
TDeX: A Description Model for Heterogeneous
Smart Devices and GUI Generation

Luciano Baresi1, Mersedeh Sadeghi1, and Massimo Valla2
1Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy

2TIM S.p.A., Services Innovation Department, Joint Open Lab S-Cube, Milano, Italy

(luciano.baresi@polimi.it—mersedeh.sadeghi@polimi.it—massimo.valla@telecomitalia.it)

Abstract
The fast-growing availability of smart devices is mak-

ing our environments smarter than ever, but also more
and more heterogeneous. Many diverse devices must be
integrated and this paper proposes a unified description
model and a supporting middleware. Besides focusing
on the functional capabilities of the different devices,
and on the contexts of use, TDeX, which extends the
W3C’s Thing Description model, has been designed to
embed descriptions of the graphical user interfaces (GUIs)
needed to interact with them. The paper also proposes a
model-driven and device-agnostic approach for the auto-
matic generation of these GUIs. M4HSD, our RESTful
middleware infrastructure, mediates between the GUIs
and the devices themselves and provides a generic and
platform-independent solution for the interoperability of
Internet/Web of Things systems. Preliminary experiments
demonstrate the feasibly of the proposed approach and its
innovative characteristics.

I. INTRODUCTION

The Internet of Things (IoT) has been promising a superior

quality of life through a global network of sensors, actuators,

and smart devices. However, the interconnection of billions of

diverse devices [1] and the management of their interactions

make the classical interoperability problem even more chal-

lenging. One of the possible solutions is the so-called Web of

Things (WoT) approach, which targets a complete integration

of devices into the web by adopting web technologies [2],

and specifically it exploits the REST architectural style [3] to

associate a uniform interface with any resource/functionality

provided by these devices [4].

The adoption of web protocols and REST principles hides

the diversity of communication protocols and significantly

enhances interoperability at network level, but the semantic

interoperability remains unsolved. REST principles support

information exchange, but the structure and semantics of

exchanged data cannot be standardized universally. The HTTP

protocol allows for content negotiation, but it cannot address

the underlying data model. In addition, numerous IoT-related

ontologies and data and domain models are often domain-

specific and the number of IoT/WoT devices is growing. The

result is that their standardization is often jeopardized. Each of

the many existing APIs, standards, and specifications comes

This work has been partially funded by TIM S.p.A., Services Innovation
Department, Joint Open Lab S-Cube, Milano.

with its own syntax, vocabulary, semantics and consistency

rules. This clearly hampers the integration problem and often

precludes the interactions among heterogeneous devices. The

use of web technologies as integration layer of the IoT

shifts interoperability towards the application layer, where

the developer must cope with all the cases of interest and

harmonize them properly.

In this context, the paper does not want to propose yet

another description model for different IoT/WoT devices. In

contrast, we use and extend an existing description model to

develop a middleware infrastructure that supplies the appli-

cation developer with a single, integrated view of the set of

IoT/WoT devices of interest. The middleware is then in charge

of coping with the idiosyncrasies to simplify the development

of applications that exploit heterogeneous devices. The work

extends the Thing Description (TD) proposed by the W3C’s

WoT Interest Group1 to propose TDeX (TD eXtended) and

address some of its limitations. The most notable one refers

to the interactions between these devices and their users. By

categorizing the interactions, that is, by grouping the different

actions that can be performed on these devices properly, TDeX
provides the developer with the elements to generate basic

graphical user interfaces (GUIs). This additional information

is then used by a model-driven solution for the automated

creation of the GUIs. TDeX also adds the idea of context,

to better scope the different devices, takes the dependencies

between the properties of a device and the actions executed

on it into account, and defines elements to properly identify

the current state of a device. TDeX categorizes properties into

static and dynamic ones, to highlight those characteristics that

are mainly informative and descriptive, and do not change, and

those that represent state changes. We have also followed the

suggestion provided by the W3C WoT group and organized

actions into five main groups. Given that the different devices

are organized around contexts, also the GUI generation process

can exploit the grouping and provide user interfaces that follow
the users or that evolve according to their needs and requests.

The whole solution proposed in this paper thus comprises

three elements:

• A uniform model, called TDeX (TD eXtended), that

contributes a uniform description of a wide variety of

devices. The model associates each device with a rich set

1https://w3c.github.io/wot/current-practices/wot-practices.html

97

2018 IEEE Confs on Internet of Things, Green Computing and Communications, Cyber, Physical and Social Computing,
Smart Data, Blockchain, Computer and Information Technology, Congress on Cybermatics

978-1-5386-7975-3/18/$31.00 ©2018 IEEE
DOI 10.1109/Cybermatics_2018.2018.00049

of contextual and functional information, together with

the seeds for organizing and rendering the interaction

between users and devices.

