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Computing and modifying in real-time the trajectory of an industrial robot involved in a Human-Robot Collaboration (HRC) scenario is a 
challenging problem, mainly because of two conflicting requirements: en-suring the human worker’s safety and completing the task assigned to 
the robot. This paper proposes a novel trajectory generation algorithm conceived to maximize productivity while taking into account safety 
require-ments as actual constraints. At first, safety constraints are formulated by taking into account a manipulator and a set of arbitrarily-
shaped convex obstacles. Then, a sensor fusion algorithm merges together the measurements acquired from different depth sensors and outputs 
a noise-free estimation of the kinematic configuration of a human worker moving inside the robotic cell. This estimation is then used to predict 
the space that the human worker can occupy within the robot stopping time in terms of a set of convex swept volumes. By considering these 
swept volumes as obstacles, the robot controller can modify the pre-programmed trajectory in order to enforce the safety constraints (thus 
avoiding collision with the human worker), while preventing task inter-ruption. The proposed trajectory generation algorithm is validated 
through several experiments performed on an ABB IRB140 industrial robot.

1. Introduction

Industrial robots are able to offer fast and accurate task execution in
various industrial applications like for instance: welding, painting,
packaging, palletizing, etc. Nevertheless they are still rarely used within
Small and Medium-sized Enterprises (SMEs), mainly because installa-
tion, setup and programming of a robotized workstation are time-con-
suming activities that require a lot of skilled engineering effort.
Moreover, industrial robots usually need to be separated from the
human workspace by physical barriers [1] for safety reasons. Given
these limitations and considering also limited budget and constraints on
space consumption, it is clear why the large majority of SMEs cannot
afford to extensively use industrial robots. On the other hand the
elimination of physical barriers to allow direct Human-Robot Colla-
boration (HRC) surely represents the key factor that will facilitate in-
dustrial robots to be massively used also in SMEs.

However, HRC requires a balance between safety and productivity:
the human worker should not be harmed by the robot (see [2,3]), but
also production constraints (i.e. programmed task requirements) should
not be violated, in order to preserve the manipulator’s productivity.
Recently several contributions to the problem of planning and control

of industrial manipulators for safe HRC have been proposed. For in-
stance [4] describes a passivity based controller that produces slower
motion profiles when the human/robot distance decreases. Different
approaches relying on evasive motion in order to avoid human-robot
collisions have also been proposed, ranging from potential fields [5] to
velocity obstacles [6], Danger Field [7–9], depth spaces [10] and Safety
Field [11].

On the other hand, several collision detection (see [12]) and reac-
tion strategies have also been proposed, like for instance [13,14]. In
particular [15] discusses a comparison between different collision re-
action strategies aiming at ensuring human safety in physical-HRC
scenarios, while [16] and [17] introduce real-time self collision de-
tection algorithms for both humanoid and industrial robots, based on
the concept of “swept volumes”. The most relevant safety standards
published in the last few years [18,19] introduced “speed and separa-
tion monitoring” criteria, according to which a minimum separation
distance (depending on Tool Center Point velocity and/or payload)
must be kept between an industrial manipulator and a human worker.
Even though the most recent safety standard [20] allows physical
contact between the robot and the human worker, there are several
scenarios in which human-robot collisions should be avoided. For
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The main contributions of this work can be listed as follows:

• a sensor fusion algorithm that merges together the measurements
acquired from different depth sensors to estimate human joint po-
sitions and velocities;

• a novel strategy to predict human space occupancy that results in
a much more accurate and significantly less conservative prediction
with respect to state of the art alternatives;

• a reactive trajectory generation algorithm that allows the ma-
nipulator to deviate from a pre-programmed path in order to satisfy
minimum separation distance constraints.

To sum up, the whole system works in the following way.
Considering the aforementioned human kinematic model, a set of joint
positions can be extracted from 3-dimensional skeletal points acquired
from several depth sensors. These measurements are merged together
by the sensor fusion algorithm that outputs the estimation of the human
joint positions and velocities. Differently from the approaches in-
troduced in [24] and [26], not only the proposed sensor fusion algo-
rithm relies on more than one sensor, but it also allow to robustly es-
timate the kinematic configuration of the human worker in presence of
measurement noise, sensor failures, outliers and occlusions.

The estimated kinematic configuration allows to predict the space
occupancy of the human worker within the robot worst-case braking
time (see [35]). This prediction consists in a series of swept volumes
that, differently from what was originally proposed in [26], are com-
puted on the basis of both human joint positions and velocities. This
solution allows to obtain a much more accurate and significantly less
conservative prediction of human occupancy, particularly for slow
motions. Since this predicted occupancy consists in a series of convex
swept volumes, the minimum distance criterion can be formulated for
each volume in terms of “safety constraints”, as they were introduced in
[24] and further refined in [25] and [26].

Finally, constrained optimization is employed in order to ensure
that the robot motion satisfies these safety constraints, while mini-
mizing deviations from the pre-programmed trajectory. With respect to
the kinematic scaling algorithms proposed in [24–26], this solution
allows to significantly reduce the amount of time during which the
manipulator is still, thus improving its efficiency without violating the
safety constraints.

The paper is organized as follows. Section 2 summarizes our pre-
vious work regarding safety constraints, while the adopted human ki-
nematic model and the occupancy prediction strategy are described in
Section 3. Section 4 focuses on the sensor fusion algorithm that esti-
mates the kinematic state of the human worker by merging together
multiple depth sensor measurements. This estimate acts as the main

input of the trajectory generation algorithm introduced in Section 5.
Section 6 presents the case study against which our proposed method
has been tested and analyzes the results of several validation experi-
ments. Finally, Section 7 compares the proposed approach with state-
of-the-art techniques, while concluding remarks and future work di-
rections can be found in Section 8.

2. Background on safety constraints

One of the fundamental elements of the proposed trajectory gen-
eration algorithm is the concept of “safety constraints”, i.e. a set of
mathematical constraints guaranteeing that, in presence of one or more
detected obstacles, the robot is always able to stop before colliding with
the environment. In other words, the robot trajectory must obey, at all
time, the minimum separation distance criterion, defined as:

≤ −velocity T distance clearance· max(0, )s (1)

where “velocity” represents the robot speed in the direction of the ob-
stacle, the worst-case braking time Ts possibly depends on the robot
payload [1], “distance” is the distance between the robot and a generic
obstacle (possibly a human worker) and the “clearance” parameter al-
lows to take into account both robot and obstacle dimensions, sensor
uncertainties and ultimately an actual clearance. For the sake of
clearness, a visual representation of the minimum separation distance
criterion is shown in Fig. 1, where an example of the here proposed
prediction of human occupancy is shown. It is worth mentioning that an
alternative, yet equivalent, interpretation of inequality (1) consists in
stating that the robot speed must be adapted on the basis of the distance
with respect to the obstacles, hence leading to the speed and separation
monitoring approach. In the following we report some background
material on the derivation of the safety constraints. Starting from in-
equality (1), we first formulate the safety constraints for the case of

Fig. 1. Image representation of the minimum separation distance criterion. Top - dis-
tance1: separation distance between the human skeleton and the robot. Mid - distance2:
separation distance between the human occupancy (predicted within Ts) and the robot
moving at velocity for Ts s. Bottom - distance3: separation distance between the human
occupancy, plus the clearance parameter, and the moving robot.

instance, the robot should never hit the human worker’s head and 
collisions involving heavy-payload manipulators should be always 
avoided.

