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This paper describes the program PolaBer, which calculates atomic polariz-

ability tensors from electric field perturbations of a partitioned electron density

distribution. Among many possible partitioning schemes, PolaBer is currently

using the quantum theory of atoms in molecules and it is interfaced to programs

that apply such a partitioning. The calculation of the atomic tensors follows the

idea suggested by Keith [The Quantum Theory of Atoms in Molecules: From

Solid State to DNA and Drug Design, (2007), edited by C. F. Matta & R. J. Boyd.

Weinheim: Wiley-VCH], which enables the removal of the intrinsic origin

dependence of the atomic charge contributions to the molecular dipole moment.

This scheme allows the export, within chemically equivalent functional groups,

of properties calculated from atomic dipoles, such as for example the atomic

polarizabilities. The software permits visualization of the tensors and calculation

of straightforward optical properties of a molecule (like the molar refractive

index) or a crystal (assuming the molecule in a given crystal lattice).

1. Introduction
The response of an electron density distribution to perturbation is a

very important factor if we are to understand the behavior of

molecules or solids during chemical reactions or phase transforma-

tions, solvation or molecular recognition processes, or emission of

optical or spectroscopic signals.

If the perturbation is due to an external electric field, the molecular

response is controlled by the (hyper)polarizability of the molecule.

Quantum chemistry allows us to calculate dipolar (hyper)polariz-

abilities of molecules and crystals by derivation of the electronic

energy E with respect to the electric field F. For example, the �ij

component of the first-order polarizability tensor is defined as

�ij ¼ � @2E

@Fi@Fj

: ð1Þ

Because the derivative of energy with respect to the field corresponds

to the dipole moment, �ij can be calculated also as the derivative of

the dipolar moment with respect to the field:

�ij ¼ � @2E

@Fi@Fj

¼ @�j

@Fi

: ð2Þ

This means that the polarizabilities are more directly connected to an

easy observable like the electron density (more precisely to the

moments of the electron density) rather than to the electronic energy,

a quantum mechanical observable that is, however, not easily avail-

able from experiments.

Similarly to the charge distribution, a chemist would prefer to

analyze the atomic and bond polarizabilities of a system rather than

the total molecular quantity. There are many reasons for this. First of

all, atoms or functional groups of atoms represent the way in which

molecular chemists normally ‘reduce’ a molecule (or a molecular

crystal) to rationalize the chemical functions, such as reactivity,

molecular recognition, solvation etc. The same could be valid also in

materials science for engineering purposes. In fact, a given property

may originate from a particular functional group of the molecule, and

therefore it is important to know the actual effect of each functional

group. In addition, atomic parameterization is a prerequisite for semi-

empirical (force-field-based) modeling of intermolecular interactions,

for example in molecular mechanics or molecular dynamics simula-

tions. In this respect, transportable atomic polarizabilities are extre-

mely useful, in analogy with transportable atomic multipolar

moments (Pichon-Pesme et al., 1995; Volkov et al., 2004; Dittrich et al.,

2006; Zarychta et al., 2007).

The breakdown of molecular dipole moment into atomic terms

allows the contribution of each atom to the molecular polarizability

to be calculated. Many atomic partitioning schemes have been

proposed in the literature. Most of them were intended to distribute

the molecular electric moments in terms of the constituent atoms

(Stewart et al., 1975; Stewart, 1976; Hansen & Coppens, 1978;

Hirshfeld, 1977; Kurki-Suonio, 1968; Kurki-Suonio, 1977). Stone

(1985) and Le Sueur & Stone (1993) directly analyzed several

partitioning schemes of the molecular polarizabilities and concluded

that space-partitioned atomic polarizability volumes would be the

most efficient. Bader et al. (1987), Laidig & Bader (1990), Bader

(1989) and Bader et al. (1992) also proposed hard-space partitioning

of the molecular polarizabilities, based on the quantum theory of

atoms in molecules (QTAIM), which was later generalized by Keith

(2007). Hättig et al. (1996) first proposed the atomic partitioning of

frequency-dependent polarizabilities, based on QTAIM as well as on

Stone’s approaches. Their main purpose was to estimate atom–atom

dispersion coefficients for the evaluation of intermolecular interac-
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tion energies. Gough et al. (1996) have used QTAIM polarizabilities

to compute intensities of Raman spectra. However, the results of

atomic partitioning are not included in that work. Devarajan &

Glazer (1986) and Glazer & Stadnicka (1986) have derived a theo-

retical background to connect anisotropic atomic polarizabilities to

some optical properties, like refractive indices and optical rotatory

power. In those papers, atomic polarizabilities in crystals were

visualized for the first time.