• A model-based automated solution for the creation of

(basic) GUIs for interacting with the different devices.

Obtained GUIs are device- and platform- agnostic and

can then be rendered into many diverse concrete solu-

tions (from web-based ones to the layouts of Android

activities).

• A RESTful middleware, called M4HSD2, that bridges

GUIs and devices. M4HSD exploits TDeX to abstract

devices through standardized REST APIs and to support

the context-aware interaction with them. Special-purpose

drivers and plug-ins convert the device-specific APIs and

data models into our unified one.

The rest of the paper is organized as follows. Section II

presents TDeX, our integrated IoT/WoT model. Section III

describes the REST services provided by M4HSD. Section IV

explains the automated creation of GUIs. Section V discusses

an experimental deployment of the framework and a first

exemplar application. Section VI surveys related approaches

and Section VII concludes the paper.

II. TDEX

TD (Thing Description) defines the elements for describing

the capabilities of an object and for accessing it. An object

is described by means of Properties, Actions, and

Events. A Property refers to the readable/writable data

that render the internal state of an object. An Action is an

operation provided by the object, and an Event is used to

notify certain conditions (e.g., an occurrence of an action or

a specific value of a property).

TDeX can represent any smart object: from sensors to

home appliances, including WoT/IoT devices, devices with

embedded web servers, and devices that expose a web service

through a gateway. In addition, unlike most of the existing

efforts for modeling IoT/WoT objects, which only concentrate

on the functional capabilities of these objects, TDeX also

addresses the context of use and the GUIs to interact with

them. Figure 1 shows the core components of TDeX.

Since properties and actions characterize objects, but events

mainly define the interests of the different observers, TDeX
does not support the concept and offers subscriptions/notifica-

tions, from/to external components, to let interested parties be

notified about fired actions and changed properties.

Metadata specifies general information, such as the name

and type of the device and its BaseURL, that is, a RESTful

endpoint through which client applications can interact with

the device. A Location indicates the current location of the

object and can provide a means to discover objects, based on

their position or on the position of other objects nearby. A

Location is defined by a name, type (public or private),

and zero or more near associations with other Locations.

2Because of the sponsorship, M4HSD and the applications we developed
to evaluate it are only available upon request.

Figure 1: TDeX meta-model.

A User identifies a potential utilizer of the object and is

specified by means of a name and a role (guest, member, or

admin). Users can thus create locations, relate them, and dis-

tribute devices properly: different users can consider different

descriptions of the same space. The associations between users

and locations are based on the following rules:

• Guests have only access to public locations, and thus,

can only interact with devices in these locations;

• Members have access to all public locations and to their

private ones, and then to the devices in these locations;

• Admin has access to all locations, and then to all devices.

It is also the only role that can state that locations are

private to some members.

This means that if a device is in one of the allowedLocations

of a user, the user hasAccessTo to the device.

An Interaction requires a Property and an

Action. TDeX specializes TD’s Property into

DynamicProperty and StaticProperty, where

the former identifies a permanent, inherent characteristic of

a device. The latter corresponds to values that can change

during the object’s lifecycle, and capture the internal state

of an object (e.g., the water level of a coffee machine). A

dynamic property also dependsOn actions. For example,

property waterLevel of a coffee machine depends on action

makeCoffee —the action modifies the property’s value.

Another key difference between dynamic and static properties

is related to their visualization. A dynamic property requires

a binding between a graphical element and the datum it is

supposed to render to be able to visualize any change to

it. The graphical representation of a static property is only

generated once and there is no need to manage changes.

An Action captures some functionality provided by a

device, and is defined by means of currentState and type.

The type both characterizes the expected behavior and paves

the ground to the graphical rendering of the interaction. The

GUI element (e.g., radio button, slider, etc.) used to visualize

an interaction depends on the nature of the interaction itself.

98

Although smart devices differ in type, capabilities, and usage,

the essence of their interactions falls into a limited set of

categories. For example, locking/unlocking a door is “similar”

to turning on/off a light. Consequently, as for their GUIs, both

actions can be represented via the same element (e.g., a toggle

or switch).

To take into account of any possible GUI representation

of interactions, Table I summarizes our taxonomy. It currently

specializes actions in five different groups by considering how

they can change the state of the device. Stateless actions

can be fired as many times as one wants and they do not

depend on any previous state of the device: for example, a

security camera can always take pictures. The simplest GUI

element to render these actions is a button (to push it). Boolean
actions assume a boolean state and can only complement it.

As said before, this is the case of switching lights or locking

doors: when the action is triggered, the opposite value is taken.