Several control policies that are compliant to these criteria have 
been proposed recently, like for instance in [21–23]. In particular,
[24–26] proposed various control algorithms that rely on kinematic 
scaling in order to satisfy the “minimum separation distance” criterion. 
Clearly, to ensure and improve the effectiveness of these control stra-
tegies it is necessary to predict “human occupancy”, i.e. the space oc-
cupied by the human during a certain amount of time. In the last few 
years several contributions have focused on predicting human motion, 
mainly in terms of forecasting the final destination of a human walking 
trajectory [27,28], but also in terms of estimating human occupancy 
[29,30]. Finally, the application of these prediction algorithms for 
control purposes has been investigated in [31–33], mainly in terms of 
pre-collision strategies. For instance, in [34] the authors exploit a 
prediction of human occupancy (obtained by merging multiple depth 
sensor measurements) together with a forward physical simulation of 
the robot in order to stop its motion whenever an imminent collision is 
detected.



point-shaped obstacles (as introduced in [24]) and then we generalize
them for arbitrarily-shaped convex obstacles (as proposed in [26]).

2.1. Safety constraints for point-shaped obstacles

Consider Fig. 2 which shows a point obstacle robst as well as a
generic robotic link, represented as a rigid beam whose endpoints are at
positions ra and rb.

Defining rs a generic point on the robot link (with velocity vs), the
safety requirement (1) can be rewritten in the form of the following
inequality:

−
−

≤ − −v r r
r r

r rT max(0, Δ)s
obst s

obst s
obst s

T
s

(2)

where Δ is a clearance parameter. This constraint can be further ar-
ranged as

− ≤ − − −v r r r r r rT( ) max(0, Δ )s obst s obst s obst s
T

s
2 (3)

Assume now the following parametrization of the link in terms of po-
sitions and velocities of its end points

= + − = + −r r r r v v v vs s( ) ( )s a b a s a b a (4)

where s∈ [0, 1] is a natural coordinate. In order to enforce the safety
constraints, we require the inequality in (3) to be satisfied for all s∈ [0,
1]. The left hand side becomes
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Notice that vector −v v( )b a represents the time derivative of vector
−r r( ),b a whose norm is invariant with respect to time. Consequently,

the two vectors are perpendicular and the coefficient of s2 is null.
As for the right hand side, notice that

− − ≤ − − −r r r r r r[max(0, Δ)] max(0, Δ )obst s obst s obst s
2 2

(6)

As a result, the set of inequalities describing the safety constraints
can be written as follows

+ ≤ ∀ ∈α βs g s s( ), [0, 1] (7)

where
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By noticing that the left hand side is a linear function in s, it is possible
to write the following sufficient condition for the safety constraint (7)
to be satisfied

+ ≤α α β g smax{ , } min ( )
s (9)

In turn, within the right hand side term, it is possible to exchange the
min and max operators, obtaining
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where the term − −r rmin Δobst ss represents, when it is positive, the
distance between a sphere of radius Δ centered in robst and the segment
from ra to rb. Finally, we obtain the following pair of inequalities
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Summarizing, in case of point-shaped obstacles, the minimum separa-
tion distance criterion can be written in matrix form as ≤Eq fT ˙s where

= ⎡
⎣⎢

−
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⎤
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T
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Ja and Jb are position Jacobians of the two link end points. It is worth
mentioning that possible rotational velocities of the link are ignored in
the formalization of the safety constraints, since they do not impact on
the distance between the beam and the obstacles.

2.2. Safety constraints for arbitrarily-shaped convex obstacles

In order to extend the formulation of the safety constraints to ob-
stacles having more complex geometry, let us consider a generic poly-
topic obstacle O, as shown in Fig. 3. The constraints to be enforced for
such an obstacle can be written as follows

O≤ ∀ ∈E r q f r rT ( ) ˙ ( ),obst obst obsts (13)

The number of constraints to be enforced at run time is conceptually
infinite, i.e. one per each point belonging to O . However, some geo-
metrical properties of the obstacle can be exploited in order to make the
problem tractable. A sufficient condition for (13) to be satisfied for all
points O∈robst is

O≤ ⎡
⎣⎢

⎤
⎦⎥

∀ ∈E r q rT d( ) ˙ 1
1 ,obst obsts

(14)

where the right hand side term O= ∈ ∞f rd min ( )r obstobst represents the
minimum distance between the link of the robot and the polytopic
obstacle O . It can be easily computed using the GJK algorithm, [36].
Moreover, notice from (12) that the left hand side term is linear with
respect to the parameter O∈robst . Therefore the safety constraints re-
garding the pair link-obstacle can be written as follows
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⎤
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T
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O+ ≤ ∀ ∈r E E q rT d( ) ˙ ,obst 0 1 obsts
T (16)

Fig. 2. A rigid beam representing one link.

Fig. 3. A generic polytopic (convex) obstacle.



For linearity (and thus convexity) the aforementioned constraint
(which actually still consists of an infinite number of scalar inequalities)
can be equivalently written in terms of the vertices (thus a limited
number) of the polytope representing the obstacle O, hence

O∀ ∈r vert ( )obst .

3. Human kinematics and prediction of occupancy

In the previous Section, we presented a mathematical formulation to
represent the safety constraint arising in a typical human-robot colla-
boration scenario. As already discussed, even if it is possible to consider
arbitrarily geometrically shaped obstacles, their motion is not directly
accounted for in the expression of the safety requirement. However, in a
HRC setup, the motion of the human, and particularly the prediction of
his/her occupancy, has to be clearly taken into account to safely adjust
the trajectory of the robot.

In order to compute this prediction, we make use of a relatively
simple kinematic model suitable for real-time calculations. The model
of the human, see Fig. 4, consists of a mobile base that represents the
walking kinematics, one lumped one-DOF (flexion/extension) torso, a
fixed head and two four-DOF arms. The main objective of this Section is
to introduce a simple algorithm that predicts a volume around the
human silhouette, which can be possibly reached in Ts seconds, i.e.
within the time needed by the robot to stop.

