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A distributed feature selection algorithm
based on distance correlation
with an application to microarrays
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Abstract—DNA microarray datasets are characterized by a large number of features with very few samples, which is a typical cause of
overfitting and poor generalization in the classification task. Here we introduce a novel feature selection (FS) approach which employs
the distance correlation (dCor) as a criterion for evaluating the dependence of the class on a given feature subset. The dCor index
provides a reliable dependence measure among random vectors of arbitrary dimension, without any assumption on their distribution.
Moreover, it is sensitive to the presence of redundant terms. The proposed FS method is based on a probabilistic representation of the
feature subset model, which is progressively refined by a repeated process of model extraction and evaluation. A key element of the
approach is a distributed optimization scheme based on a vertical partitioning of the dataset, which alleviates the negative effects of its
unbalanced dimensions. The proposed method has been tested on several microarray datasets, resulting in quite compact and

accurate models obtained at a reasonable computational cost.

Index Terms—DNA microarrays, Feature selection, Classification, Model selection, Randomized methods, Distance correlation.

1 INTRODUCTION

HE high dimensional nature of bioinformatic data poses
Ta severe challenge on machine learning methods. For
example, microarrays allow to simultaneously measure the
expression levels of a large number of genes, so that the
resulting datasets are characterized by a large number of
features (more than 50 thousand genes) and a very lim-
ited sample size [1]. Most of the genes provide little or
no information useful for classification purposes, and it
is particularly important to detect the smallest subset of
features (referred to as biomarkers), that provide sufficient in-
formation to separate the classes represented in the dataset
(which could distinguish cancerous and noncancerous sam-
ples, or identify different types of cancer [2]). This highly
crucial task is referred to as feature selection (FS), which is
a combinatorial optimization problem aiming at selecting
from a set of available features only the relevant ones, in
order to build a classifier with the required performance.
FS reduces the computational cost of the classifier design
and simplifies its structure, thus facilitating model interpre-
tation and data understanding, and ultimately improving
both accuracy and robustness of the designed classifier [3].
Indeed, the presence of redundant features may adversely
affect the classification accuracy, as they can add more noise
than useful information [4].

The highly unbalanced dimensions of microarray
datasets greatly complicate the FS task, and unsatisfactory
classification performances are often reported with standard
methods [43], [6]. Indeed, large feature vectors significantly
slow down the learning process, since the complexity of
the FS problem grows exponentially with the number of
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features. At the same time, the small number of samples
may cause the classifier to overfit the training data, thus
compromising model generalization [4]. Besides their un-
balanced dimensions, microarray data are often affected by
noise, which further aggravates the analysis. For all these
reasons, specialized FS techniques must be developed to
appropriately handle this type of datasets.

FS methods can be characterized as filter, wrapper or
embedded methods. Filter methods select features based
only on data-related properties, i.e. independently of the
classifier design. Wrapper methods are more costly but
potentially more accurate than filter-based ones, as they
condition the FS process to the performance of the resulting
classifier. Finally, embedded methods combine the benefits
of both explained approaches: a feature screening is initially
performed using a filter-based approach, followed by the
application of a wrapper method to refine the final solution.
In the following we focus on filter methods, which are the
predominant choice in microarray problems. Indeed, the
added cost of classifier design may be significant for large
size problems. In addition, the classifier bias resulting from
the relatively small number of samples can negatively affect
the FS process [7].

Univariate filter methods are a common choice in view
of their computational advantages. These methods are based
on individual feature assessment, i.e. they rank the features
based on their individual capabilities to discriminate among
the classes (see, e.g., [8], [9], [10]). Once the features have
been ranked, the top ones in the ranking are selected. As
interactions among features (in our case, the correlations
among genes) are not taken into account, it is not infrequent
that redundant terms might be selected in this way [11].
Furthermore, features that are individually not significant
are discarded, although they may actually reveal strong
discriminatory power in combination with others [4].
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Multivariate filter methods overcome this problems by
evaluating subsets of features according to some scoring
function. Multivariate methods pose greater complexity
than univariate ones in that, besides requiring a method
to evaluate groups of features, they also involve a search
mechanism in the space of all possible feature subsets.
Regarding the first issue, many works employ correlation-
oriented criteria based on the concept of mutual information
(MI) (see, e.g., [12], [13], [8], [14], [15], [16]). Indeed, the MI
between the features and the output reveals their discrimi-
nating capabilities, whereas the correlation among features
indicates possible redundancy issues (see, e.g., the Minimal
Redundancy Maximal Relevance (MRMR) algorithm [14],
and the Correlation Based Filtering (CFS) method [17]). It
is important to note that the mentioned correlation-based
criteria operate on pairs of variables, so that their usage
to assess subsets of features of arbitrary size requires some
form of aggregation of the pairwise computed indices (e.g.,
averaging), which does not necessarily capture the actual
value of a given subset [16]. Methods using this kind of
approximated calculation of the group mutual information
are proposed, e.g., in [18], [19], [20], [21], [17]. From the
above discussion, it is apparent that ranking criteria naively
designed for groups of variables of arbitrary size, as op-
posed to pairs, are highly desirable for the problem at hand.

The second crucial element in multivariate filter methods
is the strategy for selecting feature subset candidates to be
evaluated and ranked. Indeed, in view of the exponential
complexity of the underlying combinatorial problem, the
exhaustive approach is barely applicable with large feature
sets. The space of feature subsets is typically explored with
heuristic rules. A typical choice is the incremental strategy,
due to its simplicity. For example, the sequential FS (SFS)
approach incrementally builds the model, by adding at
each step the feature that yields the maximum marginal
improvement (see, e.g., [14], [17], [22]). This strategy has
several drawbacks both conceptual and computational. First
of all, the decision on which feature to add or remove at a
given step of the selection process depends locally on the
currently selected feature subset. In this respect, it can be
easily seen that the marginal utility of a feature can greatly
vary depending on the feature subset with respect to which
it is evaluated. In other words, the relevance of a specific
feature is not evaluated as a global property, but rather as
a local one. This may stray the selection process from the
optimal path. Also, what is optimized at every step is only
the local improvement of the current feature subset with an
elementary feature variation. In this way selection errors are
propagated throughout the process. Finally, the incremental
strategy depends critically on the threshold adopted as a
stopping criterion. For all these reasons, methods based on
greedy policies such as the SFS are subject to redundancy
and overfitting issues, especially if applied to datasets with
extremely unbalanced dimensions such as microarrays [4].

We here propose a novel multivariate filter-based FS
method that can effectively tackle the two mentioned issues
and is therefore suitable for classification problems with
high data dimensionality and complex data distributions.
The proposed method is based on the combination of the
following three factors:

(i) A selection criterion based on the distance correlation

(dCor);
(ii) A distributed combinatorial optimization approach;
(iii) A randomized FS procedure;
which are briefly explained below.