The GUI element associated with these actions is a switch or

toggle. Both Numerical and Generic actions manage multi-

valued states. Numerical actions predicate on (limited) sets

of numerical values: for example, the set of temperatures

offered by a thermostat, the brightness levels of a television,

or the sugar quantities of a coffee vending machine. TDeX
characterizes these operations by means of the min and max

values of the interval of interest, and optionally by a standard

increment. The GUI element associated with these actions is

a seek bar. Generic actions generalize the concept and allow

one to decide among the values of general enumerations. This

is the case when selecting the working mode of a washing ma-

chine or the defrost options of a microwave (e.g., vegetables,

meat, fish, and bread). Finally, besides the aforementioned

atomic actions, TDeX also supports Composed actions, that

is, any combination of the previous ones. For example, to

instruct a vending machine to pour coffee, one should decide

about yes/no milk (boolean action), sugar level (numerical

action) and coffee type (generic action): the representation of

makeCoffee is then the composition of three atomic actions.

Note that although the representation is a combination of

atomic actions, the associated operation is triggered as a single

transaction composed of atomic actions. To achieve this, each

Composed action has a single atomic action that activates all

the others together. For example, a user can select sugar level

and type of coffee in the GUI, then press Order to collect

all the data and send the request to the coffee machine.

This categorization is embedded in our model and allows for

the automated creation of the GUI for different smart objects.

TDeX also supports Groups of smart devices. A group can

be used to control multiple devices of the same type through a

single GUI element. Groups can simplify the management of

related devices and help organize complex smart environments

with a large number of devices. A Group has also a state,

which is the aggregation of the state of its members. The

aggregation function is a configurable parameter that must be

set at the time of group registration. For example, if a user

groups several thermostats, she/he could set the aggregation

function as the minimum, maximum, or average temperature

Table I: Interaction types and their corresponding GUI ele-

ments.

Type Description Example Default

Dynamic Property

Property with
dynamic value,
typically,an internal
state of an object.
.

Current
temperature
of thermal
sensor.

Static Property

Property with static
value, typically the
physical
characteristics of an
object.
.

Model
number of a
device.

Stateless Action Stateless action.

To take a
snapshot in
security
camera.
.

Boolean Action
Action with only two
states.

To turn
on/off a
light.
.

Numerical Action

Action with more
than two
numerically-ordered
states.
.

To set the
Brightness
of TV screen

Generic Action
Action with more
than two enumeration
states.

To select a
washing
mode in a
washing
machine.
.

Composed Action
Action with any
combinations other
types.

To order a
coffee in a
coffee
maker.

among those sensed by the members. A device can be a

member of more than one Group and a user can only group

those devices that are in her/his authorized locations. A Group
is discoverable at any location in which it has at least one

member device, and by all the users who are authorized to be

in that location.

III. M4HSD

Our middleware framework, called M4HSD (Middleware

for Heterogeneous Smart Devices), exploits TDeX to smooth

the peculiarities of the different devices and allows users

to interact with them through suitable instances of TDeX
concepts and a homogeneous API. The different characteristics

are casted into the unified model and harmonized through

RESTful interfaces. The user can exploit dedicated applica-

tions (GUIs) to manipulate the model, and then the middleware

forwards the commands to the different devices. Dedicated

drivers interact with specific hardware bundles to both keep

the separation of concerns and allow for the extendibility of

the proposed middleware.

Figure 2 presents the high-level architecture of M4HSD.

The current prototype of the middleware infrastructure is

implemented in Java, uses Tomcat and Spring to supply the

REST interfaces, and exploits MongoDB as for persistence. As

for plug-ins, we currently support Netatmo weather stations,

Philips Hue lamps, Garadget door, Zehnder ComfoAir air

99

P
er

si
st

en
ce

La
ye

r
A

bs
tra

ct
io

n
La

ye
r

R
E

S
T

S
er

vi
ce

La
ye

r
A

pp
lic

at
io

n
La

ye
r

Plug-in

TDeX Model Generator

Plug-in

TDeX Model Generator

ZigBeeBLE

Plug-inPlug-in

TDeX <-> Native Command Trasnlator

Query Manager
Entity Manager User

Location Device

Model Manager

TDeX
Contextual

Data

TDeX

HTTP

Contextual
Data

Discovery
Query

HTTP

Application
Developer

Context Registry and Management
Service

Smart Device Interaction
Management

Device Registry and Discovery
Service

REST Interface

g

Th
in

gs
 L

ay
er

Device Specific APIs and Data Models

Smart Devices

Device Manager

Database

End User

HTTP

Front-end
Application

Figure 2: General architecture of M4HSD.

conditioning systems, Kasa Smart Plugs, and Wi-Fi motor

controllers to control projection screens and window shutters.3

The REST Service layer supplies all the interfaces required

to register and manage devices and to let user applications

search for the devices in the context of interest and interact

with them. The services provided by M4HSD are divided

in two groups: those in charge of the domain knowledge,

which take care of users and locations, and those in charge

of the registration and discovery of devices, and then of the

interactions with them.