In the following, further details regarding the kinematics of
walking, as well as the kinematic model of the human arm, are given.
The predicted reachable area will be represented in terms of super-
position of each possible motion (swept motion) in the corresponding
prediction horizon.

3.1. Modelling the kinematics of the human walk

For the description of the kinematics of walking, as suggested in e.g.
[27,37], we make use of the unicycle model

⎧
⎨
⎩

=
=
=

x v θ
y v θ
θ ω

˙ cos
˙ sin
˙ (17)

together with the following constraints on input velocities:

≤ ≤
≤ ≤
v v

ω ω ω
0 sup

inf sup (18)

where x, y and θ describe the walking human pose with respect to the
world base frame, v is the linear velocity and ω is the angular velocity.
We explicitly exclude the possibility of walking backward, since it is a
quite unsafe and uncommon behaviour in an industrial environment.

In order to compute the human walking reachable set in Ts seconds,
at first we consider a generic starting configuration:

= = =
= =

x x y y θ θ
v v ω ω

(0) , (0) , (0)
(0) , (0)

0 0 0

0 0 (19)

Moreover, in addition to constraints (18), we impose fixed lower and
upper bounds on linear and angular accelerations: v̇ ,inf v̇ ,sup ω̇inf and

ω̇ ,sup respectively. Consequently, it is possible to compute the minimum
and maximum velocities that a walking human can reach within Ts
seconds:

=
= +
= +
= +

v
v min v v T v
ω max ω ω T ω
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0
{ ˙ · , }
{ ˙ · , }
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s
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max sup
s

sup

0

0

0

Similarly to the calculations presented in [26], these minimum and
maximum velocities can be used to determine a conservative approx-
imation of the human walking Ts-reachable set in terms of two distinct
circular sectors of radius =R v T ,s

max spanning two different angles βmin

and βmax with respect to the original direction of motion θ0, as shown in
Fig. 5. In particular:
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In this way, the human walking model can be described as a com-
position of two independent degrees of freedom (DOFs): a rotational
one followed by a translational one. The corresponding reachable set
follows immediately from this approximation:
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= ⎡

⎣
⎢

⎤

⎦
⎥ = ⎡

⎣⎢ +
⎤
⎦⎥

−

+y
y

y
y

y v T θsinT
T

T
max

s

0

0 0s
s

s (23)
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Fig. 4. Kinematic model of the human: DOFs, frames and bodies.

Fig. 5. Unicycle reachable set (dashed) and its convex approximation (solid bold).



⎧

⎨
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⊥
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˙ cos sin
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≤ ≤⊥ ⊥ ⊥v v vinf sup (26)

where v⊥ is a velocity component that is orthogonal with respect to the
forward direction of the human defined by θ.

Given an initial orthogonal velocity v⊥, 0 and introducing ⊥v̇inf and
⊥v̇ sup as lower and upper bounds on orthogonal acceleration, the
minimum and maximum orthogonal velocities that a walking human
can reach within Ts seconds are:

= +⊥ ⊥ ⊥ ⊥v v v T vmax{ ˙ · , }min inf
s

inf
,0 (27)

= +⊥ ⊥ ⊥ ⊥v v v T vmin{ ˙ · , }max sup
s

sup
,0 (28)

Consequently, the xTs and yTs components of the reachable set de-
termined in (22) can be modified as follows:
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Finally, it is worth noticing that model (25) can be expressed in
terms of a linear formulation by simply considering fully de-coupled
linear velocities vx and vy:
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As a matter of fact, the new formulation is completely equivalent to the
previous one, since a unique correspondence exists between the two
different sets of velocities:
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3.2. Modelling the human arm kinematics

As for the human arm, we make use of a well-known model, sket-
ched in Fig. 6, comprising one spherical joint representing the shoulder
and one additional DOF for the elbow, see e.g. [39,40]. Moreover, we
add a rotational joint modelling the flexion/extension of the torso be-
fore the arm kinematic chain, i.e. the ρ joint angle in Fig. 6.

The workspace of the human arm is clearly limited due to some
intrinsic limitations in the gleno-humeral joint (shoulder) as well as in
the elbow. Differently from robots, however, these limits are coupled,
as described e.g. in [41]. In this work, the authors identify the ad-
missible range of motion of a healthy human arm as the region iden-
tified by the following constraints:1

− ≤ ≤α9 1601 (34a)

− + ≤ ≤ −α α α43
3

153
6

1
2

1
(34b)

− + − + ≤ ≤ + − +α α α α α α α α α90 7
9 9

2
810

60 4
9

5
9

5
810

1 2 1 2
3

1 2 1 2
(34c)

≤ ≤α20 1804 (34d)

where ⋯α α, ,1 4 are the arm joint angles shown in Fig. 6. As for the
flexion/extension of the torso we consider the following bound

− ≤ ≤ρ30 90 (35)

Given a kinematic configuration (i.e. α and α̇) and worst-case, thus
conservative, acceleration bounds α̈ sup and α̈ ,inf the reachable set in Ts
seconds

= − +[ ]α αα ,T T
T

T
T T

s s s (36)

can be computed according to Algorithm 1. Given an arm joint, to
compute its maximum reachable value (lines 2–7), the maximum ac-
celeration is uniformly applied for Ts s (line 3). In case the maximum
joint velocity is reached, the corresponding instant T* is identified (line
5) and a null acceleration is applied from T* to Ts (line 6). The same
procedure is used to determine the minimum reachable value of the
arm joint (lines 8–13).

Identical considerations lead to the calculation of = ⎡⎣ ⎤⎦
− +ρ ρ ρ,T T T

T
s s s

.
Finally, we limit the obtained result to the region inside the joint angle
limits, previously introduced in (34) and (35).

3.3. Prediction and representation of the human occupancy

In the following we present a method to predict the occupancy of
the human silhouette in terms of a series of convex polytopes, using the
computation of the reachable sets for each DOF. Assume a given con-
figuration of the human upper body:

=

=

p

p

x y θ ρ

v v ω ρ

α α

α α

[ ]

˙ [ ˙ ˙ ˙ ]

right left

right left

T

x y
T

(37)

where ẋ and ẏ are defined according to (17), while αleft and αright are
the joint angles vectors for the left and right arm, respectively. Once we
determine, for each DOF, the Ts-reachable set lower and upper bounds

⎡⎣ ⎤⎦=− − − − − − −p x y θ ρ α αT
left right

T T T T T T
T

s s s s s s s (38)

⎡⎣ ⎤⎦=+ + + + + + +p x y θ ρ α αT
left right

T T T T T T
T

s s s s s s s (39)

the problem of computing and representing the human occupancy can
be solved by mapping the following inequalities into a corresponding
region inside the 3D Cartesian space:

Fig. 6. Kinematic model of the human (right) arm and torso flexion/extension angle ρ.