The dCor index [23], [24] provides an ideal criterion
for the evaluation of feature subsets. Indeed, the dCor is
a generalization of the correlation concept that provides a
reliable dependence measure between random vectors of
arbitrary dimension (not just pairs of random variables),
without any assumption on their distribution. The higher
the correlation between vectors, the higher the dependence
measure (in case of linear dependence it equals 1, while
it is 0 for independent vectors). In the presented approach
the dCor is employed to evaluate a feature subset by mea-
suring the correlation of the latter with the classification
target output. As will be shown in the paper, the dCor is
inherently robust to redundancy and overfitting issues, and
provides satisfactory performance even in the presence of
nonlinear dependencies [25]. The dCor has been studied
for variable selection in regression problems [25], where it
was employed in combination with an incremental model
building strategy. It has also been applied for feature screen-
ing purposes in ultrahigh-dimensional data [26], where it
proved more effective than a classical screening procedure
based on the classical Pearson’s correlation coefficient.

The distributed combinatorial optimization scheme al-
lows to efficiently tackle the prohibitive complexity of the
combinatorial problem underlying the classification task on
microarrays, as a result of the large number of features
combined with the small number of samples. It is based
on a divide et impera strategy that breaks the FS problem
into smaller and more balanced subproblems, which are
typically more tractable by classification methods. More in
detail, the original set of features is partitioned into several
smaller subsets (denoted feature bins) and an FS algorithm
is run independently on each of them. Then, the features
belonging to the best among the obtained local solutions
are added to all feature bins, and the local FS processes are
repeated. This sharing of the most promising features with
all the local FS problems allows each of them to improve the
local solution by combining the old features with the new
ones. The algorithm stops when all local problems converge
over the same solution. A noticeable benefit of the suggested
distributed approach is the inherent parallelizability of the
procedure.

The third contribution of the presented approach is to
employ a randomized FS method to address the local FS
problems, in which the utility of each feature is evaluated in
a global fashion, as opposed to the local evaluation adopted
in incremental methods. More in detail, the FS selection
problem is reformulated in a probabilistic framework, where
a probability distribution characterizes the likelihood that
each feature belongs to the target model. The FS proce-
dure alternates a generation phase, where different feature
subsets are extracted from the current distribution, to an
assessment phase, where the distribution is updated based
on an aggregate performance analysis carried out for each
feature over all the extracted subsets. Features appearing
more often in highly ranked feature subsets are re-enforced,
and viceversa. Unlike incremental selection strategies the
proposed method is occasionally capable of escaping local
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optima, and is also reported to be less prone to redundancy
and overfitting issues [27].

Randomized algorithms for FS are not new as such. For
example, several works in the literature consider genetic
algorithms (GA) for this purpose (see, e.g., [43], [44], [45],
[46], [47]). These methods also exploit randomization in the
selection of potential features and process populations of
feature subsets. However, while GA methods are based on
enforcing the fittest models, our method is oriented towards
the selection of the fittest features. For this purpose, we apply
an aggregate evaluation of the population of models to as-
sess the importance of a feature, rather than simply evaluat-
ing individually the models. It is also worth mentioning that
the mechanisms adopted in GA-based methods to update
the population of individuals are random and blind (there
is no criterion guiding the crossover and mutation operators
towards model improvement), which may easily lead to
redundancy problems and extremely long convergence pro-
cesses. Indeed, with such methods the feature set must be
reduced to an order 10? [47], which makes their applicability
to microarrays somewhat awkward.

In summary, the proposed distributed FS algorithm dis-
plays the following features:

(i) The method combines — for the first time, to the au-
thors” best knowledge — various ideas, namely vertical
partitioning, information sharing, iteration of the local
FS processes, and the dCor criterion.

(ii) Feature distribution enforces a huge reduction in the
problem complexity, thus enabling the applicability of
the FS method to large problems such as microarrays.

(iii) This reduction in the combinatorial complexity does
not jeopardize accuracy, since the information feedback
mechanism ensures that promising features are visible
by all local FS processes.

(iv) Operating separately on smaller feature sets generally
leads to a more accurate functioning of the FS algorithm
employed by the local processors, since the solution
space is smaller. It also helps preventing overfitting and
redundancy.

(v) The described iterative process allows combinations
of features to emerge even if their components are
originally scattered among the local FS search spaces,
and so it results in a “deeper” space search overall.

(vi) The evaluation of feature subsets is carried out using
the dCor criterion, which has several interesting proper-
ties for FS: it works for arbitrarily sized random vectors,
does not depend on their distributions, and generally
tends to avoid redundancy.

(vil) The assessment of the importance of the features is
based on a global evaluation of a population of models.

(vill) The method tends to provide very compact models
compared to other filter-based methods. This is a cru-
cial property in order to establish the really important
features for diagnostic purposes.

The rest of the paper is organized as follows. Section 2
provides the problem formulation and the relevant nota-
tion, and briefly reviews the related literature. Section 2.2
introduces the dCor index, emphasizing the properties that
make it particularly suited to the FS task. The proposed
method is introduced in Section 3. Section 4 provides differ-

ent experimental studies carried on well-known microarray
datasets from the literature. Finally, Section 5 presents some
concluding remarks.

2 PRELIMINARIES
2.1 The classification problem: definition and notation

We here consider the classification problem in the frame-
work of supervised learning. Let D = {dV),...,d™)} be a
set of IV available observations, each consisting of an input-
output pair d® = (f*) ™), where f = [fi,..., fx,]
denotes the vector of features, and ¢ € {1,..., N.} the class,
with £ = 1,...,N. D is used to build a classifier, capable
of predicting the class label of previously unseen samples of
the features. The general form of the classifier is thus given
as:

e=nh(f), ¢))

where ¢ denotes the predicted class associated to the vector
of features f and h is a suitable function of the feature
values.

Classifiers can be evaluated by means of the classifica-
tion error rate, denoted PE (for percentage error), defined
as the ratio of misclassified samples over the total num-
ber of tested samples. Equivalently, the performance index
J = 1— PFE can be employed. For binary classification
problems, the performance index can be defined as:

TP+TN
J=-"T-" 2
- @

where T'P and T'N denote the number of correctly classified
samples of classes 1 and 2, respectively. The total number of
samples equals the sum of misclassified and correctly classi-
fied samples of both classes, i.e. N = TP+TN +FP+FN,
where F'P and F'N are the misclassified samples of class 1
and 2, respectively.

2.2 The distance correlation index

Various statistical tests have been developed in the literature
to test the dependence of random vectors. We here employ
the one proposed by Szekely et al. [23], based on the
concept of dCor. It is applicable to both discrete and
continuous random variables, and does not require any
a priori assumption on their distribution. For the sake of
completeness, we here briefly report the main results of [23].