POST requests are used to register new users, locations,

and devices. Upon these requests, M4HSD generates a new

resource and returns the link to it. GET requests to the proper

URIs are used to retrieve information about the different

resources. If the target is a device, provided information is

the specific TDeX model, while a GET on a location returns

the name and type of the location itself along with all the

nearby locations. For a user, it returns its name, role, and

allowed locations. PUT and DELETE requests allow one to

update and delete resources. User actions are then translated

into PUT requests onto involved devices.

Dedicated plug-ins and drivers define the abstraction layer,

that is, those elements in charge of abstracting the peculiarities

of the different devices and providing a unified, integrated

model. The adopted plug-in-based solution increases the flex-

ibility of M4HSD and allows one to add new standards, or

3Netatmo weather stations and Philip Hue lights are physically available in
our experimental environment, while the other devices have been simulated
through special-purpose Java components.

devices, by simply developing the required plug-in. Each plug-

in contains two parts: DeviceManager, which creates and

manages the network connections needed to interact with the

device, and ModelManager, which generates the TDeX model

from a native one.

The persistence layer takes care of storing the data related

to users, locations, and devices. As soon as a new device

is registered in M4HSD, we generate a new TDeX resource

(model) to represent the device and an entity in the registry

to keep the associations between the TDeX representation,

that is, the BaseURL, and the actual device. The specific

TDeX model is generated by a special purpose model-to-

model transformation implemented in the associated plug-

in. The model represents the current state of the device;

persistence layer must keep this representation updated with

respect to both commands from the upper-level applications

and state changes from the devices themselves.

Groups are managed through single BaseURLs, which

are associated with more than one device. Accordingly, a

command to a Group targets all member devices: if all the

members can execute the action successfully, M4HSD issues a

single positive reply, otherwise it warns the application about

problematic devices.

The current location of a device allows M4HSD to identify

authorized users and to add this information to the device’s

representation. User roles define the set of locations users

can access; a user can only interact with devices in allowed

locations (see the policies defined above). This is key to enable

device discovery given either a location or a user. If it is

location-based, M4HSD retrieves all the devices in a specific

location the particular user is allowed to interact with. If it

is user-centered, then the middleware retrieves all the devices

the user can exploit in any location. A user can only perform

location-based discovery for allowed locations.

Discovered devices are characterized by their names, loca-

tions, and links to their TDeX models. This model is the only

resource external applications need to read/write to interact

with the device in a seamless and homogeneous way. M4HSD
is always aware of the current state of any registered device. As

soon as a new command is issued, the middleware compares

the desired and actual states, identifies the action that should be

triggered, translates it into the device’s proprietary language,

and fires it.

Since multiple users can issue contradicting commands to

the same device simultaneously, M4HSD does not adopt any

predefined policy, but it forwards all commands to interested

devices, which must solve them locally. In case of race

conditions, M4HSD does not override the native behavior of

devices and it simply mirrors their strategies. For example,

some devices just implement one of the simultaneous requests

and drop the others. In this case, M4HSD would return an

error message to the applications that triggered the command

unsuccessfully.

100

IV. GRAPHICAL USER INTERFACES

Generated TDeX models are platform-independent models

that also contain sufficient information for automatically cre-

ating the GUIs for controlling associated devices. As for GUI

creation, one must only read the aforementioned description

and translate it into the concrete elements of the GUI platform

of interest (e.g., Web, Android, or iOS). The GUI renders the

properties of devices and the actions users can execute on

them. As soon as users execute actions, the GUI is modified

accordingly. For example, if one wanted to create an applica-

tion to control some smart lights, the automatically-generated

GUI would render each light through a name, its current state

(on/off), and a switch to control it. When the user switches

the light, the GUI uses some listeners to change the TDeX
model, that is, the device’s state, and the middleware issues

a command to the specific plug-in (the software component

specific to the particular light model) to apply the change

onto the physical device. As soon as the plug-in notifies the

middleware that the device has completed the action, the

updated model is stored. If the device cannot execute the

action —e.g., because it is out of order or because there is a

communication error— and M4HSD infers there is a problem4,

it immediately notifies it to the GUI.

