AAS 18-363

DEEP LEARNING FOR AUTONOMOUS LUNAR LANDING

Roberto Furfaro*, llaria Bloise’, Marcello Orlandelli*, Pierluigi Di
Lizia$, Francesco Topputo?, Richard Linares!

Over the past few years, encouraged by advancements in parallel computing tech-
nologies (e.g., Graphic Processing Units, GPUs), availability of massive labeled
data as well as breakthrough in understanding of deep neural networks, there has
been an explosion of machine learning algorithms that can accurately process
images for classification and regression tasks. It is expected that deep learning
methods will play a critical role in autonomous and intelligent space guidance
problems. The goal of this paper is to design a set of deep neural networks, i.e.
Convolutional Neural Networks (CNN) and Recurrent Neural Net-works (RNN)
which are able to predict the fuel-optimal control actions to perform autonomous
Moon landing, using only raw images taken by on board optimal cameras. Such
approach can be employed to directly select actions with-out the need of direct
filters for state estimation. Indeed, the optimal guidance is determined processing
the images only. For this purpose, Supervised Machine Learning algorithms are
designed and tested. In this framework, deep networks are trained with many ex-
ample inputs and their desired outputs (labels), given by a supervisor. During the
training phase, the goal is to model the unknown functional relationship that links
the given inputs with the given outputs. Inputs and labels come from a properly
generated dataset. The images associated to each state are the inputs and the fuel-
optimal control actions are the labels. Here we consider two possible scenarios,
i.e. 1) a vertical 1-D Moon landing and 2) a planar 2-D Moon landing. For both
cases, fuel-optimal trajectories are generated by soft-ware packages such as the
General Pseudospectral Optimal Control Software (GPOPS) considering a set of
initial conditions. With this dataset a training phase is performed. Subsequently, in
order to improve the network accuracy a Dataset Aggregation (Dagger) approach
is applied. Performances are verified on test optimal trajectories never seen by the
networks.

INTRODUCTION

The problem of autonomously landing on the lunar surface with pinpoint accuracy is challenging
and may require a new class of navigation and guidance algorithms. Indeed, when integrated with
sensors and thrusters as part of the on-board lander computing architecture, such algorithms must
bring the spacecraft to the desired location on the lunar surface with zero velocity (soft landing)
and very stringent precision (e.g., desired position achieved with accuracy less than 10 meters for

*Professor, Department of Systems and Industrial Engineering, Department of Aerospace and Mechanical Engineering,
University of Arizona, Tuscon, AZ 85721. E-mail: robertof @email.arizona.edu

TVisiting Graduate Student, Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, 86721

Visiting Graduate Student, Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, 86721

8 Assistant Professor, Assistant Professor, Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via
La Masa 34, 20156 Milano, Italy

T Assistant Professor, Assistant Professor, Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via
La Masa 34, 20156 Milano, Italy

Il Charles Stark Draper Assistant Professor,Department of Aeronautics and Astronautics,Massachusetts Institute of Tech-
nology,Cambridge, MA 02139

pinpoint accuracy). Within the overall system architecture, the lander Guidance, Navigation and
Control (GNC) subsystem is mainly responsible for safely driving the lander to the surface. GNC
functions include a) determining position and velocity of the lander from sensor information (nav-
igation) and b) determine/compute the appropriate level of thrust and its direction as function of
the current state (i.e. lander position and velocity). Both guidance and navigation functions are
generally designed separately and tend to be different area of research and development. Guidance
algorithms are generally comprised of two major segments, i.e. a) a targeting algorithm and b)
a trajectory-following, real-time guidance algorithm. The targeting algorithm explicitly computes
the reference trajectory that drives the lander to the lunar surface, generally with minimum fuel
and satisfying appropriate thrust and path constraints. The real-time guidance algorithm computes
that acceleration command that must be implemented by the lander thrusters to track the reference
trajectory for a precise and soft landing. The original Apollo real-time targeting and guidance algo-
rithm [1], successfully implemented to land Apollo 11s Lunar Exploration Module (LEM) on the
Moon’s surface, was based on an iterative algorithm that generated a nominal trajectory consisting
in a quartic polynomial. Importantly, the feedback Apollo real-time guidance was derived by ap-
proximating the nominal trajectory by a 4th-order McLaurin expansion of the reference trajectory
[1],[2]. More recently, research on guidance and targeting algorithms for lunar landing exploited
the latest advancement on both optimal and non-linear control. Some examples include gravity-turn
based guidance [3], Feedback ZEM/ZEV guidance [4], robust guidance based on time-dependent
sliding [5], feedback linearization [6] as well as guidance algorithms based on hybrid control theory
[7]. Recently, the ability to generate real-time optimal feedback guidance by solving on-board a se-
quence of open-loop optimal convex problems has been explored for landing on planetary bodies[?].
Guidance algorithms must be tightly integrated with the navigation system which is responsible for
determining actual lander position and velocity. On large and small planetary bodies, the most
common approach to what is termed Relative Terrain Navigation (RTN), extract the spacecraft state
from sequences of optical images. Estimating relative position and velocity from on-board cameras
generally rely on extracting and correlating/registering landmarks on the planetary bodies [9] as well
as tracking the landmarks during the relative motion (e.g. Natural Feature Tracking,[10]). Over the
past few years, encouraged by advancements in parallel computing technologies (e.g., Graphic Pro-
cessing Units, GPUs), availability of massive labeled data as well as breakthrough in understanding
of deep neural networks, there has been an explosion of machine learning algorithms that can ac-
curately process images for classification and regression tasks (e.g., image and video recognition
[11], natural language processing [12], speech recognition [13] etc.). However, very little has been
done in the space exploration domain to develop machine-learning algorithms for autonomous guid-
ance and navigation tasks. A couple of examples include learning optimal feedback guidance via
supervised learning ([14], [16]) and reinforcement learning ([15] as well as RTN via convolutional
neural networks. In this paper, we propose a new approach based on deep learning that integrates
guidance and navigation functions providing ad end-to-end solution to the lunar landing problem.
More specifically, we design a class of Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Networks (RNN) capable of learning the underlying functional relationship between a sequence
of optical images taking during the descent and the thrust action. The method exploit the ability
of CNNs to autonomously extract features and correlate such features to the fuel-optimal thrust ac-
tion. The system learns in a simulated environment where fuel-optimal trajectories are computed
via pseudo-spectral methods and spacecraft position and velocity are correlated directly through
ray-tracing simulation to the related optical image taken by the on-board camera.