We have recently shown (Krawczuk et al., 2011) that the parti-

tioning proposed by Keith, and implemented in AIMAll (Keith,

2013), could be used to solve the problem of origin dependence that

affects the partitioning of molecular (hyper)polarizabilities. The

problem arises from atomic charges that produce a dipole moment

when shifted from the center of charge of the molecule. It should be

recalled at this point that the total molecular dipole is origin inde-

pendent if the total molecular charge is zero. However, as each atom

in the molecule is not neutral (apart from trivial exceptions), the

charge–distance vectors generate an ‘apparent’ origin dependence,

which is a ‘true’ one if the molecule is not neutral. Keith proposed to

‘cancel’ the atomic charges, translating them into bonds and creating,

at each atom center, additional dipolar terms originated from the

bond charge translation, also defined as ‘directed bond contributions

to the atomic charge’ by Keith (2007). After this transformation, each

atom possesses only dipolar terms: the electric dipole moment

calculated from the uneven distribution of charge inside the atomic

basin (atomic polarization) and the charge translation dipole (the

sum of all bond charge translation dipoles). The molecular dipole

moment is the exact sum of all these atomic terms and the origin-

dependent charge–distance contribution has disappeared. Even for

non-neutral molecules, the dipole remains invariant under a change

of coordinate system, if using the same space partitioning of the

electron density. The most important consequence of this operation is

that the atomic polarizability terms are easier to compute and much

more transportable from one atom to a chemically equivalent one

belonging to another molecule (even of completely different

geometry), which is an important condition for force-field approaches

in molecular modeling. At the same time, this approach allows a

breakdown into atomic components of the terms that give origin to

optical properties of a molecule or a crystal, which is important for

the design of molecular-based materials.

In the following, we will briefly review the theoretical background

and present the software PolaBer, which calculates and visualizes

atomic polarizability tensors.

2. Theoretical background

According to the QTAIM partitioning method, atomic properties

such as atomic charges Q(�), energies E(�) or, in particular, dipole

moments l(�) can be calculated by integrating their corresponding

operators over the volume of the atomic basin �. The atomic dipole

moment can be then defined as

lð�Þ ¼ � R

�

r� R�ð Þ�ðrÞ drþP

�0
R� � Rbð� j �0Þ� �

Qð� j �0Þ; ð3Þ

where Qð� j �0Þ is the charge contributed to atom � by the bond to

atom �0, R� is the position vector of atom � with respect to an

arbitrary origin, and Rbð� j �00Þ is the positional vector of the bond

critical point between atoms � and �0. The first part of equation (3)

describes the atomic polarization lp(�) term, whereas the second

part is the charge translation lc(�) component. Equation (3) can

then be rewritten as

lð�Þ ¼ lpð�Þ þ lcð�Þ: ð4Þ
The atomic polarization term comes from the integration of the

dipolar density function within the atomic basin, and the charge

translation term is given by the weighted sum of atomic charge

translations from the atom’s nucleus to each bond critical point

(BCP) connected to that atom. The sign and value of the charge

translation component strongly depend on the nature and number of

the groups bonded to the selected atom. The atomic polarization is

taken directly from partitioning of electron density, whereas the

charge translation component is computed by adopting some

constraints. First of all, the sum of net atomic charges must be equal

to the molecular charge, which in the simplest case is equal to zero.

Each atomic charge Qð�Þ is expressed by the sum of bond charges

Qð� j �0Þ:

Qð�Þ ¼ PNa

�0 6¼�

Qð� j �0Þ; ð5Þ

where Qð� j �0Þ ¼ 0 if � and �0 are not bonded. Furthermore, for

each bond

Qð� j �0Þ þQð�0 j �Þ ¼ 0: ð6Þ
If a ring R is present in the system, then the sum of bond charges

within the ring is equal to zero:
P

�2R
Qð� j �þ 1Þ ¼ 0; ð7Þ

where � is an atom belonging to the ring R. To avoid drastic changes

of the shape and values of atomic polarizabilities caused by the

presence of weak intra- and intermolecular interactions, PolaBer uses

a weighting scheme that is inversely proportional to the bond

strength measured, for example, by the electron density at the BCP:

�ð� j �þ 1Þ ¼ 1=�ð� j �þ 1Þ: ð8Þ
Thus equation (7) is rewritten as

P

�2R
�ð� j �þ 1ÞQð� j �þ 1Þ ¼ 0: ð9Þ

If no ring is present in a system, equations (5) and (6) produce (Na +

Nb � 1) linearly independent equations (Na and Nb being the number

of atoms and number of bond critical points, respectively). The ring

conditions add as many independent equations as rings found in the

structure. After solving the set of equations, we obtain bond charges

that are then used to calculate the charge translation terms of the

atomic dipole moments and thus the total atomic dipole moments.

Atomic polarizabilities are numerical derivatives of the corre-

sponding atomic dipoles with respect to the applied field. Calcula-

tions are carried out numerically, and thus

�ijð�Þ ¼ �
"j
i ð�Þ � �0

i ð�Þ
"j

; ð10Þ

where �
"j
i ð�Þ is the atomic dipolar component along the i direction

computed with a given electric field (0 or ") in direction j. In general,

PolaBer uses calculations at �"j and computes derivatives by aver-

aging two dipole differences. Moreover, " is a sufficiently small

electric field (typically 0.005 a.u.) to guarantee a better extraction of

the linear component of the electron polarization. Because the

coupling of atomic volumes and atomic charges is not taken into

account, the so-obtained atomic polarizability tensors may be

nonsymmetric (whereas, by definition, polarizability is a symmetric

tensor). This problem, however, can be circumvented by decom-

posing the polarizability tensor into symmetric and antisymmetric

terms as recommended by Nye (1985). This procedure reconstructs
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very accurately the total molecular polarizability

(which is comparable to the molecular polariz-

ability derived from the analytical double deri-

vative of the energy with respect to the field). In

fact, antisymmetric components of atomic polar-

izabilities cancel each other in a molecular

summation.

3. Program description

PolaBer is written in the Fortran90 programming

language. It consists of a main program and a

number of subroutines. The program requires

atomic charges, polarization dipoles and critical

points of the electron density calculated from

external programs, with and without an applied

electric field. PolaBer uses these entries to calculate the bond charge

translation terms defined in equation (4) and the derivatives of the

dipolar terms with respect to the field, and hence the atomic polar-

izability tensors, which are eventually symmetrized. If a unit cell is

given, the program will also calculate the crystal refractive indices.

The Windows version of the program is available from http://

www.macchi.dcb.unibe.ch/PolaBer.html. Source code and compiled

executables for other platforms are available on request from the

authors. A manual with all the functions and commands in the

program is attached to the source code. The main code is supported

by a visualization tool, ViewTensor, which generates an X3D file

representing data in three dimensions. It is based on view3dscene by

Kamburelis (2011). PolaBer can be run either on Linux or on

Windows platforms with the use of the ViewTensor tool. A screenshot

of ViewTensor is given in Fig. 1.

3.1. Calculation options

PolaBer requires the electron density partitioning of an unper-

turbed and field-perturbed molecular system. In principle this step is

completely independent, meaning that the electron density could be

obtained from calculations as well as from experiments, with what-

soever kind of approximations. In practice, molecular orbital wave-

functions and corresponding electron density partitioning are the

most immediate choices. Since polarizabilities obtained with PolaBer

are numerical derivatives of the corresponding atomic dipoles with

respect to the applied electric field, calculations of wavefunctions

should be carried out at zero electric field as well as under a small

electric field, e.g. 0.005 a.u. directed along �X, �Yand �Z. The value

of the proposed electric field was proven (Krawczuk et al., 2011) to be

sufficiently small to obtain good numerical derivatives of the dipolar

density, except for some systems which required a smaller field of

0.001 a.u. for more precise evaluation of the atomic polarizabilities.