2.2.1 The basic dCor index

Letx = [x1,...,7,]7 and y = [y1,...,y,]" be two random
vectors, such that E(||z|| + ||y||) < oo, where || - || denotes
the Euclidean norm. Let also z),..., ™) be N iid.

realizations of «, and y™V), ..., y¥) the corresponding i.i.d.
realizations of y. Now, the empirical distance covariance
(briefly, dCov) is defined as

N
1
vi(z,y) = N2 > AwBu, ®3)
ky 1=1

where
A =ap —ag. —ag+a..,
By = by — Bk — i).l + B..,
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with
ap = & —2V|, b = g™~y
and
1< 1 & 1 &
Q. :Nzakla a-l:NZakl; @ =33 Z Akl
=1 k=1 k=1
1 1 & 1 &
beo = > bty bi=5D bu, bo=-5 Y b
N= N= N2

Then, the empirical dCor is the square root of

V2 @,
nEY)__ 2 ()13 (y) > 0

VR (@) ()’ (4)

0 (@) (y) = 0

In the assumption that E(||xz|| + |ly]||) < oo, it holds that
the sampled version of the dCor tends to the corresponding
probabilistic quantity, denoted R:

lim Ry (z,y) = R*(w,y). ()
N—o00

It also holds that 0 < R(z,y) < 1, and R(z,y) = 0 iff =
and y are independent. Similarly, 0 < Ry(z,y) < 1, and
if Ry(x,y) = 1, then there exists a vector {, a nonzero
real number 7 and an orthogonal matrix C such that Y =
¢+ T1xC.

In view of the last property, Rn(z,y) can be indeed
used as a measure of linear dependence between
random vectors. Fortunately, it can be verified that the
proposed index is also sensitive to nonlinear input-output
relationships.

Ry (z,y) =

2.2.2 The unbiased dCor index

It is worth mentioning that the bias of the dCor index
increases with the dimension of the random vectors dimen-
sions. As discussed in [24], for fixed number of samples N
the dCor tends to 1 as p, g — oo. Thus, it might be hard to
interpret the obtained index in high dimensional cases. This
problem is investigated in [24] where an unbiased version
of the dCor index is introduced, which is amenable for high
dimensional problems. Here, the following quantities Aj;
and By, are used instead of Ay; and By;:

Zl_ W(Akl_#)ak#l (6)
(. —a.), k=1
B -k £
Bkl—{Nﬁl(b EN]C—Z (7)
N1k —b.), k=
Let
N 9 N
U (m,y) =D AjBfy — N _3 > ApBi.  ®
k£l k=1
The modified dCov and dCor indices are given respectively
by:
] Uy (z,y
vy(@,y) = ]\M’ &)
x vy (@, y
ay) = DY) (10)

For simplicity, in the rest of paper we will drop the
asterisk symbol and use the notation Ry to denote the
unbiased dCor index.

2.2.3 Sensitivity of the dCor to redundant terms

We next present some illustrative simulations that empha-
size the robustness of the dCor index in the presence of
redundant terms. Let = [z1, ..., 7]7 be a random vector
and y = 3z, and assume that N i.i.d. realizations of both
x and y are available. All elements of the x vector are
independently drawn from the same distribution. Table 1
reports the dCor value calculated for different subsets of
inputs on average over 1000 Monte Carlo tests performed
for data generated with different distributions (normal,
Poisson and lognormal). The evaluated input subsets are
{z1, ..., x14%}, for k =0,...,5, corresponding to the exact
model and 5 redundant models with increasing number of
redundant terms. While the dCor equals 1 for the true model
(including only x1), its value decreases as we introduce
further terms, regardless of the distribution of the data.

TABLE 1
Average dCor measure over 1000 Monte Carlo tests for increasingly
redundant models (true model: y = 3x1).

Number of Data distribution
redundant terms | Normal Poisson Lognormal
0 1.0000 1.0000 1.0000
1 0.9873 0.9835 0.9765
2 0.9778 0.9729 0.9573
3 0.9697 0.9640 0.9406
4 0.9623 0.9560 0.9262
5 0.9555 0.9488 0.9130

A similar result holds even if the input-output relation-
ship is nonlinear, e.g. y = 3z%, although this time the dCor
associated to the model containing only x; is less than 1:
any further term added to the model decreases the dCor.
The results are reported in Table 2.

Inspecting the results presented in Tables 1-2 leads to
the conclusion that the dCor index is highly sensitive to the
presence of redundant terms, and is maximal in the absence
of redundant terms. This property proves to be crucial for
the detection of redundant terms in the FS task.

3 THE PROPOSED METHOD
3.1 Distributed optimization scheme

The FS is a combinatorial problem whose complexity grows
exponentially with the number of features (the number of

TABLE 2
Average dCor measure over 1000 Monte Carlo tests for increasingly
redundant models (true model: y = 3z2).

Number of Data distribution
redundant features | Normal Poisson Lognormal
0 0.5731 0.9682 0.9221
1 0.5447 0.9570 0.9106
2 0.5261 0.9490 0.8997
3 0.5120 0.9419 0.8897
4 0.5008 0.9352 0.8808
5 0.4916 0.9289 0.8716
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possible feature subsets is equal to 2¥/ — 1). For these
reasons the search strategy adopted to explore the fea-
ture subset space is crucial. We here employ a distributed
combinatorial optimization scheme first employed in [28]
that breaks the complexity of the FS task into smaller,
less dimensionally unbalanced problems, and iteratively
repeats the optimization of the latter after an information
exchange stage. Besides allowing the dCor to be used in
more favorable conditions, the distributed scheme facilitates
the search over the feature subset space and improves the
computational efficiency of the FS task.

A sketch of the proposed scheme is depicted in Fig. 1.
In the first step, the data are vertically partitioned, i.e. the
full feature set 7 = {f1,..., fn,} is (randomly) divided
into a number of non-overlapping subsets (denoted feature
bins in the sequel) .7-",50), b =1,..., N, of approximately
the same size. The number of feature bins IV, is a critical
parameter, especially regarding the robustness with respect
to the overfitting issue. In this work, following [29], we set
Np = 2N¢ /N, which results in N/2 features for each bin.

Random vertical partitioning of
feature set F (F\V, 7, ., ]:(\(;)) )
]_-](0) ]_-2(0) ]__(\(i)

Processor 1: | | Processor 2: Processor Ny

FS FS S
S1, Ra Sa, R Sn,, R,
NO
b =arg max {Ry} || S=38p
YES
Extract the
Model

Fig. 1. Flowchart of the proposed distributed scheme.

An independent FS task is carried out on each feature
bin F, = ]__bo), according to the selection strategy of choice.
The obtained solutions are compared and the one with the
best performance (denoted S*) is shared among all feature
bins. In other words, F;, = ]—'éo) U S*, i.e. each feature bin
is reset to its initial state ]-'ZEO) and then augmented with
the features corresponding to the current local best solution.
The procedure is then repeated iteratively, alternating the
execution of the independent FS tasks with the information
exchange phase until convergence.

The information exchange phase guarantees that each
feature bin contains the features of the best solution found
so far, so that the new solution can only improve over
the previous best (at least in principle). At the same time

the dimension of the feature bins is kept low during all
the selection process, so that the individual FS problems
have appropriate feature-sample balancing. The procedure
terminates when it is not possible to find a better solution
than the previous best in any feature bin and all problems
yield the same solution (alternative termination conditions
can be applied, as explained later on).