1 All listed parameters are referred to angles in degrees.

Finally, in order to account for lateral walking, it is possible to ex-
tend model (17) according to [38]:



≤ ≤− +( )( )p p p p pmin , max ,T Ts s (40)

where the min ( · ) and the max ( · ) functions are applied element-wise
in order to guarantee that, for each DOF, all the possible values ranging
from the start configuration to the Ts-reachable set are actually con-
sidered.

Given a generic 3-dimensional convex object O, there are two dif-
ferent swept volumes that can be computed: a translational swept vo-
lume and a rotational one, depending on the kind of motion O is sub-
jected to. If we consider a prismatic joint, the translational swept
volume of O can be computed by applying the corresponding transla-
tion to each point belonging toO and by determining the convex hull of
the resulting points, as shown in Fig. 7.

In turn, for a rotational DOF, we exploit one of the methods de-
scribed in [16]. In particular, when applying a rotation to each point
belonging toO, we obtain a circular arc. A possible way to approximate
this arc with a finite number of points is to construct a triangle as it is
shown in [16, Fig. 3(c)]. Therefore, the rotational swept volume of O
can be easily obtained as the convex hull of the vertices of all the tri-
angles, see Fig. 8.

Knowing how to determine the translational and rotational swept
volumes for a generic set of points, the prediction of human occupancy
can be determined by computing a specific swept volume for each limb:
head (HD), thorax (THX), upper left arm (from shoulder to elbow -
ULA), lower left arm (from elbow to wrist - LLA), upper right arm
(URA) and lower right arm (LRA). Assume that a convex objectVl re-
presenting the lth limb is given by means of its vertices set. Then, re-
ferring to the tree describing the human kinematic model in Fig. 4, a list
of DOFs from the current limb to the world frame can be arranged.

Consequently, the swept volume of the lth limb can be determined
by iteratively applying the proper sweeping strategy toVl for each DOF
connecting the lth limb to the world-base frame. Each sweeping op-
eration is calculated on the basis of the upper and lower bounds −pTs

and
+pTs

previously computed (see Sections 3.1 and 3.2). A pseudo-code
version of this procedure is sketched in Algorithm 2, where:

• kinematicChain(l, p) is a function that computes P , i.e. the set of
DOFs connecting the limb to the world-base frame. The set is or-
dered starting from the limb and going backwards along the kine-
matic chain until the world-base frame is reached;

• InitSweptVolume() is a function that initializes a swept volume by
including into the set the endpoints of the link corresponding to the
first DOF;

• isPrismatic(pi) is a logical predicate that is true if its argument is a

prismatic DOF and false otherwise;

• −pT i,s
and +pT i,s

are, respectively, the lower and upper bound of the i-th
DOF selected by kinematicChain;

• V − +sweepLin p p( , , )T i T i, ,s s
computes the translational swept volume of

the set of pointsV , given the DOF bounds;

• V − +sweepRot p p( , , )T i T i, ,s s
computes the rotational swept volume of

the set of pointsV , given the DOF bounds;
• −Ai

i
1 is the linear transformation matrix from frame i to frame −i 1,

with respect to the output of kinematicChain;

• rl
j is the jth vertex of the lth swept volumeVl .

The resulting representation of human occupancy is shown in Fig. 9.
Finally, in order to account for the dimensions of the different human

1: for all αi ∈ α do
2: if α̇i + α̈

sup
i Ts ≤ α̇sup

i then
3: α+Ts,i

= αi + α̇iTs +
1
2 α̈

sup
i T 2

s
4: else
5: T ∗ =

(
α̇

sup
i − α̇i

)
/α̈

sup
i

6: α+Ts,i
= αi + α̇iT ∗ + 1

2 α̈
sup
i (T ∗)2 + α̇

sup
i (Ts − T ∗)

7: end if
8: if α̇i + α̈

in f
i Ts ≥ α̇in f

i then
9: α−Ts,i

= αi + α̇iTs +
1
2 α̈

in f
i T 2

s
10: else
11: T ∗ =

(
α̇

in f
i − α̇i

)
/α̈

in f
i

12: α−Ts,i
= αi + α̇iT ∗ + 1

2 α̈
in f
i (T ∗)2 + α̇

in f
i (Ts − T ∗)

13: end if
14: end for

Algorithm 1. Human arm Ts-reachable set αTs.

Fig. 7. Translational swept volume of convex objects and its convex hull.

Fig. 8. Rotational swept volume of convex objects and its convex hull.



body parts, a radius parameter r is introduced and each convex swept
volume V is augmented by computing the Minkowski sum ⊕ of its
convex hull and a sphere of radius r:

V SV V V �∀ ∈ ⇒ = ⊕ ∈ ≤convhull b b r( ) { : }l l
r

l
3 (41)

It is worth mentioning that the so-called “sphere-swept volumes”Vl
r

are used only for visualization purposes. As a matter of fact, according
to the formulation of the safety constraints given in Section 2, it is
possible to incorporate the radius r inside the clearance parameter d of
equation (16) and to define the safety constraints directly for each
swept volumeVl .

4. Multiple depth-sensor measurements fusion

The occupancy prediction algorithm detailed in the previous Section
requires human joint positions and velocities to be known in real-time.
Depth sensors, like for instance Microsoft Kinect and ASUS Xtion, re-
present the most reasonable choice in order to track the motion of the
full human upper body, since the 3-dimensional points acquired via
skeletal tracking can be easily converted to human joint positions.
However, not only these sensors do not provide any information re-
garding human joint velocities, but also numerical differentiation be-
tween consecutive joint positions is not a feasible option because of the
noise affecting the measurements and also because of the interferences
among the sensors.

Consequently, to estimate the kinematic configuration of a moving
human worker using several depth sensors, we need to develop a sensor
fusion strategy that:

• merges together the skeletal tracking measurements acquired by the
different sensors;

• filters the noise affecting the acquired data;

• is able to estimate human joint velocities without relying on direct
velocity measurements.

