}v d € DW7 we W7 (2)

where W is the set of considered wells and D,, is the set of
considered depths for the w-th well.

With this notation in mind, the problem of facies classification
turns into the problem of estimating a class label ¢, ,, given a
feature vector fy ,,.

FACIES CLASSIFICATION ALGORITHM

The facies classification algorithm we propose in this work fol-
lows the common supervised machine learning pipeline shown
in Figure[T] During training, a set of labeled observations from
controlled wells {f;,y, ¢4}, d € Dy, w € Wigin is used to
learn a function that maps features to class labels. After train-
ing, the classifier can be used to estimate class labels ¢ from
any unlabeled feature vector f coming from new well logs.
In the following we provide details about the proposed algo-
rithm, introducing how the classifier works, and specifying the
feature augmentation strategy we have devised. Finally, we re-
port some additional remarks about post-processing operations
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Figure 2: Example of the geometrical and tree interpretation
of a decision tree classifier.

used to correct some possible misclassification errors. An im-
plementation of the proposed algorithm can be also found on-
lin

Classifier

Many different and complex supervised classification techniques
have been developed through the years [2006). How-
ever, considering that we only have seven independent features
and a limited amount of training data, we decided to rely on
a simpler classification technique. Our algorithm makes use
of a gradient boosting classifier [2000), which is
an ensemble of decision trees (Breiman et all [1984). As a
detailed explanation of this classifier is beyond the scope of
this manuscript and has been deeply treated in the literature

(Bishopl 2006), hereinafter we just provide the reader with

some hints behind its way of working through examples.

Let us consider a simplified scenario in which a feature vec-
tor is composed by two scalar features (i.e., f = [f1, f2]), and
only four different classes (i.e., facies) exist. Figure [2a]shows
an example of feature vectors distribution in the (f1, f>) space,
where different colors represent different classes. In this ex-
ample, it is possible to notice that the (fi,f>) space can be
easily partitioned into four sectors, each one containing only
feature vectors belonging to a different class. During training
step, a decision tree classifier learns a set of thresholds (i.e., 71,
7 and 73 in the example) to partition the space in order to sep-
arate features belonging to different classes. This is typically
done by minimizing some cost-function conveniently defined
(Rokach and Maimon} [2003)) (e.g., misclassification error). To
classify a new feature vector f, it is sufficient to compare its
components f; and f> against the three learned thresholds.
This step can be logically represented as a tree diagram, as
shown in Figure 25 For this reason, this kind of classifiers is

known as decision tree (Breiman et al,[T984).

One of the issues of decision trees, is that they tend to overfit
training data. This means that during training, the classifier
learns a set of thresholds that well separate training data into
classes, but hardly generalize to new data [1998). In or-
der to avoid this effect, several methods have been developed

to merger results from several smaller trees 1995, [1998;
[2000). Among these solutions, gradient boosting
classifier proposed by [Friedman| (2000) works by splitting train-

ing data observations into different subsets. From each subset,
a limited amount of features are selected (i.e., only some ele-

Thttps://bitbucket.org/polimi-ispl
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Figure 3: Example of classes distributions according to real
features.

ments of f) to train a separate decision tree solving a gradient-
based minimization problem. Once a new feature vector f must
be classified, it is first tested against each different tree in the
forest. Each tree provides a candidate label. Results from all
trees are then merged into a single decision ¢.

Feature Augmentation

Despite the simplicity of the example depicted in Figure[2] real
facies are not easy to linearly separate with thresholds in the
feature space. An example of facies distribution in (fOR, fFE)
and (fOR, fNave) spaces is shown in Figure |3l Notice how
colors (i.e., facies) are often mixed together rather than being
separated into clusters. To solve this issue and ease the clas-
sifier’s work, we propose to use some feature augmentation
techniques. This means, generate new features starting from
the available ones, in order to better separate classes into an
augmented feature space. This step was recognized also in
Hall and Hall| (2017) to be of great impact for the facies clas-
sification challenge.

To expand the number of available features, a common tech-
nique is to add some non-linearities. To do so, we compute the
augmented feature vector f&lw applying quadratic expansion to
fdAw as ’

£, =1, =702 R L (R, ®)

where all operations are applied elementwise. Additionally,
we compute the augmented feature vector fg‘w by considering
all second order interaction terms

B = Udn Sass S Taw —Sao fowl @
Given the physical nature of the problem, it is also possible
to exploit some apriori information to further obtain additional
derived features. As a matter of fact, we can consider facies at
neighboring layers to be strongly correlated. In other words,
it is unlikely that facies are randomly distributed underground.
From this reasonable assumptions, we believe that features at
layers d + 1 and d — 1 can help in classifying feature vector at
layer d. From this intuition, we define the augmented gradient
feature vector as

"o fdfl,w 7fd.w

= 5
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where all operations are applied elementwise, and Adepth is
the depth difference in meters between layer d and d — 1.