The GUI associated with a device comprises the rendering

of two parts: its state and the commands/actions the user can

issue to control it. The first part starts from visualizing the

properties that define a device. Each property has always a

name and a value. While names, which are strings, can easily

be rendered by means of textual labels, the visualization of

values is more complex and depends on their types. TDeX
and M4HSD support the same types as TD: boolean, integer,

number, and string. Arrays and objects can be used to obtain

complex types. For example, if we had a temperature stored as

an integer, its value could easily be rendered through a label

and its unit of measurement has no impact on its visualization.

Similarly, the cooking mode of a microwave oven can be a

string and then a label. In contrast, to render a color, we need

a complex type, for example and array of integers, but the

unit of measurement (e.g., RGB) is key to render the value.

This is to say that if the value were [255, 255, 0], and

RGB the encoding, then the GUI would visualize a yellow
square. Objects can be used to encode any complex type.

Again, a color could be an object whose fields are integers,

and then ["R": 255, "G": 255, "B" :0] would cor-

respond to yellow.

As for rendering actions, we must recall that TDeX de-

scribes each action by means of name, type, required inputs,

generated outputs, and current value. TDeX comprises five

action types that play a key role in how actions are rendered.

Also the representation of their inputs, outputs, and current

values depends on the actual type. For example, the current

value of a boolean action can only be true or false (boolean

4The middleware may understand there is a problem because of dedicated
messages sent by the devices or because sent commands are not acknowl-
edged.

variable), while if we considered a numerical action, its

current value could be any integer number. As for produced

outputs, we can think of a washing machine that calculates the

time needed to complete the washing cycle, given the program

selected and the weight of clothes. M4HSD can also manage

scanners or cameras whose output is stored in a file, whose

location is managed through a proper URL.

Also the way we inflate the action itself, that is, the

graphical elements we use to render it, depends on its type.

We use a switch, and two labels for the two states, for

a boolean action. For example, on/off for a light and

locked/unlocked for a lock. We use a seekBar to

materialize a numerical action, but we also need a minimum

and maximum value, and allowed increment as inputs. We use

snippers for generic actions and show the multiple options.

For example the speed levels of an air conditioner would

be represented in a drop-down menu. Composed actions

are rendered by unfolding them and identifying their atomic

components, along with a single button to trigger all the atomic

actions together.

M4HSD fosters the common Model-View-Controller orga-

nization of an application. As said, TDeX provides the Model
the application works with, the Controller is as usual in

charge of the developer, but again M4HSD provides simple

RESTful interfaces to interact with the different devices in a

standardized and homogeneous way. The View is generated

automatically from the TDeX model as explained above.

Note that a fully automated process can only generate basic

GUIs, while specific applications can exploit the information

provided by the model to generate advanced and special-

purpose interfaces by means of external libraries. It is also true

that GUIs are generated at runtime, and thus the application

can adjust its GUIs with respect to the current context of

interest. One can change devices (technologies) and contexts

(locations), but the user interfaces are always generated for

all, and only, the devices in the current scope. For example,

if one wanted to control the lights of a big building, there

is no need to encode the topology of the building and the

way lights are distributed in the building. The actual GUIs are

generated at runtime while the user moves around and by only

considering the lights that can be switched on and off in the

different rooms.

V. EXEMPLAR APPLICATION

This section presents an exemplar Android application we

developed to access the effectiveness of our solution. First of

all, we deployed M4HSD in our lab, which comprises two

office rooms, one meeting room, a kitchen and a working

space. Each location has a privacy level and is equipped with

smart devices. For example, the meeting room is a public

location and offices are private ones. The meeting room has

six simple lights which are grouped together, a ComfoAir air

conditioner, two window shutters and a projection screen.

In parallel, we have implemented an Android application

that exploits M4HSD and TDeX, to interact with the different

devices. Figure 3 sketches the processes related to automatic

101

TDeX Model
Parsing

M2M
Transfor-
mation

Te
m

pl
at

es Boolean.xml

Stateless .xml

StaticProperty.xml

Data to
View

Binder

Data Adapter

View-Holder

TDeX Model
Modification

M4HSD
TDeX TDeX

Smart Device Agnostic
Activity

......

End-User

Property/Action Object

Listeners

Figure 3: Stepwise process of GUI generation and event

handling within the Android application.

GUI generation and event handling within the application. The

developer only needs to decide how to render the two property

and five action types (Table I) supported by TDeX to let then

the application create the actual GUIs. This means that if

Android is the target platform, one only needs to identify the

View elements for rendering the seven concepts above, and

then the actual GUIs can be created automatically. Similarly,

the interactions are always carried out through the REST

interfaces, and M4HSD manages all the peculiar aspects.