After a set of wavefunctions has been obtained for a given system,

integration of the electron density is needed. This is done by

performing QTAIM partitioning with the use of AIMAll or XD2006

(Volkov et al., 2006), after expanding the molecular density in terms

of multipoles. Other software could be used, of course, but is not

directly interfaced at the moment, and the output of any alternative

software would require processing in order to provide PolaBer with

the required information. For this reason a generalized input file is

also accepted (which can be written by any external software). The

format and input requirements are given in Table 1. A schematic

representation of the computational steps that need to be taken

before entering the PolaBer routine is given in Fig. 2. An example of

a jobfile for launching all calculations, as well as an example of a

Gaussian input file, is included in the supporting materials.1 PolaBer

starts with reading and importing necessary data from density inte-

gration. The following data are read from AIMAll/XD files:

(a) Atomic charges q(�) and coordinates in the Cartesian system

(b) Coordinates of BCPs and values of electron density and

Laplacian on BCPs

(c) The atomic polarization component of the atomic dipole

moment lpð�Þ
Apart from the AIMAll/XD output files, an additional control file

is needed (dipolar.inp), which contains instructions and additional

information necessary for PolaBer (see Table 2).

After gathering the necessary data, PolaBer starts the calculations.

These are quite rapid. The first step of the procedure is the calcula-

tion of the bond charges Qð� j �0Þ, necessary to obtain the charge

translation components of the atomic dipole moments. In this step

PolaBer also searches for rings and cages within the molecular system

and applies a weighting scheme (see previous section), if requested by

the user.

In the next step, the total atomic dipole moments are calculated at

each electric field. The atomic polarizability tensors are then obtained

after symmetrization of the tensor.
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Figure 1
Graphical user interface for visualization of atomic polarizabilities and running
PolaBer (available only on Windows platforms).

Table 1
Format and input requests necessary for entering PolaBer calculations.

Number of atoms: natoms
At1 Atom label
xyz Coordinates of At1 given in Å in the Cartesian system
Vol Atomic volume (calculated at � = 0.001 a.u.) given in Å3

Q(A) Atomic charge
Dipole Cartesian atomic unabridged moments given in Debye Å�(l � 1)

[where l is the order of the multipole (l = 1 dipole, l = 2
quadrupole etc.)]

Quadrupole

Octupole

Hexadecapole

Number of bonds: nbond
At1 At2 xyz rho delrho ellips d1 d2 xyz: coordinates of the BCP in Å in the Cartesian system

rho: electron density on the BCP
delrho: Laplacian of the electron density on the BCP
ellips: bond ellipticity
d1, d2: distances between At1 and the BCP and the BCP and At2

given in Å in the Cartesian system

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: TO5075).
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PolaBer calculates also an estimation of the bond polarizability:

a���0 ¼ rT
��0 ða� þ a�0 Þr��0 ; ð11Þ

where r��0 is a unit vector in the direction of the �—�0 bond.

Therefore, the bond polarizability is a projection of the atomic

polarizability tensor along the bond. This definition is ‘exact’, in the

sense that the bond polarizability is not a fitted quantity but it comes

univocally from the calculated distributed atomic polarizabilities of

the system. On the other hand, it is important to stress that in fact the

concept of bond polarizability lacks a precise definition. Therefore,

����0 cannot be compared with other bond polarizabilities proposed

in the literature, because it is based on different definitions.

3.2. Output files

Currently, the program prints out the following output files:

(i) bond.out – a common format file containing a summary of

atomic/bond polarizability calculations.

(ii) bond.res – a crystallographic format containing fractional

coordinates of a studied system; the format is the same as the one

produced by the SHELX program (Sheldrick, 2008). Instead of

atomic displacement parameters, components of atomic polarizability

tensors are given, scaled by a factor of 0.1.

(iii) bond.x3d – a file representing data as a three-dimensional

view which is visualized with the locally developed ViewTensor

program.

Calculated quantities in the output file are summarized in two main

tables: atomic and bond properties. Components of atomic polariz-

ability tensors are listed in Cartesian coordinates as well as in the

crystal system defined in the input file (dipolar.inp). A summary of

the main quantities printed out in the bond.out file is given in the

supplementary materials in Table S1.

4. Applications

4.1. Isolated molecules

To illustrate how PolaBer works, we start with calculations on

isolated molecules of urea and l-alanine. In order to obtain wave-

functions for both molecules, ab initio calculations were carried out

with the Gaussian09 package at the B3LYP/6�311++G(2d,2p) level.

The geometry of urea was optimized, whereas for the zwitterionic

form of l-alanine coordinates were taken from neutron diffraction

data (Lehmann et al., 1972) and kept frozen for further calculations.

These geometries were then used to calculate the wavefunctions

under electric field perturbation, using of course the same level of

theory. Topological analysis and integration of the electron density in

the atomic basins were carried out using AIMAll.
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Figure 2
Schematic representation of necessary steps before entering PolaBer. Ei – applied
electric field in a given direction; �i – wavefunction after applying an external
electric field.