In this work we used the dCor as a criterion for select-
ing the local best solution over the iterative procedure. A
pseudocode of the distributed scheme is provided below
under the name D2CORFS (Distributed dCor-based FS, see
algorithm 1).

Algorithm 1 D2CORFS
Input: D, F, N, N, N;, N, 19, i, e.
Output: S, R*.
1 F=FOu-- UFY
28=0,8=0,R*=0
3: forr =1to N, do

4; S+ &

5: forb=1to N, do

6: F=Fus

7: (Sp, Ry) = DCORFS(D, Fy, Ni, Ny, 1), i, €)
8: if Ry, > R* then

9: S* +— Sb, R* +— Ry
10: if R* = 1 then return end if
11: end if

12: end for

13: if UpSpy = NpSp, then return end if
14 Ri(r)=TR"

15: if r = N, then

16: return

17: else if » > 3 then

18: if (Rr,.(r—1)=R:..(r—2) =R*) then
19: return

20: end if

21: end if

22: end for

The algorithm employs the procedure DCORFS (see Sec-
tion 3.2) to solve the local FS problems on the feature bins.
Input parameters N, N;, ,u(o , i, and € are actually argu-
ments of the DCORFS function and will be explained later.
The other inputs are the set of input/output observation
pairs D, the full set of features F, the number of feature bins
Ny, and the maximum number of allowed rounds N,.. The
algorithm returns the selected feature subset S*, along with
its dCor value R*. Notice that the procedure is terminated
if a model with the maximum possible dCor is obtained
(line 10), or if all local models are equal (line 13), or if the
maximum number of rounds has been reached (line 15),
or finally if no improvement is achieved for 3 consecutive
rounds (line 18).

3.2 The DCOREFS algorithm

In principle, any filter/wrapper method could be imple-
mented to solve the local FS problems in the distributed
scheme explained in the previous section, the most popular
choice probably being a (multivariate) filter method for
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computational reasons, based on a sequential search strat-
egy. As already mentioned, however, sequential strategies
have significant drawbacks, essentially originating from the
fact that model variations are enforced based on a local
assessment of the features (e.g., a new term is added because
it significantly improves the current model). For this reason,
we here introduce a novel multivariate filter FS algorithm
based on the unbiased dCor criterion which employs a dif-
ferent search strategy, in that it implements model variations
based on a global assessment of the features.

The FS problem amounts to solving an optimization
problem, whose objective is to find the subset of features
S C F that maximizes the dCor index Rn(fg,c). A
convenient way to tackle the problem above exploits the
probabilistic reformulation of [30] (used to develop a wrap-
per FS method in [27]) obtained by associating a discrete
random variable ¢ to the feature subsets S according to a
probability distribution Py, which expresses the probability
of each feature subset S to coincide with the target one.
Accordingly, the dCor index becomes a function of f, and
is therefore a random variable with expectation given by

E[RN(f s 0)] = Z RN (fs,0)Ps(S).

SCF

1)

The expected value (11) is maximal if the mass of distribu-
tion Py is all concentrated on the feature subset with highest
dCor S*. Therefore, the problem of finding S* can be
reformulated as that of finding the target limit distribution

* = E 12
Py = arg mgf [RN(fqb) o)l (12)
such that P;(S*) =1

To model the probability that a feature f; € S*, we
parameterize Py by associating a Bernoulli random variable
p; to each feature f;:

pj ~ Be(u;), p; €[0,1]

j = 1,...,Ny, where p; denotes the feature inclusion
probability (FIP) of the jth feature. Initially, the FIPs are
set to values which may reflect the prior knowledge on
the most promising features or simply assign an equal
probability to all of them. Then, the distribution is iteratively
refined by taking into account the information gathered by
sampling it. More in detail, at every iteration a population
of feature subsets is extracted using the current Bernoullian
distributions and each feature subset is evaluated with the
dCor criterion. Then, all features are assessed individually
using (a sampled version of) the index Z; given by

Z; =E[RNn(fy: 0lfi € o] —E[Rn(Fg,0)If5 ¢ ¢,

for j = 1,...,Ny. Index Z; compares the dCor criterion
of the features subsets that include f; with that of the
remaining ones and thus can be interpreted as a global
measure of the feature’s importance. Finally, the probability
distribution is updated according to the update rule given

by

(13)

pj (i + 1) = sat(p; (i) +Z;) (14)

where 7 is the current iteration and sat(-) is a saturating
function that ensures that y; remains within the [0,1] in-

terval. Parameter ~y in (14) is an adaptive step-size defined
as:
1

—R)+0.1

7= AR (15)
where ) is a design coefficient and Rma.x and R are the max-
imum and the average of the dCor values of the extracted
feature subsets. The rationale behind ~ is that it should be
larger if the averaged index Z; is reliable (small variance of
the dCor values), and smaller otherwise.

The iterative procedure terminates upon convergence of
the probability distribution (or if the maximum number of
iterations is exceeded). The selected feature subset is given
by S* = {fjlnr; > L}, where [ is the prescribed accep-
tance threshold. A pseudocode of the proposed DCORFS
algorithm is given below (see Algorithm 2).

Algorithm 2 DCORFS
Input: D, Fy, N;, N, ,u(o), I, €
Output: §*, R*

1: for j =1to |F| do

2: Hy 4 p(©)  FIP initialization
3: end for
4: fort =1to N; do
5: forp=1to N, do
6: ¢p ~ Py Extract sample feature subset
7: RP < Rn(fy,.¢) Compute dCor with (10)
8: end for
9:  Rmax + max(RY,...RNr)
0 R=y S RP
Y= SRR 101
12: for j =1to |F| c}gp - o
plfj€dp plfjéép
13 L« Yoijeon L Lpigjgep !
14: w; + sat(u; +~Z;) FIP update
15: end for
16: if max |p;(i) —pi(i —1)] < ethen
J=1,...,|Fp|
17: break
18: end if
19: end for
20: S* ()

21: for j =1to |F,| do

22: if 1; > [i then 8* <~ S* U {f;} end if
23: end for

24: R* = RN(fg+,0)

The required inputs are the observations D, the set of
features F;, on which to perform the search, the maximum
number of iterations NNV;, the number of feature subsets to be
extracted from the current distribution at each iteration N,
the initial value of the FIPs (%), the acceptance threshold
it, and a convergence threshold e. The algorithm returns the
selected feature subset S*, along with its dCor value R*.

3.3 Feature screening using dCor

A high-dimensional feature space negatively affects the
selection process in many regards, including computational
efficiency, statistical accuracy, and algorithm stability [31].
For this reason, an independence feature screening [31] is
common practice to reduce the dimensionality to a more
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convenient size before the application of the actual FS proce-
dure. We here perform such feature screening by employing
again the dCor index to test the dependence of the output
on every individual feature. The statistical test proposed in
[23] rejects the independence hypothesis if

Nl/sz(]fj,C) Qq
a..b.. 2

where N (-) denotes the normal cumulative distribution
function and g is the significance level of the test. In-
equality (16) is tested for every feature f;, and only features
with enough statistical evidence to reject the independence
hypothesis are held for the FS task.