More concretely, given that Android stores the concrete lay-

outs of the GUIs associated with activities (roughly, applica-

tion screens) in XML files, and the link (file-activity) is static,

we used an Android RecyclerView, to render generic lists

of elements, and used pattern ViewHolder to define a generic

GUI template. Then we fed it with the specific content, that

is, the TDeX of the particular devices of interest. To do

this, we defined the templates for the seven elements above

as XML documents to define their concrete visualization. A

template is thus an independent and atomic portion of the final

GUI. For example, the template of boolean action contains a

TextView to render the action’s name, and a Switch to

visualize the device’s state and change it. We also created

a dedicated Model layer within the application to interact

with the middleware, that is, to retrieve the TDeX models

—as JSON files— and create the corresponding objects. This

way, any application element can easily, and quickly, retrieve

information about available devices and these objects can be

shared among the application activities.

Each Android activity can then create the specific GUI,

through a RecyclerView, and inflate it while creating the

activity itself. For example, the application can parse the

TDeX of our air conditioner and creates a GUI to visualize the

current temperature, set the target one, put the air conditioner

into sleep mode, turn it on/off and adjust the fan speed.

This way, applications can render any combination of these

templates at runtime to allow users to interact with particular

devices.

A user of our exemplar application should first register and

log into the system. The, devices are discovered, and becomes

available through automatically generated GUIs, based on their

locations. When M4HSD receives a request, it examines the

user’s credential and if s/he is authorized to view devices

in that location, it sends the list back to the application. If

credentials are wrong or the user is not permitted to interact

with any device, M4HSD returns an unauthorized message to

the application.

This behavior can be exemplified by considering two pos-

sible users of the lab: Bill is a member and is the owner

of the first office, while Sara is only a guest. Accordingly,

if Bill entered his office, M4HSD would send the list of

authorized devices and the application would generate the GUI

of Figure 4(a). If Sara entered the same room, the GUI on her

phone would be the one of Figure 4(b). If Sara were interested

not only in the devices in the first office, but also in those

nearby, then she would get the GUI of Figure 4(c), where

displayed devices are in the kitchen, which is near the first

office.

(a) Bill’s view at
office 1

(b) Sara’s view at
office 1

(c) Sara’s view for
nearby discovery

Figure 4: Different GUIs generated according to user identity

and location.

As soon as the user selects one of devices (one item

of the ListView element), a GET request is sent to the

middleware to retrieve TDeX of that device. Upon receiving

the model (Step 1 in Figure 3), the application parses the

model and associates an Action object and a Property object

with each device (Step 2 in Figure 3). At runtime, the Activity

reads the model, inflates the right templates into the GUI,

and populates the different elements through these objects

(Steps 3 to 5 in Figure 3). For example, Figure 5(a) shows

the automatically created GUIs for interacting with our air

conditioner, Figure 5(b) with Hue lights, and Figure 5(c) with

a window shutter.

Finally, we have to deal with event handling, that is, the

propagation of user actions onto real devices. For example, if

a user touches the screen and changes a switch from on to off

(Step 6 in Figure 3), the corresponding light must be turned

off. To do this, the application creates an EventListener
for each action type. These listeners are in charge of translating

user actions —through the GUI elements— into modifications

102

of the TDeX models. As soon as the graphical switch is slid,

its listener is called, which in turn invokes the action-specific

listener (Step 8 in Figure 3). This means it changes the TDeX
model and issues a PUT to pass it back to the middleware

(Step 9 in Figure 3). When M4HSD receives the modified

version of the model, it triggers the plug-in that translates the

change(s) into the right command(s) for the device: that is, the

proper light is turned off, and the updated version of the model

is persisted. The Android application manages UI events as

usual through handlers and callback methods, while M4HSD
offers means to propagate them and turn them into commands

for the different devices. It also manages the current state to

allow different applications (users) to interact with the same

devices.
Note that nothing is hard-coded in the application. The

TDeX models of the different devices are used to generate

the GUIs and handlers to interact with them. Hence, the GUI

creation process is device-agnostic and only depends on the

actual actions and properties provided by the devices. The

only requirement for an application to be able to interact with

a device is to have access to its TDeX model. The application

blindly passes the TDeX model of a device back and forth to

M4HSD, and ignores what the underlying device is supposed

to do. This means that an application could instantly interact

with any device in any environment augmented with M4HSD.

Sara and Bill, for example, could use the exemplar application

also at home to control their appliances.

Figure 5: Automatically created GUIs for (a) ComfoAir air

conditioner, (b) Hue light and (c) window shutter.

VI. RELATED WORK

Among the different, competing ontology-based models and

vocabularies proposed for modeling IoT/WoT devices, we can

cite SSN [5], the ontology developed by the W3C’s Semantic

Sensor Network Incubator Group in 2011. It is mainly focused

on the functional description of sensors and does not support

specification of complex or composite devices and other

related aspects like the current position of a device. SAREF5

(Smart Appliances REFerence) covers more generic concepts,

like home appliances, and location and similar concepts can

be defined, but it does not support different classes of users

and there is nothing related to GUIs and user interactions.