METHODOLOGY

The proposed approach to autonomous lunar landing relies on a combination of deep learning,
computational optimal control and ability to generate simulated images of the moon surface. The
overall goal is the “teach” a spacecraft to autonomously execute lunar landing by processing a
sequence of optical images taken by the spacecraft on-board cameras. The overall approach is to
train a set of CNNs and RNNs to map a sequence of optical images o, into thrust actions u,; (Fig. ??,
(a)). Here, we are looking to learn fuel-optimal guidance policies 7y(u¢, 0¢), i.e. the probability of
the thrust action given sequence of optical images. Ultimately, we are interested in imitating the true
underlying fuel-optimal guidance policy. With reference to Fig. ??,(b) we numerically compute
a set of optimal trajectories using Gauss pseudo-spectral methods by sampling the initial position
and velocity out of a specified distribution. For each state on the optimal trajectory, we simulated
the image taken by the on-board camera. Images are synthetically generated by interfacing the
camera model with a raytracer that simulates photons reflected out of a realistic Digital Terrain
Model (DTM) of a patch on the lunar surface.

A Y
N \ \
N[\ \
Ay 7 \ \27 \
[\ X \
AR \ \
1 [s 1 | T
\ | = -
1N -
L] b " \ T N\
\ a:
5 \ |f stride)
\

“\lota

b
Max pooling
pooling

Wﬂ(ut‘ot) Thrust on/off

(a) Schematic of a Deep Network for Thrust Prediction

Image Simulator fr’
O¢

N training :
Optimal Thrust Uy data learning
(GPOPS)

Input Images

supervised T (ut |0t)

(b) Imitation (Supervised Learning) Flow

Figure 1: Network Architecture and Imitation Learning Process

Machine Learning: Deep Neural Networks

Over the past few years, there has been an explosion of machine learning algorithms that can learn
from examples, which is the basis of supervised learning. The supervised learning strategy consists
of having the desired outputs available for a given set of input signals. Each training sample is
comprised of the input signals and their corresponding outputs (labels). The goal of the network is to
develop a rule,i.e. a procedure that classifies the given data, or alternatively learning the underlying
functional relationship between input and output. This is achieved because the learning algorithm
supervises the error between the produced outputs (label) with respect to the desired ones. The
network is assumed to be trained when such error is within an acceptable value range. The error (or
mislabeling for classification problems) is minimized by adjusting continually the synaptic weights
and biases of the network. Such error is generally labeled as loss function. The agents (the network)

is training and evaluated using two types of sets of data, a training set and a test set. The training
and test sets are composed of the labeled examples. The test set is only made available to verify
the performances of the trained network. In this work, we design deep networks to learn the fuel-
optimal relationship between navigation (optical) images and the fuel-optimal thrust action. More
specifically, we are interested in processing a sequence of images (data) and predict the thrust action
via the help of deep network. Here, we considered two types of deep networks, i.e. Convolutional
Neural Networks (CNN) and Recurrent Neural Network (RNN).

Convolutional Neural Networks Neural networks and deep learning provide the possibility to
find solutions for many problems related to image recognition. In particular, CNNs are used to
classify an image or determining the particular content of an image by transforming the original
image, through layers, to a class scores. The architecture of a CNN is designed to take advantage
of the 2D or 3D [width, height, depth| structure of an input image which is processed as pixels
values. The basic CNN structure uses many types of layers which are 1) Convolutional Layer, 2)
Pooling Layer, 3) Fully Connected Layer and 4) Output Layer.

Convolutional Layer This layer extracts features from the input volume by applying filters on the
image. It is the most demanding layer in terms of computations of a CNN and the layer’s parameters
consist of a set of learnable filters. Each filter is basically a matrix spatially smaller than the image
which is scanned along width and height (2D case). Importantly, filters (or kernels) are the weights
of this layer. In fact, as the filter is sliding on the input image, it multiplies its values with the original
pixel values of the image and these multiplications are all summed up giving only one number as
output. Repeating this procedure for all the regions on which filter is applied, the input volume is
reduced and transformed and then passed to the Max-pooling layers.

156 | 155 | 156 | 158 | 158 | 156 156 | 155 | 156 | 158 | 158 | 156 156 | 155 | 156 | 158 | 158 | 156
153 | 154 | 157 | 159 | 159 | 158 153|154 | 157 | 159 | 159 | 158 153 | 154 [157 | 159 | 159 | 158
149 | 151 | 155 | 158 | 159 | 146 149 | 151 | 155 | 158 | 159 | 146 149 | 151 | 155 | 158 | 159 | 146
145 | 149 | 153 | 156 | 158 | 156 145|149 | 153 | 156 | 158 | 156 145 | 149 | 153 | 156 | 158 | 156
145 | 143 | 145 | 148 | 158 | 159 145|143 | 145 | 148 | 158 | 159 145 | 143 | 145 | 148 | 158 | 159
155 | 158 | 158 | 145 | 145 | 158 155|158 | 158 | 145 | 145 | 158 155 | 158 | 158 | 145 | 145 | 158

Input volume Input volume Input volume

1|1 1 -1 -1 1 -1 -1 1

1 -1 0 1 -1 0 1 -1

1 -1 0 1 -1 0 i -1

Filter #1 Filter #1 Filter #1

Figure 2: Example of filter application

In the Fig. 2 which represent an example of a filter application, it is possible to note that the filter
moves one pixel at a time. The stride in this case is, in fact, equal to 1. This parameter determines
how the input image volume reduces and normally, it is set such that the output volume is an integer
and not a fraction. Moreover, in order to control the spatial size of the output volumes, an additional
parameter is used: thes Padding parameter, which pads with zeros the border of the input image. If
the padding is not used the information at the borders will be lost after each Conv. layer and this

will reduce both the size of the volumes and the performance of the layer. As a general rule, the
hyperparameters necessary for a convolutional layer are: Number of filters, Stride with which the
filter slides, Padding with which the input is padded with zeros around the border. An example of
image transformed by the application of filters in a convolutional layer is shown in Fig. 3.