>NTHL - )% (16)

4 EXPERIMENTAL STUDY

In this section we report the results of a series of experiments
carried out to assess the performance of the proposed algo-
rithm on eight well known microarray benchmarks: Breast,
CNS (Central Nervous System), Colon, DLBCL (Diffuse
Large B-Cell Lymphoma), Leukemia, Lung, Ovarian and
Prostate cancers. The Breast dataset provides gene infor-
mation retrieved from tumor material belonging to breast
cancer patients, distinguishing those that developed metas-
tases within 5 years from the other ones. The CNS dataset
documents both failed and succeeded treatment cases of
embryonal CNS tumors. The Colon dataset contains expres-
sion levels of 2000 genes for several colon tissue samples
including both normal and cancerous ones. Gene analysis
of diagnostic tumor specimens from DLBCL patients having
received a specific chemotherapy treatment is reported in
the DLBCL dataset, distinguishing between cured and fatal
or refractory disease cases. The Leukemia dataset contains
gene information extracted from bone marrow and pe-
ripheral blood samples of several leukemia patients, cor-
responding either to Acute Lymphoblast Leukemia (ALL)
or Acute Myeloid Leukemia (AML). The Lung dataset pro-
vides genetic information regarding both Malignant Pleural
Mesothelioma (MPM) and lung ADenoCArcinoma (ADCA)
cases. The Ovarian dataset aims to identify ovarian cancer
from proteomic patterns in serum. Finally, the Prostate
dataset contains the expression level of 12600 genes for
more than 100 tissue samples, a part of which are taken from
prostate tumors. The main characteristics of the considered
microarray datasets are summarized in Table 3 (see [32]
for a comprehensive review of these and other microarray
datasets and specific references).

All eight datasets are biclass problems. The number of
original features ranges from a few thousands to almost
25000. To reduce the feature search space, a dCor-based
feature screening (with oy > 0.9 ) was applied as a
preprocessing step to all the datasets except Colon and
DLBCL, that already have a sufficiently small feature set.
The number of samples is generally relatively small, with
the exception of the Ovarian cancer dataset. Table 3 also
reports the distribution of the samples over the classes both
for the training test and the test set, when applicable (NP
and NN are the total number of samples belonging to class

1. Different values of aq were used in the feature screening process
depending on the adopted validation method, since the latter influences
the distribution of the samples.

1 and 2, respectively). The class imbalance, measured as
the skew ratio ¢ = %, is also given for both the training
(0+r) and the test (o) data, respectively. This information is
important, since it is related to the achievable accuracy and
reliability of classification algorithms across classes [33].

Half of the datasets (Breast, Leukemia, Lung and
Prostate) are provided with a given training/test data
subdivision, while the CNS, Colon, DLBCL and Ovarian
datasets are not. For this reason, we analyzed first the
former group of datasets with a Hold-Out Cross Valida-
tion (HOCV) method, using the training data to learn the
model and the test data for its evaluation. Though the
HOCV method is in principle applicable also to the other
datasets, the results would be impossible to compare with
the literature, in the absence of a nominal training-test data
subdivision (subsection 4.4 discusses the sensitivity of the
identification results to variations of the data subdivision).
Therefore, a second analysis is performed, this time eval-
uating all datasets with a Leave-One-Out Cross Validation
(LOOCYV) approach, which is a particular case of k-Folds
Cross Validation (k-FCV), with £ = . Briefly, the dataset
is split into £ equal (or, at least, balanced in size) and non-
overlapping subsets (folds), possibly uniformly representa-
tive of all classes. Then, £ — 1 folds are used for training
and the remaining ones for testing, the procedure being
repeated k times so that all folds are left once for testing. The
algorithm performance is finally computed as the average
over the k£ independent runs.

The original features have been normalized in the [0, 1]
range according to:

k
F® = M
! fj‘lna:l; - fjmm 7

for k = 1,...,N, j = 1,..., Ny, where fj(k) is the nor-
malized numeric value of the kth observation of the jth
feature in a given dataset, and f; max and fj min denote the
maximum and minimum values of the same feature in the
dataset, respectively.

To evaluate the performance of the proposed FS method
we trained different classifiers on the selected features,
namely a support vector machine (SVM) with linear deci-
sion boundaries, a k-nearest neighbor (kNN, with k¥ = 5)
and a naive Bayes (NB) classifier.

We employed various evaluation criteria especially de-
signed to account for class imbalanced data. The sensitiv-
ity of the classifier is measured by the true positive rate
TPR = %, i.e. the ratio of the correctly classified
positive samples over the total number of positive samples.
Conversely, the sgeciﬁcity is captured by the true negative
rate TNR = TI\?W' i.e. the ratio of the correctly classified
negative samples over the total number of negative samples.
The Gmean G = VTPR-TNR and Fscore F = 27 EELIE
indices combine both criteria.

The initial parameter setup for the D?CORES in the
experiments is as follows: a maximum of N, = 5 rounds
is allowed for the distributed search scheme and the size of
the feature bins is set as close as possible to N /2, so as to
have ideally balanced datasets in the local FS problems. As
for the DCOREFS algorithm operating on each feature bin,
the number of iterations is limited to IN; = 100, the num-

17)
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TABLE 3
Main characteristics of the considered microarray datasets.

Dataset # features after screening class labels Training set Test set Ttr Ote
total HOCV  LOOCV total NP NN total NP NN
Breast 24481 4990 2132 Relapse/non-Relapse 78 34 44 19 12 7 129 058
CNS 7129 - 1415 Class0/Classl 60 21 39 - - - 1.86
Colon 2000 - - not available 62 22 40 - - - 1.82
DLBCL 4026 - - Cured/Fatal 77 58 19 - - - 0.33
Leukemia 7129 2688 2812 ALL/AML 38 13 25 34 10 24 192 240
Lung 12533 1872 2585 Mesothelioma/ADCA 32 16 16 149 15 134 1.00 893
Ovarian 15154 - 3368 Cancer/Normal 253 162 91 - - - 0.57
Prostate 12600 2053 2472 Relapse/non-Relapse 102 52 50 34 25 9 09 036

Note. ALL = Acute Lymphoblastic Leukemia, AML = Acute Myeloid Leukemia.

ber of feature subset extractions at each iteration is set to
N, = 100, the initial FIPs are set to 1o = 1/|F3|, € = 0.001,
and the acceptance threshold is ;i = 0.98. The proposed
algorithm was implemented in Matlab (version 2016a) and
executed on an Intel(R) Core i7-3630QM machine, with
2.4GHz CPU, 8GB of RAM, and a 64-bit Operating System.