The advent of the WoT has also motivated TD, which has

inspired this work, and solutions that combine web concepts

with data models and ontologies [6]–[10]. Examples of web

oriented approaches include IPSO6 (IP for Smart Objects) and

the OCF (Open Connectivity Foundation) resource model7.

The former is only appropriate for describing the sensing ca-

pabilities of smart devices with respect to eighteen predefined

types (e.g., temperature, humidity, and presence) and does

not consider more complex devices. The latter addresses a

wider class of objects, and proposes sixty different resource
types, does not consider contextual data and user interactions

(GUIs), but proposes an interaction model based on RAML

(RESTful API Modeling Language [11]). TDeX does not

provide any predefined categorization of devices and takes

a wider approach. It envisions an extensible, multi-faceted

data model for accommodating the functional specifications

of smart devices, their contextual information, and also their

interaction capabilities. In addition, M4HSD supplies a single

means to govern the different aspects seamlessly.

As for REST-based IoT and ubiquitous applications, we can

mention DigHome [12], which proposes a REST-based pub-

lish/subscribe broker that allows devices to produce, distribute,

and consume events. DigHome is only interested in fostering

the communication among devices, while HomeWeb [13] also

provides web-only GUIs to the users. The GUIs are not

generated automatically, but are static and predefined for a

given set of devices.

Our work can also be related to middleware infrastructures

for smart devices, and Home Assistant8 and OpenHAB9 are

among the most popular ones. Differently from M4HSD,

these infrastructures focus on network interoperability. They

provide means to interact with devices through the same

communication interfaces, but the data-models and the com-

mands to interact with devices are device-dependent. This

means that the developer should know a priory —and hard-

code in the application—- how to interact with a particular

device. M4HSD fosters syntactic interoperability, and because

of TDeX, the interactions with any device are generic and

device-agnostic.

In addition, if applications are device-specific, they cannot

be used in different environments with conceptually the same

5https://sites.google.com/site/smartappliancesproject/ontologies/
reference-ontology

6https://www.ipso-alliance.org/
7https://openconnectivity.org/
8https://www.home-assistant.io/
9https://www.openhab.org/

103

devices, but produced by different vendors. Our solution

allows one to decouple applications from the environments in

which they are used: applications can instantly interact with

any environment where there is a running instance of M4HSD
and exploit it to create required GUIs on demand. This is

similar to what the DOG Gateway [14] offers, which is based

on an OWL-based ontology (DogOnt [15]) to accomplish

semantic interoperability. The big ontology does not consider

the GUI-generation problem and is predefined, which could

result in a too complex and static solution. For example, Do-

gOnt explicitly considers humidity, temperature, voltage, CO2,

pressure, and current, while TDeX would simply consider

them as dynamic properties.
The last area we want to touch refers to the model-based

GUI generation for ubiquitous and smart spaces. For example,

if one considered the Lightweight User Interface Description

Language (LUIDS) [16], and the modeling language and tool

described in [17], they only focus on GUI descriptions and

provided specifications are not enough to render a controller.

In addition, semantically identical interactions are described

differently (e.g., adjusting light intensity or room temperature

are considered to be different functionality, then modeled and

visualized differently), and further elements are also needed to

take the modifications induced by user actions into account.

While probably more sophisticated, these languages are more

complex and narrower than TDeX. The Cameleon conceptual

framework [18] has inspired a lot of works (e.g., [19], [20]).

All these solutions simplify GUI creation at design time, but

they do not consider their runtime generation and utilization.
Other solutions (e.g., [21]–[23]) introduce extended and

supportive GUI models to envision their runtime utilization.

For example, Dynamo-AID [22] uses extended task models

to drive the generation of and adapt the GUIs. These models

are mainly created by developers, as first manual inputs to

the generation process. In contrast, we collect the character-

istics of the devices at runtime and generate required GUIs

automatically.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents TDeX, a uniform model for describing

and managing IoT/WoT devices, its supporting middleware,

M4HSD, and a model-based solution for the automated gener-

ation of basic GUIs to interact with these elements. Some first

experiments witness interesting results and motivate further

work. Besides developing additional plug-ins and drivers for

interacting with other devices, we are also working on a more

sophistical access control model, to govern the interactions

with the different devices more in detail, and on shaping the

cooperation of multiple instances of M4HSD, to conceive more

complex and distributed scenarios.

REFERENCES

[1] L. Ericsson, “More than 50 billion connected devices,” White Paper,
2011.