Figure 3: Example of filters application result on a image

Pooling Layer: it reduces progressively the spatial size of the input volume in order to control
overfitting. The Pooling Layer operates independently on every depth slice of the input and there
are different functions to be used, the common one is the Max-pooling. It uses the MAX operation
taking only the most important part. Also for this layer two hyperparameters have to be chosen: the
filter window (F) and the stride (S).

Fully Connected Layer: the purpose of the Fully Connected layer is to use the features arriving
from the convolutional layers for classifying the input image into various classes. The last fully-
connected layer uses a softmax activation function for classification purpose.

Recurrent Neural Network (RNN) Recurrent Neural Networks (RNNs) are neural networks
specifically designed to deal with data sequences. The advantage of an RNN lies in its memory.
Indeed, it stores information that have been computed few steps so far and uses them to improve the
prediction and its accuracy. Fig. 4 shows an RNN unrolled into a full network to better understand
how this net works. The working principle is as follows:

e x; is the input at the time step t;

e h; is the hidden state at time step ;. It represents the memory of the network which is
computed based on the previous hidden state ~;_; and the input at the current step x;.

e y; is the output at the time step ¢;

RNNs are able to use information coming from a long sequence, but experience has shown that
they are limited to looking back only a few steps. Considering what said before, the most commonly
used RNNs are the LSTM (Long-Short-Term-Memory). The difference is just the way in which it
computes the hidden state. The memories in LSTMs are called cells. Internally these cells learn
what to store in a long-term-state, what to erase from memory, and what to read from it. A typical
cell is shown in Fig. 5.

hi+1

M0

he
Element-wise i
multiplication !

h
X
Figure 4: Recurrent neural network
y
(t)
A
(. N\
o Forget gate
(t1) — b ® @ .
A
Input gﬁ/
® ® £
fol 9¢ i(t)T °(t)| Output gate
FC FC FC FC
A
h e
= LSTM cell J

Figure 5: LSTM cell

(®

® Addition |
[logistic :

...................

As shown in Fig. 5, the hidden state is divided in two vector: the long-term state ¢(;) and the
short-term state h(;). The incoming long-term state ¢(;_1) goes through a forget gate, dropping
some memories and then it adds some new memories with an adding operation (the memories to
store are selected by the input gate). The result is ¢(;) which is sent straight on without any other
transformation. The long-term state ¢(;) is copied and filtered by the output gate (which applies a
tanh function on the input) and this operation produces the short-term state h;) (note that it is equal
to the cell’s output y ;). Let us look at how the current input vector Xy is transformed. It is fed with
the previous short-term state h;_) to different fully connected layers that have different purposes:

e The main layer is the one with g as output. It analyzes the current inputs X(;) and the
previous h(;_y) with a fanh function. The output is partially stored in the long-term state.

e The other three layers are called gate controllers and use logistic activation function which
means that the outputs are in a range from 0O to 1 and, in particular, O closes the gate and 1

opens it. In particular:

— The forget gate (controlled by f(;)) controls which parts of long-term state should be
erased.

— The input gate (controlled by i) controls which parts of g,y should be added to the
long-term state.

— The output gate (controlled by o)) controls which parts of the long-term state should
be read and sent to the output terms (h(;) and y ;)

In conclusion, an LSTM cell can learn to recognize an important input, learn to store and preserve
it for as long as it is needed and learn to extract information whenever is needed.

Training Set: Optimal Guidance Problem

To train deep networks to learn the fuel-optimal relationship between sequence of images taken
during the descent and the thrust action, a set of optimal open-loop trajectories must be computed.
The pair state-thrust for the computed optimal trajectories are examples of the functional relation-
ship representing the sought optimal feedback guidance. Once the lander state is associated to the
correspondent image taken by the spacecraft, the training set is complete. In its basic form, the
fuel-optimal guidance landing problem can be formulated as follows:

bty
mind = / \|T|| dm (1)
0
Subject to the physical constraints:
r=4u
. T
VeIt n &)
, T
m= —
Isp g0

e R 5
0 = Uy

Additional path and thrust constraints can be also considered. For a planar 2D Moon landing, ff
h is the altitude and d is the downrange, ¥ = [d, h| and ¥ = [vg, vp]. The thrust TisT = [Ty, Th)
and g is the lunar gravity acceleration. I, is the specific impulse and go is the reference gravity
acceleration. There is no closed-form solution to the general landing guidance problem. Indeed,
to compute fuel-optimal solutions, one needs to resort to numerical methods. For a thrust-limited
case, it is very well-known that the solution is a singular type (i.e. bang-bang) which makes the
problem numerically challenging. Here, we employ the General Purpose OPtimal Control Software
(GPOPS 1I [17]) numerical MATLAB platform to compute the optimal trajectories and generate the
appropriate training set.

