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Abstract—Performing continuous beam steering, from planar
arrays of high-order differential microphones, is not trivial. The
main problem is that shape-preserving beams can be steered
only in a finite set of privileged directions, which depend on the
position and the number of physical microphones. In this letter,
we propose a simple and computationally inexpensive method for
alleviating this problem using planar microphone arrays. Given
two identical reference beams pointing in two different directions,
we show how to build a beam of nearly constant shape, which
can be continuously steered between such two directions. The
proposed method, unlike the diffused steering approaches based
on linear combinations of eigenbeams (spherical harmonics),
is applicable to planar arrays also if we deal with beams
characterized by high-order polar patterns. Using the coefficients
of the Fourier series of the polar patterns, we also show how to
find a trade-off between shape invariance of the steered beam,
and maximum angular displacement between the two reference
beams. We show the effectiveness of the proposed method through
the analysis of models based on first, second and third-order
differential microphones.

I. INTRODUCTION

THE interest in signal processing techniques for deriving
directional Beamformers (BFs) from small-size arrays

of omnidirectional microphones (e.g. arrays of MEMS mi-
crophones [1]) is steadily growing due to the proliferation
of embedded systems for home automation, audio surveil-
lance, infotainment, automotive engineering [2] and hands-
free interaction [3]. Also emerging applications relying on
arrays of compact sub-arrays (plenacoustic cameras [4], [5])
could benefit from such methodologies. As discussed in [6],
there are two broad classes of beamforming methods applied
to small-size microphone arrays, one based on additive [7]–
[14] operations; and one based on differential [6], [15]–[22]
operations on microphone signals. Worth mentioning are also
hybrid techniques such as differential-integral approaches [23].
Differential Microphone Arrays (DMAs) require arrays of
small size, as the distance between sensors must be small
enough to satisfy the assumption that acoustic pressure field
differentials are well approximated by differences between
microphone signals [19]. The smaller the distances between
sensors the wider the spectrum ranges in which the resulting
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beams are nearly frequency-invariant [6]. Moreover, the polar
pattern of the beams can be easily shaped by adjusting
the delays between the combined microphone signals. The
literature is rich with DMA approaches employing different
array geometries, such as: Uniform Linear Arrays (ULAs)
[6], [18], [24]; NonUniform Linear Arrays (NULAs) [21]; and
Uniform Circular Arrays (UCAs) [20]. The design of DMAs
is characterized by rigid symmetry constraints. For example,
using ULAs and NULAs we can only obtain beams that are
symmetric with respect to the line on which the physical
microphones are placed. This means that, if we want only one
mainlobe in the directivity pattern, it must be aligned with one
of the two possible directions along the above-mentioned line
[6], [21]. Similarly, in the case of UCAs the symmetry axes of
the resulting polar patterns can only be the lines joining the ar-
ray center and the physical microphones on the circumference
[20]. As explained in [20], applying alternative techniques to
UCAs, such as superdirective beamforming without symmetry
constraints, we can design directional microphones focusing to
arbitrary directions, but the shape of the resulting polar pattern
is strongly direction-dependent and symmetry can no longer
be guaranteed.

Consequently, the development of beamforming methods
for designing shape-preserving beams with high-order polar
patterns, continuously steerable to arbitrary directions, is not
straightforward. In this regard, Elko et al. [15], [25], [26],
[27] developed a method, which is based on a linear com-
bination of eigenbeams shaped like spherical harmonics of
different orders, similarly to what done in (B-format) am-
bisonics coding [28], [29]. The method described in [25] uses
differential configurations for building the needed eigenbeams
[25]. How microphone gain and phase mismatches impact on
the mainlobe misorientation, using such an approach [25], is
also discussed in the literature [30], [31]. Disposing of 3D
arrays (such as spherical arrays) composed of closely spaced
microphones, eigenbeams of any order can in principle be
built [27], enabling the construction of beams with arbitrary
order and mainlobe orientation. However, the use of 3D array
geometries is impractical in many embedded applications and
2D configurations would be preferred [32]. Nevertheless, if
we are constrained to use planar (2D) arrays, the approach
adopted by Elko et al. [27] works only for steering beams with
first-order polar patterns, as higher-order spherical harmonics
have complex 3D shapes [28], [29] and 3D array geometries
become necessary [27].

In this letter, we propose a beamforming method appli-
cable to 2D small-size array configurations for deriving a
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TABLE I
N -TH ORDER BEAM PATTERN COEFFICIENTS

N c0 c1 c2 c3 c4 c5
1 1− a1 a1 − − − −
2 1− a1 − a2/2 a1 a2/2 − − −

3
1− a1 −
a2/2− a3

a1 +
3a3/4

a2/2 a3/4 − −

4
1−a1−a2/2−
a3 − 5a4/8

a1 +
3a3/4

a2/2+
a4/2

a3/4 a4/8 −

5
1− a1 −

a2/2− a3 −
5a4/8− a5

a1 +
3a3/4+
5a5/8

a2/2+
a4/2

a1 +
3a3/4+
5a5/16

a4/8 a5/16

continuously steerable beam starting from a pair of arbitrary-
order reference beams, which are coincident in space and only
differ from each other by a rotation. We show how and under
which conditions such beams can be combined in order to
obtain a steerable beam of matching shape using a simple
weighted combination of patterns. We also propose a metric
for assessing shape similarity between the resulting beams and
offer an evaluation of the performance of the method.