4.1 Performance analysis of D2CORFS with HOCV

We first analyze the four datasets with explicit training-test
division which can be addressed with the HOCV approach
using the native training and test sets. Table 4 reports the
best subset of features selected for each case, as well as the
performances obtained with linear SVM, kNN and NB clas-
sifiers. The results are assessed in terms of the classification
accuracy on the training (J;,) and the test data (J), as well
as TPR, TNR, G, and F. Apparently, the FS procedure
selected very compact models in all cases, with 4 features
at most, and a high classification accuracy was obtained
(the results compare quite favorably with the literature, as
shown later in Table 8). Interestingly enough, though the
Leukemia data are imbalanced in favor of negative samples,
the obtained classifiers score better on the TPR index, than
on the TNR. The computational time is sufficiently low, the
lowest computational cost having being observed for the
Lung dataset. Indeed, the Lung dataset has the smallest
number of samples, which in turn causes the size of the
feature bins to be particularly small resulting in a very high
computational efficiency.

4.2 Distribution of the feature values

A more detailed analysis of the obtained models, with focus
on the selected features, reveals several interesting aspects.
Fig. 2 shows the values of the selected features for all
samples, divided by class and training/test subset.

Models characterized by perfect performance on the
training set have features with little or no overlap between
different classes (see, e.g., Lung and Leukemia datasets).
This indicates that a perfectly legitimate model selection
was operated based on the available information (train-
ing set). Unfortunately, the feature value distributions over
classes turns out to be different on the test set, typically re-
sulting in some classification errors. Such imprecision could
not have been avoided based on the information gathered
from the training set, if not by luck. In other words, if a
subset of features provides good class discrimination on
the training set, it will provide good generalization only
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Fig. 2. Distribution of the feature values of the models presented in
Table 4.

if the feature value distributions on the training and the
test subsets are similar. It may well happen that better
generalization is achieved through a model which is not
optimal on the training set.

4.3 Redundancy analysis of obtained models

We performed an a posteriori analysis on the obtained mod-
els, both in terms of the dCor measure and the classifier
performance, to investigate the presence of redundant bi-
ological information. The test is performed by removing
one gene at a time from S*, and re-evaluating the reduced
feature subset. Table 5 reports the obtained results.

By inspecting Table 5, it is apparent that the dCor index
indicates the absence of redundant terms in all selected
models (the full model has the highest dCor). If the perfor-
mance index on the training set J;,» were used as a selection
criterion (as would happen, e.g., with a wrapper method),
a smaller model would have been selected in the Prostate
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TABLE 4
Performance of the best models obtained with D2CORF'S and HOCV.

Dataset Best model (S*) Time [s] Classifier Jir Jte TNRte TPRie Gte Fie
SVM 0.8077  0.8947 0.8571 0.9166 0.8864  0.8859

Breast {f512, f3224, f5377, f10889} 386.29 KNN 0.8462  0.8421 0.8571 0.8333 0.8451  0.8450
NB 0.8590 0.8947 0.8571 0.9166 0.8864  0.8859
SVM 1.0000 0.9118 0.8750 1.0000 0.9354 0.9333

Leukemia  {fi924, f3252, f4847, 5039} 154.01 KNN 1.0000 0.9118 0.8750 1.0000 0.9354 0.9333
NB 1.0000  1.0000 1.0000 1.0000 1.0000  1.0000
SVM 0.9688  0.9933 1.0000 0.9333 0.9661  0.9655

Lung {fg3347 f(55717 f1 1341} 51.72 KNN 0.9688 1.0000 1.0000 1.0000 1.0000 1.0000
NB 1.0000 0.9128 0.9030 1.0000 0.9503  0.9490
SVM 0.9216  0.9706 1.0000 0.9600 0.9798  0.9796

Prostate {fa282, f6185, f3965, f10494 } 295.78 KNN 0.9510 0.9118 0.8889 0.9200 0.9043  0.9042
NB 0.9314 0.8529 1.0000 0.8000 0.8944 0.8889

TABLE 5
Redundancy analysis on the best models (see Table 4) for data with
given training and test set.

Dataset Classifier  Feature subset RN Jir Jte
Breast NB S* 0.6126 0.8590 0.8947
S*\ {fs12} 06014 0.8333 0.7895
S*\ {fs224}  0.5858 0.7821  0.6842
S*\ {fsar7} 05958 0.8205 0.8421
S*\ {fioss0} 0.5450 0.7949  0.7895
Leukemia NB S5* 0.9782  1.0000 1.0000
S*\ {fio24} 09749 1.0000 0.9118
S*\ {fs252} 09734 1.0000 0.8824
S*\ {fagar} 09770 1.0000 0.9412
S*\ {fso30} 09707 1.0000 1.0000
Lung KNN S5* 09150 0.9688 1.0000
S*\ {fs334} 0.8833 0.9688 0.9732
S*\ {fes71}  0.8990 09688  0.9933
S*\{fi1ss1} 0.8755 09688 1.0000
Prostate  SVM S5* 0.8216 09216 0.9706
S*\ {faoz2} 08108 09216 0.8529
S*\ {fe1s5}  0.7848 09020 0.9118
S*\ {fsoe5}  0.8008 0.9412 0.9706
S*\ {fioa04} 0.8145 0.9020 0.9412

case, but without any improvement on the test data. Ob-
serve that in all four cases the model with the highest dCor
achieves the best test performance. In general, the dCor-
based filter method provides a good guess of the optimal
model both in terms of size and performance, although
additional accuracy improvements could occasionally be
obtained complementing it with a wrapper method that
optimizes directly on the classifier performance.

4.4 Model sensitivity on the data subdivision

To analyze the model sensitivity on the data subdivision in
training and test data, we took the best model (see Tab. 4)
obtained using the nominal training-test subdivision of the
Leukemia dataset, and evaluated its performance with a
Monte Carlo test over a 1000 random training-test data
subdivisions (generated so as to preserve the distribution
among classes). On each run, the selected features are the
same but the classifier is re-estimated on the corresponding
training subset and evaluated on the test subset. The results
are presented in Fig. 3, and show a non-neglectable sensitiv-
ity to the training-test data subdivisions. Indeed, the same
performance of the nominal case is re-obtained less than
50% of the times, and on almost 10% of the runs a perfor-
mance as low as Ji. = 0.91 is achieved (corresponding to

3 errors over the 34 test samples). One possible explanation
of this phenomenon is that there are some isolated samples
which cannot be learnt by the model if they fall in the test
portion of the data.

500
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Fig. 3. Accuracy of the Leukemia model obtained with the nominal
training-test data splitting over 1000 alternative data-splittings.

4.5 Performance analysis of D2CORFS with LOOCV

The previous analysis confirms that the data subdivision
is extremely critical and can greatly affect the quality of
the results and ultimately the assessment of an algorithm.
Applying the HOCV approach in the absence of a nom-
inal training-test data subdivision would lead to results
of questionable objectivity, and difficult to compare with
the existing literature. For this reason, we carried out a
different analysis on the available datasets using LOOCYV,
which is a Cross Validation method that does not depend
on a specific data subdivision (as HOCV). Table 6 presents
the results obtained following the LOOCV approach on all
the datasets (the results are averaged over 10 repetitions).
For each dataset, the best selected model structure is re-
ported, together with the average computation time. Both
the performance of the best model overall and the average
performance of the best models over 10 runs are given, for
the three types of classifiers considered.