Image Simulator

In order to generate a dataset of images taken during the Moon landing, a simulator has been
developed. The simulator works by synthetically rendering via a ray-tracer and associating each
image with the state of the spacecraft at each time step. Importantly, two simulators have been
designed and implemented to simulate the camera images for both vertical and planar 2D Moon
landing. The simulator has been written in MATLAB and the software which has been used to
generate every single image is Persistence of Vision Ray Tracer or POV-Ray, which is a ray tracing
program which generates images from a text-based description of a scene. In a MATLAB script, the
trajectories coming from GPOPS are loaded and each state is read in a for loop where POV-Ray is
called to render each image. In order to render an image, POV-Ray needs three important objects:
the light source position, the camera position (and properties) and the objects to render. The light
source, in this case, is the Sun and its position with respect to the Moon has been considered fixed
during the entire simulation because the duration of each landing is so short (about one minute)
that the variation of the Sun position is not relevant. The camera position, instead, changes at each
time step according to the current state generated by GPOPS. In POV-Ray the camera position is
expressed through a vector of three coordinates. In the 1D case, only the out-of-plane component
changes according to the altitude, while the other two components are kept constant equal to 0. In
2D case, the out-of-plane component is conditioned on the altitude and one of the planar components
changes according to the downrange, while the third one is kept equal to O (Fig. 6). In this way,
an image is associated to each state. Since in GPOPS, at each state corresponds a control action,
once all the images are generated it is possible to make a dataset in which each image is correlated
with the control action. Such dataset is suitable for the training phase of the network. Datasets of
more than 6000 images have been generated for both cases under study. The objects to render are
described in a POV-Ray script in which the DTM and the texture are loaded and scaled according
to the image size and to the real altitude range. In this script, the radiosity model and other options
regarding the light and the camera properties are implemented. A very important aspect is the size
of the image. The size in POV-Ray is expressed in pixel and both 1024 x 1024 and 256 x 256
images have been generated. First simulations proved that the set made up of the largest images
requires excessive computational cost and allocation memory. For this reason, smaller images have
been used for the successive simulations. They are quite small but the simulations have revealed
that they are sufficiently large to obtain good results.

The images are greyscaled and not RGB: this helps a lot during the render of each image and
during the training and test phase of the network, reducing the computational cost and the allocation
memory. Moreover, there is no need to have RGB images considering the texture of the Moon
surface. POV-Ray let the user set up some camera properties. The most important one is the angular
field of view. For the research purposes, the camera angular field of view has been fixed at 20°,
which is a reasonable value for on-board navigational cameras. A lower value would have involved
a too narrow field of view and a too small portion of the surface would have been seen, especially
for the images taken from lower altitudes. In Fig. 7 some examples of the images related to the 1D
vertical landing are shown.

DAgger Method to Improve Performance

An approach has been investigated to obtain further improvements of the deep networks perfor-
mances. Several algorithms have been proposed and are available in literature. The most promising
is the Imitation Learning thanks to which the learner tries to imitate an external expert action in

(a) Moon surface seen from (b) Moon surface seen from
1500 m 986 m

(c) Moon surface seen from (d) Moon surface seen from
464 m 140 m

Figure 7: Moon surface images taken from different altitudes

order to achieve the best performance. Here, a DAgger (Data Aggregation) approach has been em-
ployed. The main advantage of this type of algorithms is that an expert teaches the learner how to
recover from past mistakes. Nowadays, a classical application of DAgger is for autonomous vehicle

and it applies, mathematically speaking, the following steps([18]):

1. Train the net (in this case a car) on a dataset D made of human observations and actions.
2. Run the net to get performances and then a new set of observations D .

3. Ask the human expert to label the new dataset with actions.

4. Aggregate all data in a new dataset Dy, = DU D

5. Re-train the net.

Practically, when employed to enable autonomy in cars, the driver corrects online the errors done
by the vehicle and record them to augment the database. Since it is not possible to exploit an human
action/correction in space, the DAgger approach developed for this work is slightly different. Here,
GPOPS is assumed to be the teacher. More specifically, the following steps are followed:

1. Train the net on a dataset D generated with GPOPS.
2. Run the net to get performance by using the test set Dycg;.

3. Check for which trajectories the trained model error is not acceptable in terms of classification
accuracy and RMSE.

4. Pick up the trajectories with error higher than the threshold in Dyyrong-

5. Use Dyyrong to re-train the net and to improve the performances.

This iterative algorithm is specifically designed to train stationary deterministic guidance policies
and it is generally shown to outperform previously developed approaches for imitation learning

([18])

IMPLEMENTATION AND RESULTS

In this section we describe the design, training and testing of two classes of deep networks specifi-
cally trained to learn fuel-optimal thrust policies from sequence of images taken during the powered
descent toward the lunar surface. We considered a vertical (1D) lunar landing and a planar (2D)
landing.

Vertical Lunar Landing: CNN Architecture, Training and Performance

The initial development consider a simpler vertical landing. Here a CNN has been designed,
trained and tested to execute an autonomous vertical descent. Here, we discuss the dataset genera-
tion, the CNN architecture, training and testing phases.

10

Dataset generation A suitable dataset (i.e. training set) is needed for imtation (supervised) learn-
ing). In order to generate a such dataset, GPOPS has been employed solving the fule-optimal tra-
jectories many times starting from different initial conditions.For this specific case, the initial mass
of the spacecraft has been set equal to 1300 kg. The altitude has been initialized between 1000 and
1500 meters. The initial vertical velocity vy, changes according to the altitude: when 7 is maxi-
mum, the velocity is maximum in modulus (—11 m/s), vice versa when h is minimum, the velocity
also is minimum in modulus (—6 m/s). Unlike the initial conditions, the final ones have been kept
constant for all trajectories. In particular, the final altitude A is equal to 50 meters and the final
velocity is equal to —0.5 m/s. As it can be seen, the final condition is such that the spacecraft has
not touched yet the ground and has a very small velocity, directed toward the ground. The nominal
thrust T},0,, is equal to 4000 N. The maximum (allowable) thrust has been fixed equal to the 85%
(3400 N) of the nominal thrust and the minimum (allowable) equal to 25% (1000 N). Because of
the bang-bang nature of the problem, the network will have to perform only a classification on the
thrust magnitude. In this way, 101 trajectories have been generated within the selected range of
altitude.The parameters of the problem are shown in Tab. 1a.A summary of the initial conditions
and one of the final ones are shown in Tab. 1b and in Tab. Ic.