Given that both model (31) and the arm kinematics discretization
introduced in Algorithm 1 are linear, a suitable solution to the sensor

fusion problem is represented by a Linear Kalman Filter (LKF) [42].
The main steps of the sensor fusion strategy are highlighted in

Algorithm 3, where:

• pi, k are the joint positions acquired at time step k by the ith sensor;

• πi, k are the kinematic parameters (i.e. the distances between the
skeletal points) acquired at time step k by the ith sensor;

• validi, k is a boolean variable whose value is True in case the mea-
surements acquired at time step k by the ith sensor are valid and
FaLse otherwise;

• zk is the complete measurements vector at time step k;

•   ̂ ̂= ⃛s p p p p π[ , ˙ , ¨ , , ]k k k k k k is the state estimate computed by the LKF at
time step k. It contains estimated joint positions, velocities, accel-
erations, jerks, and it also includes the estimation of the distances
between the skeletal points of the tracked individual;

• Pk is the process covariance matrix of the LKF at time step k;

• Rk is the observation covariance matrix of the LKF at time step k;

At first, all the acquired measurements are packed together (line 1).
Then, the validity of the acquired measurements is checked (lines 2–4,
details in Section 4.1.2). and the observation covariance matrix Rk is
updated (line 5), according to the procedure described in Section 4.1.1.
At this point, an iteration of the LKF is executed (line 6). Finally, the
resulting kinematic state estimate is refined to satisfy the bounds on
joint positions (pinf and psup), velocities (ṗinf and ṗsup) and accelerations
(p̈inf and p̈sup) introduced by inequalities (18), (26), (34) and (35) (lines
7–9, details in Section 4.2). In the following, each phase of the algo-
rithm is described in detail.

Differently from [34], our sensor fusion strategy is based on a single
LKF that merges together all the measurements acquired by the dif-
ferent depth cameras. Furthermore, our approach works at Joint level,
rather than in the Cartesian Space, thus allowing the resulting estimate
to directly comply with the aforementioned limits on joint positions,
velocities and accelerations.

4.1. KF-Based multiple depth sensor fusion

As stated before, in order to merge together the different

1: SV ← ∅;
2: L = {HD, T HX, ULA, LLA, URA, LRA};
3: for all l ∈ L do
4: P = kinematicChain(l, p);
5: Vl ← InitS weptVolume();
6: if isPrismatic(p1) then
7: Vl ← sweepLin

(
Vl, p−Ts,i

, p+Ts,i

)
;

8: else
9: Vl ← sweepRot

(
Vl, p−Ts,i

, p+Ts,i

)
;

10: end if
11: for all pi ∈ P do
12: if pi � p1 then
13: Vl ← Ai

i−1 · Vl =
{
Ai

i−1 · r j
l | r j

l ∈ Vl

}
;

14: if isPrismatic(pi) then
15: Vl ← sweepLin

(
Vl, p−Ts,i

, p+Ts,i

)
;

16: else
17: Vl ← sweepRot

(
Vl, p−Ts,i

, p+Ts,i

)
;

18: end if
19: end if
20: end for
21: SV ← SV ∪ {Vl};
22: end for

Algorithm 2. Swept Volume Calculation.



In detail:

= ++s s ηFk k k1 (42)
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In particular, N∼η G(0, )k models the process noise, whose covar-
iance matrix G can be parametrized as follows. For each block of the
state vector we consider the Cauchy remainder of the Taylor approx-
imations contained in matrix F:
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where standard deviations σp, σ ,ṗ σp̈ and ⃛σp depend on the entity of the
first neglected derivative (jerk).

Regarding the observation model, since the inverse kinematics of
the human motion model can be computed in closed-form, we consider
as observed output vector zk already introduced in Algorithm 3.

Consequently we consider as observation model the following linear
transformation:

= +z s ζHk k k (45)
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Moreover, N∼ζ R(0, )k 0 models the measurement noise, whose
covariance matrix is given by:

=R σ Iz0
2 (47)

where standard deviation σz depends on the accuracy measure that the
OpenNI driver2 returns for each skeletal points acquired.

4.1.1. Synchronizing the LKF and the data acquisition process
A relevant issue in the design of this sensor fusion strategy is the

lack of synchronization between the acquisition process and the process
implementing the LKF. As a matter of fact, in order to ensure accurate
estimation we need to run the LKF at a frequency that usually is much
greater than the data acquisition frequency. Consequently the filter will
execute several iterations on the basis of the same set of measurements.

A possible solution consists in updating the observation covariance
matrix Rk according to the presence (or not) of new measurements, in
such a way that each element on the main diagonal of Rk follows a saw
tooth shape. More specifically, every time the LKF process receives a
new set of measurements, the corresponding blocks of matrix Rk are
reset to σ Iz

2 . On the other hand, whenever the same set of measure-
ments is re-used, the corresponding blocks in Rk are updated by adding
σ Iz

2 . In this way we obtain an uncertainty that is reset to a starting value
whenever a new measurement arrives and that grows linearly in time
between two consecutive measurements.

4.1.2. A-posteriori state estimation in presence of non-valid measurements
Data acquired from depth sensors can suffer from non-valid mea-

surements due to various reasons: occlusions, distance from the sensor,
field of view, etc. To this regard, the OpenNI driver outputs a con-
fidence measure associated to each skeletal point, ranging from 0 to 1.
For instance, when a skeletal point is occluded by another object, its
confidence rapidly decreases to zero. The same situation happens
whenever the point leaves the field of view of the camera or when it is
too near with respect to the sensor. As far as the possibility of objects
being merged with the human skeleton is concerned, the Kalman Filter
is naturally able to diminish the impact of such outliers. Moreover,
evident outliers can be identified by comparing the acquired skeletal
points with the output of the human forward kinematics applied to the
KF state estimate.

In Algorithm 3, for each set of measurements pi, k and πi, k a boolean
variable, named validi, is instantiated. Whenever the product (or sum)
of the confidence measures is higher than a tunable threshold, validi is
set to true, otherwise it is set to false. In case at time step k there are no
valid measurements available, the filter directly outputs the a-priori
estimate:

̂ ̂=− −s sFk k k1 1 (48)

= +− −P F P F Gk k k
T

1 1 (49)

̂ ̂← −s sk k k 1 (50)

← −P Pk k k 1 (51)

while if there is at least one valid measurement, the filter also executes
the prediction update and outputs the a-posteriori state estimation:

Fig. 9. Swept volumes computed on the basis of joint positions and velocities and fixed
bounds on joint accelerations.

2 OpenNI - The standard framework for 3D sensing, http://www.openni.org/, March
2013

measurements acquired from the available depth sensors, we make use 
of a LKF. The adopted process model consists in a 3rd-order Taylor 
approximation for each joint variable. Regarding the walking kine-
matics, we here consider model (31) since it is linear and all the state 
variables are fully decoupled, while with regard to the arms kinematics 
we consider the model previously introduced in [40,43].