It is interesting to note that where both the HOCV
and LOOCV methods have been applied (i.e., for Breast,
Leukemia, Lung, and Prostate), the obtained models have a
scarce overlap in terms of model structure. More specifically,
the models obtained for the Breast dataset have 2 mutual



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 10

features (but extremely different size), and the Lung and
Prostate models have just one feature in common, while
a totally different model structure was obtained in the
remaining case. This is yet another indication of the impact
that data subdivision can have on the results.

4.6 Diversity analysis of high performance models

Due to the discrete nature of the classification problem, mul-
tiple optimal (i.e., with the same maximal accuracy) models
can be obtained, which can make the model interpretation
awkward. As an example, we explore this phenomenon
with reference to the Leukemia dataset, where a model
with 0 classification errors was previously obtained with
LOOCV and an NB classifier (see Table 6). We repeated
the selection process multiple times, each time forcing the
exclusion of one of the regressors belonging to one of the
previously selected models. This procedure enforces that
at each repetition of the algorithm a different best model
will be obtained. Table 7 shows several instances of models
with different structure but equal accuracy that are obtained
in this way. These models contain combinations of two
or three regressors taken from a restricted set of seven.
Notice that some of the models have no common regressor.
This suggests that there are different groups of the genes
which contain the same amount of useful information to
distinguish among the classes. This phenomenon could
have several explanations, ranging from the high correlation
of features, to the insufficient information carried by the
training set.

4.7 Complexity analysis

We here analyze the computational complexity of the pro-
posed algorithm as a function of the problem size (ie.,
the number of features Ny and samples N), and of some
crucial design parameters (e.g., the number of rounds of
the D2CORFS algorithm N,, the number of iterations of the
DCOREFS algorithm N;, and the number of the feature bins
Ny). Let F be the full set of Ny features. Clearly, the model
space to be explored grows exponentially with the number
of features (the number of possible non-empty subsets of F
is 287 — 1. At every iteration, each processor executes the
DCOREFS algorithm on its feature bin, which performs three
tasks: feature subset extraction and evaluation, regressor
evaluation, and RIP update. The first task requires N, N}
operations, where N, is the number of feature subsets to
be evaluated, and NV Jﬂ ~ Ny /Ny is the number of features
in each feature bin. The evaluation of a feature subset by
means of Equation (10) is of order O(N2N ), whereas the
calculation of all the indices Z;, j = 1,...,N ]’c requires
an order of N,N JQ operations. Finally, the RIP update is
linear in the number of features in the bin, i.e. O(N}). The
complexity of the DCORFS is then O(N;N};(N? + N,)),
which is typically dominated by the first term. The com-
plexity of the overall distributed scheme D?CORFS is dom-
inated by its main cycle which repeats up to N, times the
DCORFS on N, feature bins, for an overall complexity of
O(N.NyN;N}(N? 4 N,)) = O(N.N;N;N?)).

An experimental characterization of the algorithm time
complexity has also been carried out, the results of which
are shown in Fig. 4. More precisely, Fig. 4 (top) reports the

elapsed time for the DCOREFS algorithm, averaged over ten
runs (such that the features are reshuffled at random in each
run), as a function of the number of features in the bin and
the number of iterations. The curves are characterized by an
initial increase of the computational time with the growth of
the feature space, followed by a saturation associated with
the reaching of the maximum allowed number of iterations.
Indeed, as NN; increases, the saturation point shifts to the
right. These curves can be used to properly set N; with
respect to the number of features in the bin, in order to
obtain convergence prior to the saturation point. Fig. 4
(bottom) analyzes the elapsed time of the overall D?CORFS
algorithm, as a function of the problem sizes N; and the
number of bins Np. As can be seen from the figure, it is
quite apparent that the execution time decreases rapidly as
the number of bins increases, but at a certain point it starts
increasing again, though at a slower rate. This result em-
phasizes the importance of the N, design parameter. If the
number of bins is chosen too sparingly, the bin size will be
too large, thus leading to insufficient search space reduction.
This ultimately defies the very purpose of the distributed
scheme, i.e. to break the problem complexity, and thus slows
down the convergence of the algorithm. Conversely, if one
employs too many small bins, most of these will initially
not contain any useful feature and will presumably return
inaccurate results, whereas only the processors associated
to bins that contain features of the true model will typically
produce meaningful results. As a consequence of this, the
algorithm will require more rounds and thus more time to
converge.

4.8 Comparative analysis with results in the literature

As already commented, a meaningful comparison can be
obtained only if the same training-test data distribution
is employed. For this reason we divided this comparative
analysis into two parts depending on the cross validation
method employed. First, we consider the Breast, Leukemia,
Lung, and Prostate datasets using a HOCV approach. A
reliable comparison is possible, since these datasets are
provided with a nominal training-test distribution. Then
we consider all eight databases of Table 3 using a LOOCV
approach, which employs the data for training and testing
in a unique and consistent way.

Table 8 reports a comparison with the results docu-
mented in [29], [34] and [35], which consider the Breast,
Leukemia, Lung, and Prostate datasets using a HOCV
approach based on the nominal training-test distribution
of the data. To account for the randomized nature of the
D?COREFS algorithm (due to the random distribution of
the features in the bins and to the nature of the DCORFS
algorithm employed on each local FS sub-problem), we
present the averaged results of 5 independent runs besides
the best ones. Both the classification accuracy on the test
set and the model size are reported (J;. and |S| denote
the averages, and J;. and |S*| the values associated to
the best models, respectively). Apparently, the proposed
method achieves comparable performance with respect to
the best of the competitor methods. Moreover, the obtained
models are extremely compact in terms of the number of
selected features, which indicates the effectiveness of the FS
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TABLE 6
Performance of the best models obtained with D2CORF'S and LOOCV.

Dataset Best model (S*) Time [s] Classifier JL Jte
{f512, f1205, f1872, f3232, f3773, fa3s2, f5008, fes59, SVM 0.8969  0.8598
Breast fr127, fro97, fs776, f10827, f10889, f12275, f12437, f12572,  8137.83 KNN 0.8454  0.8392
f13800, f17881, f19694, f19906, f20437, f22422, f23322} NB 0.8041  0.8083
SVM 0.9000 0.8583
CNS {f320, f1054, f2496, f2513, 3320, f3731, fa484, fa500} 123.89 KNN 0.8167  0.8350
NB 0.8500  0.8450
SVM 0.8871  0.8823
Colon {f49, f377, fr65, f1482, f1644, f1772} 584.08 KNN 0.8710  0.8581
NB 0.9194 0.9065
SVM 0.9870 0.9597
DLBCL {f57, f200, f1807, f2115, f2208} 588.29 KNN 09740  0.9584
NB 0.9740 0.9468
SVM 09722  0.9722
Leukemia  {f22ss, fo041} 170.02 KNN 09722 09722
NB 1.0000  1.0000
SVM 1.0000 0.9939
Lung {f3334, fa336, f7200, f8370} 2239.40 KNN 0.9945  0.9923
NB 09779  0.9751
SVM 1.0000 1.0000
Ovarian {f1s2, fi680, f2236} 3383.12 KNN 1.0000  1.0000
NB 1.0000 1.0000
SVM 0.8456 0.7728
Prostate {fs314, fe185, foss0, f11052} 4042.18 KNN 0.9338  0.8765
NB 0.8162  0.7559

TABLE 7
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Fig. 4. Complexity analysis: Dependency of the DCORFS execution time
on the number of features in the bin and the number of iterations (top),
dependency of the D2CORFS execution time on the problem size and
the number of bins (bottom).