Table 2
Layout of the dipolar.inp file.

INTEG WEIGHT VERBOSE n INTEG: specifies which program was used for integration of electron density (currently available AIMAll/XD)
WEIGHT: if present specifies the use of a weighting scheme (see text for more details)
VERBOSE n (n = 0, 1, 2): setting n greater than 0 switches on extra printout to the bond.out file

nfiles nfiles: number of files to be read into PolaBer from AIMAll/XD:
nfiles = 4 if calculations were done for EFIELD = 0, X, Y, Z
nfiles = 7 if calculations were done for EFIELD = 0, �X, �Y, �Z (highly recommended)

fname1 EFIELD EFX EFY EFZ fname: list of all AIMAll/XD file names (*.sum, *.out) with specification of applied electric field (EFFIELD), i.e. xp.sum
EFIELD 0.005 0. 0. specifies output from AIMAll and an applied electric field in the X direction with the value of
0.005 a.u.

fname2 EFIELD EFX EFY EFZ

cell parameters

10.0000 10.0000 10.0000 90.000 90.000 90.000

0.0000 0.0000 0.0000 0.000 0.000 0.000

Cell parameters given in Å in fractional coordinates with s.u. values

LATT N Lattice type, according with SHELX convention: 1 = P, 2 = I, 3 = Robv on hexagonal axes, 4 = F, 5 = A, 6 = B, 7 = C, negative
sign indicates noncentrosymmetric structure

SYMM x1 y1 z1 x2 y2 z2 x3 y3 z3, tx ty tz Symmetry operations within a given space group
x1, y1, z1: first row of rotation matrix; x2, y2, z2: second row of rotation matrix; x3, y3, z3: third row of rotation matrix
tx, ty, tz: translational components in decimal notation, �0.25, 0.33, 0.5, 0.67, 0.75

TYPE ntype Number of atom types
SFAC C H O Scattering factors for each type of atom
UNIT 10 10 10 Number of atoms of each type in a unit cell, in SFAC order
LAMBDA 0.71073 Wavelength in Å
ATOMLIST Creates a summary table for a chosen fragment
nlist Number of atoms to be included
at1 at2 . . . List of atoms building a chosen fragment for which a summary table will be created in bond.out

Figure 3
Graphical representation of distributed atomic polarizabilities for (a) urea and (b)
l-alanine molecules. The scaling factor for atomic polarizabilities is 0.4 Å�2.
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Graphical representations of the calculated atomic polarizabilities

for urea and l-alanine molecules are given in Fig. 3. The analysis of

both images indicates a number of features that are characteristic of

atomic polarizabilities. First of all the electron density polarization

strongly affects the polarizability. This is evident especially in the

direction of stronger chemical bonds. In fact, polarizability ellipsoids

are strongly elongated towards more polarizable atoms (see the

C O and C—N bonds), and the higher the difference of electro-

negativity between bonded atoms, the more prolate the polarizability

ellipsoids along the bond. In the case of H atoms, the values of the

polarizability tensors are very small compared to those of non-H

atoms (see any H—X bond), which is due to the small electronic

population of H atoms. Nevertheless, it is quite clear that the largest

component of the polarizability tensor of any H atom is in the

direction of an H—X bond. For urea, the values of the atomic/

molecular polarizabilities obtained with PolaBer are summarized in

Table 3. Note that the polarizability tensors fulfill the symmetry

requirements of the molecule.

4.2. Supramolecular assemblies

We now analyze the influence of interatomic interactions on the

shape and orientation of polarizability tensors. Let us first consider

two molecules of urea interacting through N—H� � �O hydrogen

bonds (HBs). From Fig. 4(a), we can see that the ellipsoid repre-

senting the polarizability tensor of atom O2 (acceptor of both HBs) is

modified because of the hydrogen bonds (compare with Fig. 3a).

Since HBs are symmetrically equivalent, the pronounced elongation

of the oxygen ellipsoid is directed along the bisector of the N11—

C9—N14 angle towards the C9–O10 carbonyl group. When H atoms

are involved in HBs, the orientation of their ellipsoids changes (with

respect to the isolated molecule), towards the acceptor of both

hydrogen bonds.