The filter state vector s contains joint positions, velocities, accel-
erations and jerks (see (43)). It also includes the kinematic parameters 
π that are estimated by imposing a constant dynamic, due to the fact 
that distances between the skeletal points can be considered constant.

http://www.openni.org/
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= − −P I HK P( )k k k k k 1 (55)

̂ ̂←s sk k k (56)

←P Pk k k (57)

In order to prevent non-valid measurements from affecting the a-
posteriori state estimate ̂s ,k k we set to zero all the corresponding
components of the innovation signal ∼yk in equation (54):

∀ ∈ = = ⇒ ←∼yi n valid False[1, ], ( ) 0i i k, (58)

As a matter of fact this solution is equivalent to consider a time-
varying observation matrix Hk, whose blocks switch between the
identity and the null matrix. A similar solution has been proposed in
[44] where, in case at time step k an observation is absent, the corre-
sponding element of the diagonal noise covariance matrix is set to

→+∞σlimσ
2. Consequently, the corresponding row of matrix Kk tends to

the null vector, hence trivializing the update formulas (53)–(55).
However, our approach differs from this solution in several ways. First,
we treat in the same way missing and non valid measurements, thus
making the resulting estimation more robust with respect to sensor
occlusions and failures. Furthermore, as explained in Section 4.1.1, our
solution exploits a time-varying noise observation matrix Rk in order to
address also unsynchronized observations.

Finally, it is worth noticing that the presence of the time-varying
matrices Hk and Rk does not invalidate the stability and correctness
property of the LKF, since the corresponding linearity and Gaussianity
requirements are always met.

4.2. Bounded kinematic state estimation

Clearly, the estimation computed by the LKF ̂sk does not necessarily
satisfy the chosen bounds on joint positions (pinf and psup), velocities
(ṗinf and ṗsup) and accelerations (p̈inf and p̈sup). Consequently, it might
be necessary to refine the kinematic state estimation in order to enforce
its coherence with respect to the aforementioned bounds. To this pur-
pose we consider the following QP problem:
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s

2
͠ (59a)

≤s bA ͠ (59b)
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Thanks to the theoretical results presented in [45,46], problem (59)
can be solved by finding the solution of an equivalent QP problem. This
problem can be formulated by considering the same cost metric, but
taking into account only the active set of constraints, expressed as
equality constraints. As a matter of fact, this QP problem can be solved
by simply imposing, to each element of the original estimate ̂s , the
corresponding saturation functions:

̂∀ ∈ ⇒ =ss s min max s s s( ( , ), )͠ ͠͠i i i i
inf

i
sup (61)

As a consequence, the estimation computed by the LKF can be easily
modified in order to satisfy the imposed bounds. At first, we update the
estimated joint positions according to the imposed bounds:

 ← =∼p p p p pmax( , min( , ))k k
inf

k
sup (62)

where the max ( · ) and the min ( · ) functions are applied element-wise.
Then, the refined joint positions pk are used in combination with the
imposed velocity bounds to update the estimated joint velocities, thus
obtaining:
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(65)

Finally, by applying this update procedure to joint accelerations, we
obtain the estimation of the human worker’s kinematic state that best
fits the acquired measurements, while being fully coherent with respect
to position, velocity and acceleration bounds. Clearly, the obtained
kinematic state is sent back to the LKF in order to keep the evolution of
the filter coherent with respect to the output of the sensor fusion al-
gorithm.

5. Safety-aware trajectory generation algorithm

In this Section the safety-oriented trajectory generation algorithm is
discussed. The algorithm is formulated in terms of a QP problem whose
solution, at each time step k, consists in a set of joint reference accel-
erations, treated as control variables: =u q̈k k

ref .
Several control strategies based on constrained optimization have

been proposed in the last few years. For instance, in [47,48] a con-
straint-based strategy is proposed to allow specification of complex
tasks. More specifically, QP techniques have been used in [49,50] to
address also the problem of kinematic redundancy, while a constraint-
based algorithm working at the acceleration level can be found in [51].
Finally, several constraint-based control strategies have been proposed
to manage a prioritized hierarchy of tasks, like for instance [52–54]. In
this context, the main distinctive feature of the algorithm here proposed
is represented by the fact that it incorporates the previously defined
safety constraints in order to reactively adapt the pre-programmed

1: zk =
[
p1,k, . . ., pn,k,π1,k, . . .,πn,k

]
;

2: for all i ∈ [1, . . ., n] do
3: validi,k ← ();
4: validi,k ← valid

(
pi,k,πi,k

)
;

5: end for
6: Rk ← updateObservationCov();
7: [ŝk, Pk]← LKF

(
zk, valid1,k, . . ., validn,kRk

)
;

8: p̂k ← saturateJointPos
(
p̂k, p

in f , psup
)
;

9: ˆ̇pk ← saturateJointVel
(
p̂k, ˆ̇pk, ṗ

in f , ṗsup
)
;

10: ˆ̈pk ← saturateJointAcc
(
p̂k, ˆ̇pk, ˆ̈pk, ṗ

in f , ṗsup
)
;

Algorithm 3. Sensor Fusion Algorithm.



path, thus achieving a fruitful trade-off between operators’ safety and
machine productivity.

In detail, at each time step k the QP problem is solved and the ob-
tained accelerations are used to update the next step position and ve-
locity references ( +qk

ref
1 and +q̇ ,k

ref
1 respectively) that will be actuated. The

QP problem is formulated as a tracking problem so that the manipulator
tries to follow the pre-programmed trajectory as much as possible while
satisfying the safety constraints computed considering each human
swept volume as an obstacle. Whenever exact tracking is not feasible,
the algorithm selects the acceleration values that keep the manipulator
as close as possible with respect to the pre-programmed trajectory,
among the feasible ones.

Even though there exist in the scientific literature some contribu-
tions [55,56] that combine potential field-based repulsive velocity
terms [5] with safety constraints, we did not adopt this strategy for two
main reasons. First, repulsive velocities can cause excessive disruption
of the pre-programmed trajectory, thus decreasing the productivity of
the robot. Secondly, even an evasive motion, if sufficiently fast and
sudden, can undermine the level of safety perceived by the human
worker.

More in detail, the complete QP problem is reported in (66).
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where:

• xk
ref and ẋk

ref are the pre-programmed robot task-space position and
velocity at time step k;

• xk and ẋk are the actual robot task-space position and velocity at
time step k;

• Qp and Qv are diagonal matrices acting as weights for the task-space
position and velocity error, respectively, inside the tracking cost
function;

Fig. 10. Experimental setup - deployment diagram.

Fig. 11. Experimental setup - position of robot, human user and depth sensors.

Table 2
Values of radius parameters involved in the computation
of the sphere-swept volumes.

Body Part Radius [m]

Head 0.12
Thorax 0.15
Upper Arm 0.07
Lower Arm 0.07

Fig. 12. Experimental validation scenario: the manipulator has to pick the metal pieces
(highlighted in green) from the rack and deposit them into the plastic box (highlighted in
yellow) under the supervision of a human worker. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)



• qk and q̇k are the actual robot joint-space position and velocity, re-
spectively, at time step k;

• Jk stands for J(qk);

• Δt is the robot controller sample time.