Table 1: Parameters and state values for 1D problem

(a) Problems parameters (b) 2D initial conditions (c) 2D final conditions
value unit value unit value unit
Mmary 500 kg ho [1.0, 1.5] km h¢ 50 m
g —~1.622 m/s? vpy [—6,—10] m/s vp, —0.5 m/s
Iy 200 s mo 1.3 ton

Trom 4.0 EN
Trax 3.4 kN
Trnin 1.0 kN

Each trajectory computed by GPOPS has 61 points, resulting in 61 states and 61 control actions.
For the vertical landing problem, each states has three elements, i.e. altitude, velocity and mass;
each control action has only one component, i.e. the magnitude. The final dataset has been built by
associating each state to each control action. This dataset has been divided in training set and test
set; the first one is comprising 81 trajectories, the second one 20 trajectories.

Fig. ?? shows the altitude history for a sample trajectory in the dataset. In this case, the initial
altitude is equal to 1250 meters. Fig. ?? shows the plot of the thrust magnitude (bang-bang) profile.

Network Architecture The CNN architecture has been defined via a systematic trial-and-error
process. We explored and compared three types of architectures with different numers and type of
layers. After analyzing and testing a variety of candidates, we converged to the following CNNs.
The selected CNN is (Fig. 9) is comprised of 5 convolutional layers with following parameters:

e First Convolutional layer, [36 filters, size 3 X 3, stride 2]

e Second Convolutional layer, [36 filters, size 3 X 3, stride 4] .

11

1400 ! ! ! ! ! ! 1400
1200 %@®® g 1200 @@%@
) D
o) o)
1000 - £ 1 1000 -)
Q)‘?) Q)‘b
E) ? E) ®
< 00| Q)% g o 800 Q)%
E ® E >
£ 600 e £ 600 I*)
< ? < ?
%Q) %Q)
400 5l 400 al
@)
))
200 @@@ 200 @@%@%
0 . : : : : : 0 . : : : : :
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
[] Time [s] Time [s]
(a) Altitude (b) Thrust

Figure 8: Optimal Altitude and Thrust History for the Lunar Vertical landing

e Third Convolutional layer, [72 filters, size 2 X 2, stride 2]
e Fourth Convolutional layer, [72 filters, size 2 X 2, stride 2 }
o Fifth Convolutional layer, [72 filters, size 2 x 2, stride 1 }
o First Fully connected layer, [256 neurons } .

e Second Fully connected layer, [128 neurons]

e Output layer, [ZClasses].

P
o
U
T

Tests have shown that better results can be achieved with network deprived of max-pooling layers.
In fact, this kind of layer eliminates critical information needed by the network to be properly trained
and to extract features for this specific application.Training phase and more details about third CNN
results are described in following the section.

Figure 9: Selected CNN architecture

Training and Testing Phase The selected CNN has been trained to learn the correct thrust action
needed to perform a fuel-optimal vertical 1D landing on the Moon. For this purpose, the states,
coming from the dataset described above has been used as input for the 1D Moon images simulator.
Here, a new dataset has been created by associating all the images to the relative control actions.
Each input is comprised of three consecutive superimposed images arranged as input layers in the
CNN. Since each image represents a static picture of the Moon surface, one image alone will not
convey any information about the velocity of the lander. Feeding three sequential images, the CNN
will be equipped with the ability to keep track of the lander velocity, hence improving the overall

12

accuracy. The sequence of images, belonging to each trajectory (61 states), has been divided in
sets of three images. according to which each trajectory, is separated from the other. Since the
fuel-optimal solution is a bang-bang type and since the thrust direction is only vertical, for this
specific problem, the CNN has to only solve a classification problem, i.e. select a binary (min-max)
value for the thrust as function of the lander position and velocity. Binary vectors of length two
have been used to represent the two classes. When the thrusters are at their maximum, the correct
label is [0, 1] whereas the label is [1, 0] at the minimum thrust value. Each input package of three
sequential images has been associated to only one output label. From a control point of view, at
time ¢ the control action is predicted taking the image of the current state and those of state ¢ — 1
and ¢ — 2. The network has all the information contained in three consecutive frames to predict the
correct label.

Before entering the CNN, all images are normalized between 0 and 1 with respect to the max-
imum value among all the images in the dataset. Each image enters the net as a square matrix
256 x 256. Therefore, the input feeds are three-dimensional matrices 3 x 256 x 256 [number of
images X image size X image size]. In order to train the network on an entire trajectory at each iter-
ation, a batch of 59 inputs has been considered (also called mini-batch). Accordingly, 59 sequential
input packages and 59 correct labels enter the net at each iteration during the training phase.

During the training phase, the cross-entropy for the binary problem (loss function) is minimized.
The cross-entropy loss can be described as follows:

Yeross—entropy = — Z tj IOg(ysoftmaxj) (4)
J

Where the softmax function is defined as follows:

ek

Z}'Izl e

While implementing the Stochastic Gradient Descent (SGD) process, the Adam optimization
algorithm is employed. The learning rate is adjusted as training unfolds by the mean of the decay
parameter (i.e. another hyperparameter). The CNN has been developed and trained in a Python-
Keras and Pyhton-Tensorflow environment. Since the network has to solve only a classification
problem, there was no need to weight the loss function values associated to the model outputs.

&)

Ysoftmar =

In Tab. 2 the chosen hyperparameters are summarized.

Table 2: Summary of the CNN 1D hyperparameters

Hyper-parameters

Batch size 59
Initial learning rate 0.001
Decay rate 0.0001

Classification predictions can be evaluated using accuracy and the loss function associated is the
Cross-entropy loss (Eq. 4) which indicates the distance between the model prediction and the true
value of the output and where softmax function outputs a probability distribution (Eq. 5).