[2] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the internet of
things to the web of things: Resource-oriented architecture and best
practices,” in Architecting the Internet of things, pp. 97–129, Springer,
2011.

[3] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

[4] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of
cloud computing and internet of things: a survey,” Future Generation
Computer Systems, vol. 56, pp. 684–700, 2016.

[5] M. Compton, P. Barnaghi, L. Bermudez, R. Garcı́A-Castro, O. Corcho,
S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A. Herzog, et al., “The
ssn ontology of the w3c semantic sensor network incubator group,” Web
semantics: science, services and agents on the World Wide Web, vol. 17,
pp. 25–32, 2012.

[6] S. De, T. Elsaleh, P. Barnaghi, and S. Meissner, “An internet of
things platform for real-world and digital objects,” Scalable Computing:
Practice and Experience, vol. 13, no. 1, pp. 45–58, 2012.

[7] S. Hachem, T. Teixeira, and V. Issarny, “Ontologies for the internet of
things,” in Proceedings of the 8th Middleware Doctoral Symposium, p. 3,
ACM, 2011.

[8] S. Chun, S. Seo, B. Oh, and K.-H. Lee, “Semantic description, discov-
ery and integration for the internet of things,” in IEEE International
Conference on Semantic Computing (ICSC), pp. 272–275, IEEE, 2015.

[9] V. Charpenay, S. Käbisch, and H. Kosch, “Introducing thing descriptions
and interactions: An ontology for the web of things,” in Proceedings of
the 1st Workshop on SemanticWeb technologies for the Internet of Things
(SWIT) at the 15th International Semantic Web Conference (ISWC),
2016.

[10] W. Xu, C. Marsala, and B. Christophe, “Matching objects to user’s
queries in web of things’ applications,” in IEEE Symposium on Com-
putational Intelligence for Communication Systems and Networks (CI-
Comms), pp. 31–38, IEEE, 2013.

[11] R. Workgroup, “Raml-restful api modeling language,” 2015.
[12] D. Romero, G. Hermosillo, A. Taherkordi, R. Nzekwa, R. Rouvoy, and

F. Eliassen, “Restful integration of heterogeneous devices in pervasive
environments,” in Distributed Applications and Interoperable Systems,
pp. 1–14, Springer, 2010.

[13] A. Kamilaris, V. Trifa, and A. Pitsillides, “Homeweb: An application
framework for web-based smart homes,” in 18th International Confer-
ence on Telecommunications (ICT), pp. 134–139, IEEE, 2011.

[14] D. Bonino, E. Castellina, and F. Corno, “The dog gateway: enabling
ontology-based intelligent domotic environments,” IEEE transactions on
consumer electronics, vol. 54, no. 4, 2008.

[15] D. Bonino and F. Corno, “Dogont-ontology modeling for intelligent
domotic environments,” in International Semantic Web Conference,
pp. 790–803, Springer, 2008.

[16] J. Nichols and B. A. Myers, “Creating a lightweight user interface
description language: An overview and analysis of the personal universal
controller project,” ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 16, no. 4, p. 17, 2009.

[17] E. Umuhoza, “Domain-specific modeling and code generation for cross-
platform mobile and iot-based applications,” 2017.

[18] G. Calvary, J. Coutaz, L. Bouillon, M. Florins, Q. Limbourg, L. Marucci,
F. Paterno, C. Santoro, N. Souchon, D. Thevenin, et al., “The cameleon
reference framework,” Deliverable D1, vol. 1, 2002.

[19] G. Mori, F. Paterno, and C. Santoro, “Design and development of
multidevice user interfaces through multiple logical descriptions,” IEEE
Transactions on Software Engineering, vol. 30, no. 8, pp. 507–520, 2004.

[20] F. Paterno, C. Santoro, and L. D. Spano, “Maria: A universal, declarative,
multiple abstraction-level language for service-oriented applications
in ubiquitous environments,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 16, no. 4, p. 19, 2009.

[21] G. Varela, A. Paz-Lopez, J. A. Becerra, and R. Duro, “A framework
for the development of context-adaptable user interfaces for ubiquitous
computing systems,” Sensors, vol. 16, no. 7, p. 1049, 2016.

[22] T. Clerckx, K. Luyten, and K. Coninx, “Dynamo-aid: A design process
and a runtime architecture for dynamic model-based user interface
development,” in International Workshop on Design, Specification, and
Verification of Interactive Systems, pp. 77–95, Springer, 2004.

[23] M. Blumendorf, G. Lehmann, and S. Albayrak, “Bridging models and
systems at runtime to build adaptive user interfaces,” in Proceedings of
the 2nd ACM SIGCHI symposium on Engineering interactive computing
systems, pp. 9–18, ACM, 2010.

104