If urea is surrounded by three other molecules and atom O2 is

involved in four instead of two hydrogen bonds of N—H� � �O type

(Fig. 4b), the oxygen polarizability tensor behaves differently. While

the elongation of the ellipsoid towards the C9—O10 bond is

comparable to the previous example, the presence of two additional

computer programs
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Figure 4
Graphical representation of atomic polarizabilities in the case of supramolecular assemblies of urea. The scaling factor for atomic polarizabilities is 0.4 Å�2. Dashed lines
indicate hydrogen bonds between molecules.

Table 3
Components of atomic polarizability tensors of urea calculated with QTAIM
partitioning based on B3LYP/6�311++G(2d,2p) calculations.

All quantities are in atomic units (Bohr3). Mol refers to the total molecular polarizability
tensor.

Atom �11 �22 �33 �12 �13 �23

C1 2.20 5.98 5.32 0 0 0.00
O2 4.85 4.72 12.89 0 0 0.00
N3 8.20 10.94 7.33 0 0 �3.36
H4 0.48 2.27 0.70 0 0 0.66
H5 0.52 0.66 2.60 0 0 �0.51
N6 8.20 10.94 7.33 0 0 3.36
H7 0.48 2.27 0.70 0 0 �0.66
H8 0.52 0.66 2.60 0 0 0.51

Mol 25.43 38.44 39.48 0 0 0

HBs in a plane perpendicular to urea (C1—O2 bond) flattens the

ellipsoid into a disc-like shape. In the case of atom C9, the anisotropy

of the tensor is much more affected by the presence of hydrogen

bonds (to atom O2) than in the case of only two urea molecules: the

ratio between the largest and smallest components �33/�11 is 1.51 for

a cluster built of four molecules, whereas for two molecules it is 1.12.

When we consider a larger cluster where urea is surrounded by all

possible hydrogen-bonded molecules (see Fig. 4c), we observe that

the polarizabilities of the central molecule are not enormously

different from those in the single HB dimer. In fact, only the polar-

izabilities of atoms N3 and N6 are significantly changed since they are
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additionally involved in two hydrogen bonds with atom O34. What is

more interesting in this example is how the direction and strength of

the hydrogen bond affect the shape and orientation of ellipsoids

representing the polarizability tensors of O atoms. For example, if we

consider atom O42, the presence of an HB towards atom H7 rotates

the ellipsoid in the direction of the bond and makes it less elongated

along the C—O bond compared to the isolated state. Conversely,

atom O34 becomes more anisotropic along the C—O bond owing to

the formation of two symmetrically equivalent hydrogen bonds,

whereas atom O10 behaves like the atom from the isolated molecule

since it is not involved in any intermolecular interactions.

4.3. Crystals

One of the main applications of distributed atomic polarizabilities

is the estimation of crystal optical properties. The crystal dielectric

constant can be calculated from the atomic polarizabilities. In first

approximation, this could be calculated as simply the sum of unper-

turbed polarizabilities calculated in the gas phase. However, this

would highly underestimate the dielectric tensor, ignoring the

enhancement of the polarizability in the field generated by other

molecules. The corresponding crystal refractive indices would also be

underestimated. The advantage of distributed atomic polarizabilities

is that one can consider a molecule embedded in a cluster of

surrounding molecules, as described in the previous section, then

easily extract the polarizability of just the central molecule (taking

advantage of the atomic distribution) and eventually use this central

polarizability to calculate the crystal properties. This approach

enables to us account at least for the perturbation of the first coor-

dination sphere, which may be more than just a classical electrostatic

interaction, especially for crystals with a strong hydrogen-bond

network. A second correction would be then to account for the long-

range interactions, which can be safely approximated with a simple

electrostatic perturbation and treated in classical terms, basically

applying the Clausius Mossiotti theory or the anisotropic Lorentz

field-factor approach. A more comprehensive theory for this

approach was provided by Dunmur (1972), Cummins et al. (1976) and

Bounds & Munn (1981). Jayatilaka et al. (2009) and Whitten et al.

(2006) have shown the advantages of this method, testing molecular

polarizabilities calculated at different quantum mechanical levels,

including the X-ray constrained wavefunction. Again there could be

an advantage to using the distributed atomic polarizabilities: in fact it

was noted that a perturbation calculated to a ‘central’ polarizability

was not adequate, in particular if the molecule and the crystal packing

are quite anisotropic. For this reason, Bounds & Munn (1977)

suggested to ‘distribute’ the molecular polarizability of the central

molecule on different sites, thus enabling a more accurate descrip-

tion. However, the distribution proposed was a simple equi-partition

of the molecular tensor on some atomic sites, whereas it is clear from

our examples that the atomic polarizabilities are quite diverse and the

approach of Bounds and Munn, albeit more precise than a central

polarizability approach, may not be sufficiently accurate. Having,

instead, the exact atomic polarizabilities, it is possible to perform the

calculation with much more precision, using the same formalism as

Bounds & Munn (1977).