13

The training has been performed using the training set with 4941 images (61 state x 81 trajectories).

The network has been trained in 200 epochs, using in each one a batch of 59 inputs. The training
set has been additionally split, as 5% of the dataset is made available for the validation during the
training phase.

In Fig. ?? both loss and accuracy trends during the training phase are reported. The training
phase has been performed with the help of a High Performance Computing (HPC) systems of the
University of Arizona and it has taken about 12 hours to complete the training phase. Clearly, the
hyperparameter space can be explored to reduce the loss function. Indeed, after 200 iterations, both
accuracy and loss functions are still relatively noisy. The later implies that either the minimum has
not been reached yet, or that the hyperparameters might require further tuning. Nevertheless, good
performance are already achieved without further tuning.

—— frain 1.00 4 — train
0.14 4 val val
012 0.9% 1 ,\V,V--,f‘m-mmvw-,ﬂ/www\-\/-w*wmw
0.98 1
0.10 4
0.97 4
0.08 4
0.96 4
0.06 4
0.95 4
0.04 1
MY Wi 0.94 {
e —m— N
0.02 1 v ! v =37
0,93 1
0 20 40 60 80 100 120 140 Q 20 40 60 80 100 120 140
[] Epoch Epoch
(a) Loss function trend (b) Accuracy trend

Figure 10: Loss function and accuracy results during CNN 1D training phase

Next, the trained CNN is tested on trajectories outside the training set. The test set is made
by 20 optimal descent trajectories. To visualize the trained net performances on the classification
(accuracy), the corresponding confusion matrix has been reported in Fig. 11

Importantly, the CNN trained model has an accuracy of 97, 63%. Next section will implement an
approach to further improve the accuracy.

Accuracy improvement: DAgger approach After the training and test phase of the CNN, the
DAgger method has been implemented to enhance the accuracy on the predictions. Since the global
accuracy on test set performed by the trained CNN was found to be 97.63%, the trajectories pre-
dicted with an accuracy < 98% have been picked up from the test dataset. Indeed, 8 out of the 20
belonging to the test set exhibit a performance lower than 98%. To implement DAgger we aggregate
the training test with the less accurate trajectories and then re-train the CNN on the new enlarged
dataset (Fig. 12).

Finally the result for the applied strategy reaches an accuracy of 99.15% (Fig. 13). Indeed, the
accuracy of the CNN on the predictions has been significantly improved.

14

45,09%

620
52,54%

Output class

97,63%
2,37%

0%

Target class

Figure 11: Confusion matrix CNN 1D

Train on
trained CNN

Test set Wrong trajectories Train set + wrong trajectories

Figure 12: Applied DAgger strategy for CNN 1D

Planar Lunar Landing: RNN-LSTM-CNN Architecture, Training and Performance

Finally, we consider training a deep networks to execute a fuel-optimal planar (2D) landing us-
ing optical images. Here we considered a specific deep architecture that combines the features of
RNN—-LSTM networks with the CNN. The approach is similar to the one followed in the vertical
lunar landing in the sense that optimal trajectories are computed via GPOPS and images of the
moon surface are simulated as function of the lander position and velocity to generate the training
set. However, in this case the deep network has to both learn thrust level (binary classification)
and thrust direction. Importantly, we use a RNN architecture to capture the sequential nature of
the problem, where the thrust action (magnitude and direction) is predicted as function of the pre-
vious states.Here, we discuss the dataset generation, the RNN-LSTM-CNN architecture, as well as
training and testing phases.

Dataset Generation As for the vertical landing case, GPOPS has been employed to generate
fuel-optimal trajectories. Here, initial conditions as drawn from a uniform distribution have been

15

54,92%

Output class

98,12%
1,88%

99,15%
0,85%

Target class

Figure 13: Confusion matrix after DAgger approach for CNN 1D

considered. The initial mass of the spacecraft has been set equal to 1300 kg. The downrange has
been initialized between 1500 and 2000 meters, whereas the altitude ranges between 1000 and 1500
meters. Fig. ?? shows a scheme of the initial positions in the selected reference frame.

The initial downrange velocity vg, changes according to the downrange: when the downrange is
maximum, the velocity is maximum in modulus (—15 m/s), vice versa when downrange is mini-
mum, the velocity also is minimum in modulus (—11 m/s). The same reasoning has been applied
for the initial vertical velocity vy, that goes from —6 to —10 m/s. Unlike the initial conditions,
the final ones have been kept constant for all trajectories. In particular, the final downrange d has
been set equal to 0, the final altitude hy equal to 50 m and finally, both components of the final
velocity (vertical and horizontal) equal to —0.5 m/s. Importantly, the final condition is such that
the spacecraft has not touched the ground and has a very small downward velocity. The propulsion
system is assumed to throttable with a nominal maximum thrust 7},,,,, of 4000 N. The maximum
thrust and minimum thrust have been fixed equal to 85% and 25% of the nominal thrust respectively
(i.e., 3400 N and 1000 N respectively). Subsequently, 2601 trajectories have been generated within
the selected two-dimensional portion of space. The parameters of the problem are shown in Tab. 3a.
A summary of the initial and the final conditions is shown in Tab. 3b and in Tab. 3c.

Importantly, each trajectory computed by GPOPS has 61 points, i.e. 61 states (position and
velocity) and 61 thrust actions. Each state is comprised of five elements (downrange, altitude,
velocities and mass). Each control action has three components (magnitude, u, and uy). The thrust
direction angle # has been extracted for each couple of unit vector components, i.e. 61 angles have
been computed per each trajectory. Therefore the thrust action is a vector with two components,
i.e. magnitude and thrust angle. The final dataset has been built by associating each state to each
control action. This dataset has been divided in training-set and test-set. the training set comprises
24009 trajectories, the test set 192. The image dataset has been generated as discussed in the vertical
landing case.