The cost function (66a) is meant to guarantee best tracking per-
formance of the pre-programmed trajectory in terms of displacement
and velocity. Constraints in (66b) and (66c) represent a second order
Taylor approximation of the forward kinematics of the manipulator,
while those in (66d), (66e) and (66f) implement joint position, velocity
and acceleration limits, respectively, as well as (66h) and (66g) re-
present Cartesian acceleration and velocity limits.

In case QP problem (66) does not allow a solution, the control
vector uk is computed in order to bring joint velocities to zero in the
minimum time:
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i
inf
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Please notice that this procedure can be considered as a last resort. As a
matter of fact, the formulation of the safety constraints already takes
into account the prediction of the space that the human worker can
occupy within the robot’s worst case braking time. Consequently, the
violation of the safety constraints is prevented, since the robot is always
given enough time to either deviate from the pre-programmed path or
to slow down and eventually stop. Clearly, in a real-world scenario,
phenomena such as measurement noise can alter the estimated human
kinematic configuration, thus making it necessary to implement this
halting strategy.

Finally, position and velocity references at the next time step are
obtained as follows:

= ++q q ut˙ ˙ Δk
ref

k
ref

k1 (68)
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ref

k
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2

(69)

and sent to the lower level axis controller. For the sake of completeness,
it is worth mentioning that The QP problem is solved using qpOASES
solver [57] that relies on the Online Active-Set Strategy [58].

6. An experimental case study

In this Section we describe a relevant case study and we present the
result obtained by applying our proposed approach. The robot has to
accomplish a simple pick and place task while cooperating with the
human worker.

6.1. Experimental setup

For the implementation and validation of the proposed trajectory
generation algorithm, we here consider the experimental setup sket-
ched in Fig. 10. It consists of:

• ABB IRB 140 robot: a 6 axes industrial robot with 6 kg maximum
payload. Its position is controlled by an industrial ABB IRC 5 con-
troller connected to an External PC through an Ethernet-based in-
terface;

• Microsoft Kinect and ASUS Xtion: two RGB-D motion sensing cam-
eras equipped with the OpenNI drivers used to detect the presence
of a human worker inside the robotic cell and to perform skeletal
tracking. Both cameras are calibrated with respect to the robot base
using the ICP algorithm [59]. In order to reduce interferences,
sensors are positioned in such a way that the Z axis of the corre-
sponding Cartesian frames are not parallel (see Fig. 11);

• External PC #1: a real-time PC that takes care of running the sensor
fusion algorithm according to the measurements acquired from the
two depth sensors (see Section 4) and to compute the human swept
volumes on the basis of the estimated worker’s kinematic config-
uration with respect to the model described in Section 3. This PC
also stores the parameters needed to compute the swept volumes:
position, velocity and acceleration upper and lower bounds along
with the braking time Ts;

• External PC #2: a real-time PC that runs the trajectory generation
algorithm on the basis of both the kinematic configuration of the
robot and the predicted occupancy of the human worker. It is in-
terfaced to External PC #1 with a standard Ethernet interface and it
is connected to the IRC5 controller through a real-time Ethernet-
based interface (see [60] for further details). It runs under Linux OS
with the Xenomai patch, that makes it a hard real-time system.
Using the real-time Ethernet-based interface, it is possible to develop
and execute a control algorithm, named “External Controller”, that
communicates in real-time with the IRC5 controller with a fre-
quency of 250 Hz. Full-duplex communication allows the External
Controller to acquire data regarding the kinematic configuration of
the manipulator and to override the joint position and velocity re-
ference signals the ICR5 sends to the low-level joint controllers.

It is worth mentioning that using OpenMP pragma directives [61] it
is possible to run the modules implemented on External PC #1 in real-
time (at a frequency of 205 Hz). On the other hand, as far as the im-
plementation of the trajectory generation algorithm is concerned, pre-
processing techniques [62] are employed in order to reduce the number
of constraints that are actually considered during the solution of QP
problem (66), thus ensuring that also the QP solver provides a result

Joint Min Pos. Max Pos. Min Vel. Max Vel. Min Acc. Max Acc.

x − ∞ m + ∞ m 0m/s + m s0.80 / − m s0.10 / 2 + m s0.10 / 2

y − ∞ m + ∞ m − m s0.80 / + m s0.80 / − m s0.10 / 2 + m s0.10 / 2

θ − π rad[ ] + π rad[ ] − π rad s/4 [ / ] + π rad s/4 [ / ] − π rad s/8 [ / ]2 + π rad s/8 [ / ]2

ρ − π rad/6 [ ] + π rad/2 [ ] − π rad s/10 [ / ] + π rad s/10 [ / ] − π rad s/20 [ / ]2 + π rad s/20 [ / ]2

αr, 1 − π rad/20 [ ] + π rad8 /9 [ ] − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αr, 2 inequality (34b) − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αr, 3 inequality (34c) − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αr, 4 + π rad/9 [ ] + π rad[ ] − π rad s3 /10 [ / ] + π rad s3 /10 [ / ] − π rad s3 /20 [ / ]2 + π rad s3 /20 [ / ]2

αl, 1 − π rad/20 [ ] + π rad8 /9 [ ] − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αl, 2 inequality (34b) − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αl, 3 inequality (34c) − π rad s/2 [ / ] + π rad s/2 [ / ] − π rad s/4 [ / ]2 + π rad s/4 [ / ]2

αl, 4 + π rad/9 [ ] + π rad[ ] − π rad s3 /10 [ / ] + π rad s3 /10 [ / ] − π rad s3 /20 [ / ]2 + π rad s3 /20 [ / ]2

Table 1
Position, velocity and acceleration bounds for each joint of human kinematic chain (37).



within a single time step (4ms).
Finally, Table 1 lists the values of the parameters involved in the

calculation of the reachable sets, while Table 2 displays the values of
the different radii used to determine the sphere-swept volumes (see
equation (41)). These worst-case bounds have been chosen in order to
obtain a prediction of human occupancy that is reasonably conservative
and, at the same time, that does not result in excessively large swept
volumes. Beside these bounds, other relevant parameters values are:

=T s0.377 (see [24] for details)s (70)

= ⎡
⎣⎢

⎤
⎦⎥

Q 0.10 1 0
0 1p

(71)

= ⎡
⎣⎢

⎤
⎦⎥

Q 1 0
0 1v

(72)

6.2. Experimental validation

The trajectory generation algorithm here proposed has been vali-
dated considering a typical pick-and-place scenario. The robot picks
some metal pieces from a rack and leaves them inside a plastic box
under the supervision of a human worker standing inside its workspace,
as depicted in Fig. 12.