Once the three augmented feature vectors are computed, we
concatenate all of them, and feed the classifier with the final
feature vector

fd,w:[fd,wv d,,w7 élw] (6)

Notice that, even if some of the augmented features might have
no physical meaning (e.g., gradient of nonmarine/marine in-
dicator), this is not a problem. As a matter of fact, gradient
boosting classifier will take care of non-informative features
by avoiding selecting them for tree creation at training time.

Post-Processing Refinement

Considering that facies at neighboring layers are correlated,
we propose a further classification refinement step based on a
simple post-processing operation. Specifically, let us assume a
set of layers at neighboring depths. If all facies are of one kind
(e.g., SS), and only a single different facies is detected among
these layers (e.g., WS), we can reasonably believe that this
single outlier is due to a misclassification error. To compensate
for this kind of errors, we make use of a median filter applied to
obtained class estimates ¢ ,, for each well in the d dimension.
This removes spurious isolated values and substitute them with
the most present facies in their neighborhood.

EXPERIMENTAL RESULTS

Our experimental campaign has been carried out on the dataset
released for the facies classification challenge described by
Hall| (2016)). This dataset is composed by more than 4000 ob-
servations of labeled well log measurements coming from 10
different wells. For many machine learning problems this can
be considered a small training set.

Concerning the used gradient boosting classifier, we consid-
ered a forest of 100 trees, each one fed with no more than 10
features, and adopted a one-versus-one strategy (Bishop,|20006)
to deal with the multi-class problem (i.e., 9 facies).

As validation protocol, we selected a 10-fold cross-validation
strategy. This means, we select observations from a set W;,in
of 9 wells to train our classifier, then test it on the 10-th remain-
ing well. The training and testing procedure is repeated 10
times shuffling the wells in order to build different sets Wi,in
and test each well once. Results are then averaged over the 10
repeated experiments.

Figure [4a] shows the confusion matrix obtained with the pro-
posed method. Each entry of the confusion matrix indicates the
percentage of observations of a given class (true label) identi-
fied as any class (predicted label). The accuracy value of the
detector can be obtained by averaging diagonal values of the
confusion matrix. A perfect detector would produce a diagonal
confusion matrix.

From these results it is possible to notice that some facies
are actually easier to classify than others. As an example,
it is possible to correctly detect the 77% of bafflestone (BS)
and the 73% of nonmarine coarse siltstone (CSiS). Conversely,
mudstone (MS) is more often identified as wackstone (WS).
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Figure 4: Average confusion matrix obtained through 10-folds
cross validation using (a) or not (b) the proposed feature aug-
mentation strategy.

Nonetheless, marine facies are misclassified for other marine
facies. Accordingly, nonmarine facies are misclassified for
other nonmarine facies. Only rarely it occurs that a marine
facies is confused for a nonmarine one, and viceversa.

For the sake of comparison, we also report in Figure [4b] the
confusion matrix obtained using gradient boosting without the
proposed feature augmentation strategies (i.e., using only the
original 7 feature values provided by the challenge). Notice
that all classes show a drop in performance, as all elements on
the diagonal are lower in this situation than using the whole
proposed pipeline. This confirms the importance of feature
augmentation.

In order to explain why some facies are better recognized than
others, we report in Figure [5] some statistics about how many
observations of each facies are present per well. It is immedi-
ately possible to notice that some facies are represented many
more times than others, thus making the classification prob-
lem strongly unbalanced. In particular, mudstone (MS) is the
facies with less samples in the dataset, thus it is not surprising
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Figure 5: Distribution of facies for 9 wells. Well names are
reported over each plot.

that the classifier did not learned very well how to characterize
it. Conversely, many samples of nonmarine coarse siltstone
(CSiS) are available. Indeed, this is one of the best detected
facies.

Finally, as suggested by (2016), we also evaluated our al-
gorithm in terms of f-score. [Hall and Hall| (2017) declare that
random guess score is around 0.16 due to class unbalancing.
Our algorithm achieves an f-score of 0.61 averaged over the
available 10 folds. This is perfectly in line with the f-score of
about 0.62 we obtained on completely unknown wells accord-
ing to [Hall and Hall (2017), thus confirming the good gen-
eralization capability of the proposed strategy. Moreover, we
computed also the f-score achieved without using feature aug-
mentation. This value is 0.55, thus 6 percentage lower than
using feature augmentation, which again proves paramount.

CONCLUSIONS

In this paper we proposed a machine learning approach to fa-
cies classification problem. The proposed algorithm is based
on a random forest classifier fed with a set of augmented fea-
tures. Results on a set of ten wells validate the proposed ap-
proach, highlighting the positive impact of the developed fea-
ture augmentation strategy. Moreover, results obtained on a
blind test performed by [Hall and Halll (2017) also confirm a
good capability of this algorithm to generalize to new data.

Considering the achieved promising results, future work will
be devoted to the analysis of deep learning strategies for fea-
ture learning and classification (e.g., convolutional neural net-
works). Moreover, we will focus on the possibility of adding
geological constraints to drive classification with the help of
apriori information about rock formation.
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