16

Table 3: Parameters and state values for the 2D problem

(a) Problems parameters (b) 2D initial conditions (c) 2D final conditions
value unit value unit value unit

Mary 500 kg do [15,20] km dy 0 m
g —1.622 m/s? ho (1.0, 1.5] km hy 50 m
Isp 200 s va, |11, =15] m/s va, —0.5 m/s
Thom 4.0 kN (. [—6, —10] m/s vp, —0.5 m/s
Traz 3.4 kN my 1.3 ton
Trnin 1.0 kN

Proposed Network Architecture The aim of the proposed deep network is to employ a sequence
of images taken by the on-board camera to directly predict the fuel-optimal thrust action in a feed-
back fashion. Since with 2D problem (i.e. lander constrained to move on a vertical plane), the
thrust action associated with each image sequence has two components: one for the thrust magni-
tude and one for the thrust angle (i.e. thrust direction). The proposed deep architecture is shown in
Fig. 14. The incoming input (sequence of three consecutive images) is processed sequentially first
by a CNN and then by a RNN—LSTM which are linked by a fully connected layer. The processed
output of RNN—LSTM feeds two different branches where one branch performs a classification
task classification and the other performs a regression task.

Input
v
y

| Fully connected |

;
LSTM

./\.

| Fully connected | | Fully connected |

' !
| Fully connected | | Classification output |

v

| Regression output |

Figure 14: Proposed deep RNN for planar landing

The network is implemented in Python-Keras and it is comprised by:

e Input layer which takes three consecutive images at a time.

17

e Convolutional neural network (Fig. 15).

conv2d 5 (Conv2D) (None, 2, 32768, 36) 612 main_inputle][o]
conv2d_6 (Conv2D) (None, 1, 16384, 36) 5220 conv2d_5(0] (0]
conv2d_7 (Conv2D) (None, 1, B192, 72) 10440 conv2d 6(0][e]
conv2d 8 (Conv2D) (None, 1, 4096, 72) 20808 conv2d 7[o][a]
conv_flatten (Flatten) (None, 294912) i convzd_s(oa][e]

Figure 15: CNN melted in deep RNN network in Pyhton-Keras

Note that, the hyperparameters for the Convolutional layers have been tuned differently from
the CNN 1D case. Importantly, the five (5) convolutional layers have been employed:

First Convolutional layer, [36 filters, size 4 X 4, stride 2]

Second Convolutional layer, [36 filters, size 2 x 2, stride 2] .

Third Convolutional layer, | 72 filters, size 2 x 2, stride 2 |.

Fourth Convolutional layer, [72 filters, size 2 X 2, stride 2]

The last layer (flatten layer) allows to transform the CNN outputs in a row. This layer is
necessary to link the CNN with the LSTM cell.

e Fully connected layer which is followed by a reshape layer as shown in line dense_2 and
line reshape_2 in Fig. 16

dense_2 (Dense) (None, 108) 29491300 conv_flatten[e][o]

reshape_2 (Reshape) (None, 186, 1) 8 dense_2[0][0]

Figure 16: Input reshape layer before LSTM cell in Pyhton-Keras

These two layers have been used to reshape the input as requested for LSTM cell.

e Long-short-term-memory cell as decribed in the RNN section above

The proposed deep architecture results in 29,574,483 trainable parameters.

Training and test phase The training and testing phase follows the same lines as described in
the CNN case. We employ SGD with Adams optimizer. The loss finction is the cross-entropy for
the thrust magnitude (classification) and MSE for the thrust angle (regression). The mini-batch
size has been set to 59. The original images (with a dimension 256 x 256) have been normalized
between 0 and 1 and reshaped such that the input pack is a matrix 3 x 65.536 [number of images x
pixels per image]. The latter is needed because each image is transformed in a row. The associated
label (which consists of the thrust magnitude and the thrust angle) is the one corresponding to
last image of each input matrix. Since the training phase is computationally demanding, the max
epoch has been set to 200 while using only 80 trajectories (4880 images). Given that the number
of trajectories for train is lower, no validation split has been done on dataset. The simulation have

18

been performed using the HPC (High Performance Computing) systems of University of Arizona,
like Extremely LarGe Advanced TechnOlogy (El Gato), which uses specially designed hardware to
achieve high performance economically, including NVIDIA K20X GPUs and Intel Xeon Phi 5110p
Coprocessors. The selected hyperparameters are reported in Tab. 4.

Table 4: Summary of the Deep RNN-LSTM-CNN hyperparameters

Hyper-parameters

Batch size 59
Initial learning rate 0.001
Decay rate 0.0001
Regression loss weight 10

Classification loss weight 60

The results of training phase are shown in Fig. 17.

Notably, the training phase is noisy enough to affirm that no convergence to a global minimum has
not been achieved yes, although as shown below, the network achieves good performances . This is
due to the complexity of the training problem. In general, one can achieve less noisy loss functions
during trainign by by further exploring the hyperparameter space to select values that ensure lower
and smoother losses. This could lead to an increase of number of training epochs, a lower initial
learning rate or a more precise choice of loss weights. Moreover, while in the regression a final
flat trend can be highlighted, the classification loss may still require additional training epochs.
Furthermore in the graphs (Fig. 17) some clear peaks are present and they are due to the change in
the learning rate during the training phase. Although the model can be further trained to achieve
higher performance, the results are very promising. The testing phase considered 30 fuel-optimal
trajectories that have not been employed uring the training phase. The resulting confusion matrix is
reported in Fig. 18.The accuracy on the thrust classification reaches the 98, 51% and the RMSE =
0.76° (Fig. 19).