In Table 4, we report the calculated refractive indices of urea based

on (a) the isolated molecular polarizability (here the distributed

atomic polarizability is not used), (b) the polarizability of a molecule

extracted from the first coordination sphere and (c) the molecular

polarizability computed in a polarizable continuum medium,

mimicking the crystal dielectric constant. Calculations (a) can be

correct if the interaction of distant molecules is evaluated using

Munn’s schemes, namely the so-called Lorentz anisotropic approx-

imation or the rigorous local-field approximation (calculated using

molecular or distributed atomic polarizabilities). It is notable that the

latter approach enables a calculation that is very close to the periodic

ab initio methods as well as the experimental values extrapolated to

infinite wavelength (Halbout et al., 1979) (see Table 4). Combination

of the molecule in a cluster and the Lorentz approaches is not

sensible because it would lead to an overcorrection (first coordination

sphere counted twice) and larger refractive indices. Through the

example of Table 4, we just want to illustrate how much of the total

enhancement of the dielectric constant is actually due to the first

coordination sphere and how much is instead coming from the long-

range interaction. Indeed, the second part is in fact dominating.

There is an additional calculation shown in Table 4, which is also

worthy of comment: the molecular wavefunction calculated using a

dipolar continuum medium, an approach normally adopted in order

to simulate the effect of a solvent (c). If the dielectric constant

computed for an isolated molecule of urea is used (assuming the same

molecular volume as in the crystal), the corresponding crystal

refractive indices match almost exactly the experimental ones,

without further corrections. This observation is very interesting,

because the calculation of distributed polarizabilities for a single

molecule of urea within the polarizable medium is just marginally

more expensive than the calculation in the absence of such a medium

and definitely less time consuming than the calculation of a cluster or

the fully periodic system. Of course such a calculation does not

require Lorentz correction, because this is implicitly accounted for.

5. Conclusions

In this paper, we have reported on a new routine that enables the

calculation of distributed atomic polarizabilities from molecular

orbital wavefunctions (or in principle also multipolar expansions) of

the electron density distribution of the ground state and the electric

field perturbed electron density of a molecule, or in principle of a

crystal as well. The program uses electron density partitioning to

define the atomic boundaries. In the illustrated examples, the parti-

tioning is obtained through the QTAIM approach, but other schemes

would be equally suitable and will be tested in the future.

One important use of this approach is the calculation of optical

properties in crystals, which requires the evaluation of accurate

molecular polarizabilities but also of supramolecular perturbations,

due to short-range interactions within the first coordination sphere as

well as to long-range electrostatic perturbations. The calculation of

the refractive indices of a crystal is straightforward, and in future

computer programs
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Table 4
Dielectric susceptibility and refractive indices for urea.

Both quantities are dimensionless. Note that the crystal class of urea implies �ij = 0 for i 6¼
j and �11 = �22. Subscripts o and e refer to ordinary and extraordinary rays, respectively.

�11 �33 no ne

(a) Sum of gas phase molecular polarizabilities 0.821 1.012 1.349 1.418
+ anisotropic Lorentz correction 1.131 1.526 1.460 1.589
+ rigorous local field Lorentz correction 1.119 1.571 1.456 1.603
+ rigorous local field Lorentz correction on
distributed atomic polarizabilities

1.118 1.578 1.455 1.605

(b) Sum of molecular polarizabilities from cluster
calculation

0.943 1.207 1.394 1.486

(c) Molecule in a polarizing continuum medium 1.170 1.510 1.473 1.584
(d) Extrapolated to infinite wavelength† – – 1.47 1.58

† Halbout et al. (1979).

electronic reprint



work we will also show the evaluation of optical activity and some

nonlinear optical properties, by extending this approach to hyper-

polarizabilities.

Other applications of this method, also useful for crystallographic

applications, concern the evaluation of intermolecular induction and

dispersion energy terms, within the semi-classical approaches of

intermolecular interactions.

PolaBer will be developed in the future having these applications

in mind.
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