Fig. 13(a) and (b) show a comparison between two distinct end-
effector Cartesian trajectories: the nominal one (blue solid line) and the
one followed by the robot in presence of the human worker (red dashed
line). More in depth, Fig. 13(a) not only shows the difference between
the two trajectories, but it also highlights two points. The blue one
belongs to the nominal trajectory, while the red one is the corre-
sponding point on the actual trajectory determined on the basis of the
human swept volumes also pictured in the Figure. A closer look to the
deviation can be taken in Fig. 13(b), where the Euclidean distance
between the two points 0.221 m is also reported. As a matter of fact, the
experimental data clearly demonstrate that our algorithm allows the
manipulator to successfully complete the task, in terms of reaching the
endpoints of the nominal trajectory, even though the presence of a
moving human worker forces the robot to deviate from the pre-pro-
grammed path.

A similar experiment is documented by the series of screenshots
shown in Figs. 15 and 16, where it can be seen how the proposed al-
gorithm adapts the pre-programmed trajectory in order to preserve the
human worker’s safety, while allowing the robot to successfully com-
plete the task. Moreover, the attached video file integrates the experi-
ment description and it also provides a graphical reconstruction of the
swept volumes computed during the experiment.

On the other hand, Fig. 14 shows that, in order to satisfy the safety
constraints, the control algorithm not only enforces deviations from the
pre-programmed path, but also adapts the manipulator speed. More
precisely, whenever the robot gets too close to the human worker, its
speed is reduced in order to satisfy the safety constraints. It is worth
noticing that the combination of evasive motion and speed reduction
allows the robot to execute the task without necessarily relying on a full
stop in order to ensure the human worker’s safety.

7. Discussion and comparison with previous proposed approaches

This section addresses the advantages of the proposed trajectory
generation algorithm compared to the solutions presented in our

Fig. 13. Nominal end-effector trajectory (blue solid line) versus trajectory followed in
presence of the human worker (red dashed line). (a): pick-and-place iteration in presence
of a human operator. (b): detail of deviation between the actual trajectory and the
nominal one. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 14. Top plot: nominal end-effector Cartesian velocity (blue solid line). Bottom plot:
end-effector Cartesian velocity in presence of the human worker (blue solid line) versus
the minimum human-robot distance (red dashed line). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)



previous works [24–26]. As regards the prediction of human occu-
pancy, in [26] the calculation of the swept volumes was merely based
on a single set of human joint positions acquired via skeletal tracking
from a single depth sensor.

The most significant improvement introduced by the algorithm here
proposed is represented by the fact that the new prediction of human
occupancy is considerably less conservative with respect to the previous
one. As a matter of fact, in [26] reachable sets are computed on the

basis of estimated joint positions and maximum/minimum joint velo-
cities, while the procedure here proposed relies on the estimation of
current joint positions and velocities, introducing fixed upper and lower
bounds only at the joint acceleration level. The result is exemplified in
Fig. 17 where, given a trajectory tracked by the multiple camera
system, Swept Volumes computed according to the two alternatives
approaches are compared. Clearly, not only the new approach produces
smaller and more accurate swept volumes, but it also entails

Fig. 15. Screenshots taken during a pick-and-place iteration without supervising human worker. The robot follows the pre-programmed trajectory.

Fig. 16. Screenshots taken during a pick-and-place iteration in presence of a supervising human worker. The algorithm adapts the trajectory followed by the manipulator in order to
ensure the worker’s safety.



significantly smaller, yet conservative, safety constraints.
Another significant improvement is represented by the introduction

of the sensor fusion strategy. As a matter of fact, the possibility to merge
together the measurements acquired by multiple sensors allows to ob-
tain a much more accurate and noise-free estimation of human joint
positions (as shown in Fig. 18). Moreover, the sensor fusion algorithm is
able to estimate human joint velocities and to provide robustness with
respect to occlusions, invalid measures and sensor failures.

Regarding the safety-oriented trajectory generation strategy, the
approach here proposed represents a significant improvement with
respect to the kinematic scaling algorithm presented in [24–26]. As a
matter of fact, the previously proposed solution was able to enforce the
safety constraints by slowing down or completely stopping the robot
whenever a human worker reached its proximities. If we consider a task
that requires the geometry of the pre-programmed path to be preserved
and if the robot is equipped with a closed-ended controller (i.e. a
controller that does not provide the possibility to override joint position

and velocity references in real-time), this solution is perfectly suitable.
As a matter of fact, traditional robot programming languages usually
offer the possibility to scale the maximum admissible speed of the
manipulator.

On the other hand, in case the robot controller is open (see
Section 6.1) and if the geometry of the pre-programmed trajectory can
be modified, it might be possible to satisfy the safety constraints not
only by reducing the robot speed, but also by deviating from the pre-
programmed path. In these scenarios, the approach here proposed can
remarkably reduce the amount of time during which the manipulator is
still, thus maximizing efficiency, while respecting at the same time
safety requirements. This claim can be clearly demonstrated by com-
paring the experimental results presented in [26] with the ones here
discussed. As a matter of fact, whenever the minimum distance between
the robot and the Swept Volumes is equal to 0.50 m or less, the kine-
matic scaling algorithm outputs a null robot velocity in 86.44% of the
cases, while the algorithm here proposed stops the robot only in
30.06% of the cases. Clearly, in order to avoid excessive task disruption,
the trajectory generation algorithms tries to minimize this deviation in
order to preserve the pre-programmed trajectory as much as possible.

8. Conclusions

This paper presents a trajectory generation algorithm for safe HRC.
The proposed solution relies on multiple depth sensors for real-time
tracking of human motion and on a sensor fusion strategy that merges
the different measurements in order to estimate the kinematic config-
uration of the human worker. On the basis of this estimation, and given
a time limit, it is possible to predict the future space occupancy of the
human worker in terms of swept volumes. The trajectory generation
algorithm takes into account these volumes as obstacles and modifies
the robot trajectory in order to ensure the human worker’s safety, while
performing the pre-programmed task. Details on the actual im-
plementation and deployment of the proposed approach are discussed
and results of validation experiments conducted on a ABB IRB140 robot
are presented.

Fig. 17. Comparison between swept volumes algorithms. From left to right, Swept Volumes computed at =T s0 , =T s1 , =T s2 and =T s3 . Top row: Swept Volumes computed
according to current algorithm (joint positions and velocity). Bottom row: Swept Volumes computed according to [26] (only joint positions).

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

X
 [m

]

Time [s]

Fig. 18. Comparison between x coordinate of kinematic configuration vector (37) values
acquired by ASUS Xtion (dashed red line), acquired from MS Kinect (dashed green line -
equal to zeros until the sensor starts tracking the human worker) and estimated by sensor
fusion algorithm (solid blue line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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