Diversity analysis of the models with maximum accuracy (0
classification errors) for the Leukemia dataset, obtained with LOOCV
and a NB classifier.

Feature S* S§F &5 83 S;  SE
faoss v v
fa052 v v v v

fare7 v v

fa230 v

fa328 v

fagar v v
fo041 v v v Y

approach in pointing out to the expert the really important
features.

Table 9 provides a comparison with the methods doc-
umented in the literature that study all the eight datasets
considered in this work, using a LOOCV approach. The
proposed method systematically provides a promising per-
formance, scoring better or equivalently to the competitor
methods on five out of eight datasets, and generally ranking
among the best methods. In the case for which more docu-
mented results can be found in the literature (Leukemia),
it obtains perfect performance both on the training and the
test set, using only 2 features. It is also confirmed that the
method tends to provide a good trade-off between accuracy
and compactness of the selected model, which is important
both for the robustness of the classifier and for model
interpretation purposes.

5 CONCLUSIONS

A novel FS method has been developed that is especially
designed for large and dimensionally unbalanced classifica-
tion problems, such as those that arise in connection with
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TABLE 8 TABLE 9
Comparative analysis with the HOCV approach. Comparative analysis with the LOOCV approach.
Dataset Method Jte Jr E |S*| Dataset Method Jte Jb E |S*|
Breast D?CORFS 0.67 0.89 6.8 4 Breast D?CORFS 0.84 0.90 219 23
DRF+SVM [29] - 0.84 - 97 Local-learning based [21] - 0.78 - 4
DRF+kNN [29] - 0.79 - 52 «a DD [36] 0.69 0.88 - -
DRF+NB [29] - 079 - 40 CNS D2CORFS 0.84 0.90 6.7 8
Leukemia D2CORFS 093 1.00 3.2 4 «a DD [36] 0.72  0.90 - -
DRF+SVM [29] - 091 - 15 Colon D?CORFS 088 092 80 6
DRF+kNN [29] - 094 - 4 a DD [36] 0.83 092 - -
DRF+NB [29] - 094 - 6 Filter mRMR+SVM [15] - 089 - 4
ABC+DANN [35] 088 094 30 3 Filter mMRMR+RVM [15] - 094 - 7
Ll-norm SVM [34] 0.84 - 249 - RMIFS+NB [16] — 0.97 — 6
Elastic Net [34] 084 - 367 - RMIFS+ID3 [16] - 095 - 6
PAEN [34] 08 - 219 - RMIFS+Logistic [16] - 1.00 - 6
DrSVM [34] 08 - 677 - ERGS [39] - 084 - 100
WDRSVM [34] 08 - 199 - HGA-SVM [45] 099 1.00 15 10
GA+NN [47] - 097 - 2 GA+SVM [46] - 093 - 12
Lung D*CORFS 097 100 29 3 DLBCL D2CORFS 095 099 71 5
DRF+SVM [29] - 0.96 - 2 Local-learning based [21] - 0.97 - 10
DRF+&NN [29] - 098 - 4 a DD [36] 071 0.88 - -
DRF+NB [29] - 099 - 8 MOBBBO [37] 1.00 100 57 5
LlmormSVM [34] 084 - 291 - LSLS [38] - 082 - 10
Elastic Net [34] 084 - 394 - Leukemia D2CORFS 098 1.00 20 2
PAEN [34] 0.85 - 26.3 - a DD [36] 092 097 _ _
DrSVM [34] 086 - 544 - Filter mRMR+SVM [15] - 097 - 4
WDRSVM [34] 086 - 238 - Filter mRMR+RVM [15] - 100 - 3
Prostate D?CORFS 0.90 0.97 3.8 4 RMIFS+NB [16] _ 1.00 _ 4
DRF+SVM [29] 097 - 30 RMIFS+ID3 [16] - 100 - 4
DRE+ENN [29] 062 - 35 RMIFS+Logistic [16] - 100 - 4
DRF+NB [29] 0.26 - 12 LSLS [38] _ 0.81 _ 50
ERGS [39] ~1.00 - 80
SL-REE [40] - 094 - 20
microarrays. Its strength resides on three pillars, namely an FS-REE [40] - 0.94 - 40
. . . MRMR [14] 1.00 - 6.0 -
evaluation criterion for candidate feature subsets based on CFS [41] 0.91 _ 1.0 _
the distance correlation concept, a distributed optimization MBEF [42] 1.00 - 9.0 -
approach, and a randomized selection procedure. The dCor RI-GA-kNN [43] 098 1.00 50 50
index appears to be a particularly robust criterion with ggfs_sl\li/IM[zL[gIS] 1.00 }88 328 265
respect to .overﬁttlr}g a.nd rfedundancy issues, Whl?h are oo DZCORES 099 100 44 3
common with multivariate filter methods. The distributed o DD [36] 098 1.00 _ _
combinatorial optimization scheme is used to handle the LSLS [38] - 099 - 30
severe asymmetry of microarray datasets, by dividing the i EEGS [39] - 1.00 - 100
feature set into several feature bins and running indepen- Ovarian DZCORFS 100 B8 30 i
. Prostate D<CORFS 0.80 0.93 3.3 +
dently the FS algorithm on each of them. The best solu- Local-learning based [21] _ 0.84 _ 6
tions are retained and shared among the feature bins and a DD [36] 091 0.96 - -
the procedure is iterated until convergence. Thanks to this MOBBBO [37] 098 100 119 12
“divide et impera” approach, the FS algorithm is always ]ﬁilgs[?fgl] B 831 B %(5)
employed on small and dimensionally balanced datasets, GA+SVM [44] 077 - _ _
for better accuracy and reliability of the results, as well GA+kNN [44] 0.84 - - -
as a reduced computational complexity. The FS algorithm GA+NB [44] 076 - - -
. HGSA+SVM [44] 0.88 - - -
at the core of the method introduces another factor that HGSA+KNN [44] 086 - _ _
improves the reliability of the method, in that it re-enforces HGSA+NB [44] 080 - - -

the probability to select a feature based on an aggregate
performance evaluation of a population of feature subsets,
which allows for a more reliable assessment of the impor-
tance of that particular feature. The overall method has been
tested on several microarray benchmark datasets, with quite
promising results. Indeed, the resulting classifiers achieve
high accuracy levels while using information only from an
extremely small number of features.
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