CONCLUSIONS AND FUTURE EFFORT

To the best of our knowledge, this is the first attempt to design a set of integrated deep networks
that can predict the fuel-optimal thrust magnitude and direction directly from a sequence of optimal
images taken by the on-board camera system. A combination of deep CNNs and RNN-LSTMs
can be trained to find the fuel-optimal guidance policy in a simulated but realistic environment.
Such approach require the ability to 1) compute off-line open-loop, fuel-efficient trajectories and 2)
simulate the optical images taken from an on-board camera along the optimal descent toward the
lunar surface. Thus, a training set can be generated and deep networks can be trained to imitate
the optimal guidance policy, i.e. learn the functional relationship between sequence of images and
optimal thrust actions. We built two classes of networks of increasing complexity as function of
the descent problem. In the first case, we considered a vertical landing problem where the space-
craft drops vertically in a fuel efficient fashion toward the Moon surface. In this case, a CNN has
been trained and tested to predict the thrust level. The DAgger method has been implemented to
achieve 99.15% accuracy on the testing set. In the second scenario, we considered a planar (2D)
lunar landing problem where the spacecraft move to the desired state in a vertical plane. Here, we

19

101 4

loss

1072 4

103

10° 10! 102
epoch

(a) Classification loss of the deep RNN-LSTM-CNN during training

103 4

102 4

10! 4

loss

10° 4

10-1 4

100 10! 102
epoch

(b) Regression loss of the deep RNN-LSTM-CNN during training

Figure 17: Classification and regression losses evolution during training phase of the deep RNN-
LSTM-CNN

designed and tested a RNN-LSTM-CNN network capable of predicting both thrust magnitude and
thrust direction as function of a sequence of images. Performances on the testing set show that
the network can achieve an accuracy of 98.51% on thrust level prediction and RMSE of 0.76° on
the thrust direction. Although deep networks are computationally expensive to train off-line, we
have showed that deep networks can be in principle employed to effectively tackle the problem of
autonomous landing.

20

35,86%

1092
62,65%

Output class

98,51%
1,49%

0%

Target class

Figure 18: Confusion matrix for the deep RNN-LSTM-CNN Thrust Magnitude

140 A

120 A

100 A

Predictions |deg|

2]
o
L

60

60 80 100 120 140

Target |deg|]

Figure 19: Regression for the deep RNN-LSTM-CNN Thrust Angle Predicition

21

REFERENCES

(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]
(9]

(10]

(11]

(12]

[13]

[14]

[15]
[16]

(17]

(18]

Klumpp, A.R., Apollo Lunar Descent Guidance, Automatica, Vol. 10, No. 2, 1974, pp. 133-146.
Klumpp, A.R., A Manually Retargeted Automatic Landing System for the Lunar Module (LM), Jour-
nal of Spacecraft and Rockets, Volume 5, No. 2, 1968, pp. 129-138.

Chomel, C., T., and Bishop, R., H., Analytical Lunar Descent Algorithm, Journal of Guidance, Con-
trol, and Dynamics, Vol. 32, No. 3, 2009, pp. 915-927.

Guo, Y., Hawkins, M., Wie, B. (2013). Applications of generalized zero-effort-miss/zero-effort-
velocity feedback guidance algorithm. Journal of Guidance, Control, and Dynamics, 36(3), 810-820.
Wibben, D. R., Furfaro, R. (2016). Optimal sliding guidance algorithm for Mars powered descent
phase. Advances in Space Research, 57(4), 948-961.

Wang, D. Y. Study Guidance and Control for Lunar Soft Landing, Ph.D. Dissertation, School of
Astronautics, Harbin Institute of Technology, Harbin, China, 2000.

Wibben, D. R., Furfaro, R. (2016). Terminal guidance for lunar landing and retargeting using a hybrid
control strategy. Journal of Guidance, Control, and Dynamics, 1168-1172.

Liu, X., Lu, P, Pan, B. (2017). Survey of convex optimization for aerospace applications. Astrody-
namics, 1(1), 23-40.

Gaskell, R. W., BarnouinJha, O. S., Scheeres, D. J., Konopliv, A. S., Mukai, T., Abe, S., ... Kawaguchi,
J. (2008). Characterizing and navigating small bodies with imaging data. Meteoritics Planetary Sci-
ence, 43(6), 1049-1061.

Lorenz, D. A., Olds, R., May, A., Mario, C., Perry, M. E., Palmer, E. E., Daly, M. (2017, March).
Lessons learned from OSIRIS-Rex autonomous navigation using natural feature tracking. In Aerospace
Conference, 2017 IEEE (pp. 1-12). IEEE.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. ImageNet classification with deep convolutional neural
networks. In NIPS, pp. 11061114, 2012.

Socher, R., Bengio, Y., Manning, C. (2013). Deep learning for NLP. Tutorial at Association of Com-
putational Logistics (ACL), 2012, and North American Chapter of the Association of Computational
Linguistics (NAACL).

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... Kingsbury, B. (2012).
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. IEEE Signal Processing Magazine, 29(6), 82-97.

Furfaro, R., Simo, J., Gaudet, B., Wibben, D. (2013, August). Neural-based trajectory shaping ap-
proach for terminal planetary pinpoint guidance. In AAS/AIAA Astrodynamics Specialist Conference
2013 (pp. Paper-AAS).

Gaudet, B., Furfaro, R. (2014). Adaptive pinpoint and fuel efficient mars landing using reinforcement
learning. IEEE/CAA Journal of Automatica Sinica, 1(4), 397-411.

Snchez-Snchez, C., Izzo, D. (2018). Real-time optimal control via Deep Neural Networks: study on
landing problems. Journal of Guidance, Control, and Dynamics, 41(5), 1122-1135.

Patterson, M. A., Rao, A. V. (2014). GPOPS-II: A MATLAB software for solving multiple-phase opti-
mal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear
programming. ACM Transactions on Mathematical Software (TOMS), 41(1), 1.

Ross, S., Gordon, G., Bagnell, D. (2011, June). A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics (pp. 627-635).

22