II. HIGH-ORDER BEAM PATTERNS

We will refer to a Beamformer (BF) as a combination of
filtered versions of the signals coming from a microphone ar-
rangement, designed to obtain a directional beam. It is known
that a BF can be structured in a layered fashion; i.e. combining
the output signals of other BFs. In fact, high-order DMAs are
examples of BFs of the sort. A BF is always characterized by
a spatial position and a beam pattern. The former corresponds
to the fixed reference point of the microphone array. The latter
can be defined as a pattern of order N and, assuming that it
does not depend on the frequency of the audio signal [19],
expressed as:

B(θ) = a0 +

N∑
n=1

ancosn(θ) , with a0 = 1−
N∑
n=1

an , (1)

where θ is the azimuth of the pattern (0 < θ ≤ 2π), and
a0, . . . , aN are positive real coefficients in the range [0, 1].
We also define the derivative of (1) as

DB (θ) =
∂B(θ)

∂θ
= −

N∑
n=1

nan sin(θ) cosn−1(θ) , (2)

which will be used later on. Notice that we can always express
(1) in the form [33]

B(θ) = c0 +

N∑
n=1

cncos(nθ) , (3)

where c0, . . . , cN are real coefficients, that can be computed
as shown in Appendix A. Such coefficients are collected in
Table I up to order 5.

Later on, a generic beam pattern will be thought of as
a signal for the purpose of introducing a metric for shape
comparison. The “distance” between two pattern shapes, in
fact, will be based on the “power” of the difference between
the signals that describe such patterns. This distance, in turn,
can be easily expressed as a function of the Fourier coefficients

of the (periodic) signals that describe the patterns, thanks
to Parseval’s theorem. Starting from (3), in fact, it is quite
straightforward to compute the coefficients dn of the Fourier
series of B(θ) (which is a periodic function of the angle) as
d0 = c0, dn = cn/2 for 0 < |n| ≤ N and dn = 0 for |n| > N .
These coefficients are strictly related to the Fourier descriptors
[34] that are used for describing the shape of closed curves.
Let us now treat B(θ) like a signal, so that, using Parseval’s
theorem, we can readily compute the “power” (integral of the
square modulus) of (3) as

WB =

N∑
n=−N

|dn|2 = |c0|2 +
1

2

N∑
n=1

|cn|2 . (4)

An alternate representation (in the frequency domain) of the
beam pattern of a BF can be derived by computing the con-
tinuous Fourier transform of B(θ) (ignoring its periodicity).
As a result, we obtain a “line spectrum” of the form

B(ψ) = d0δ (ψ)+

N∑
n=1

dn

(
δ
(
ψ − n

2π

)
+ δ

(
ψ +

n

2π

))
(5)

where ψ is the domain of the Fourier transform, expressed in
rad−1, δ (.) is the Dirac distribution and the coefficients dn
are the amplitudes of the spectral lines.

Rotating B(θ) of the angle ρ, returns the beam pattern
B̄(θ) = B(θ − ρ), which can be written as

B(θ − ρ) = c0 +

N∑
n=1

cn (cos(nθ)cos(nρ) + sin(nθ)sin(nρ)) .

The corresponding “line spectrum” will therefore be

B̄(ψ) =
N∑
n=1

(
dncos(nρ)

(
δ
(
ψ + n

2π

)
+ δ

(
ψ − n

2π

))
+

+ jdnsin(nρ)
(
δ
(
ψ + n

2π

)
− δ

(
ψ − n

2π

)))
+ d0δ (ψ) .

(6)

III. CONTINUOUS STEERING OF PLANAR PATTERNS

A. Computing the weights

Let us consider two identical beam patterns B(θ) and
B̄(θ), sharing the same location in space and pointing in two
different directions θ0 and θ̄ with an angular displacement
ρ = θ̄ − θ0 < π/2. For simplicity, we assume θ0 = 0 and
θ̄ = ρ. We also assume that the two beam patterns B(θ) and
B̄(θ) are symmetric with respect to their pointing direction.
We consider the weighted sum Bsum(θ) = αB(θ) + ᾱB̄(θ),
where α > 0 and ᾱ > 0. This can be rewritten as

Bsum(θ) = ᾱ [βB(θ) +B(θ − ρ)] (7)

where β = α/ᾱ. We now want to point the mainlobe of
Bsum(θ) in a desired direction θd, 0 < θd < ρ. This we
do by ensuring that the derivative DBsum(θ) of (7) is zero at
θd. As DBsum(θ) = ᾱ [βDB(θ) +DB(θ − ρ)], we derive the
constraint

β =
DB(θd − ρ)
−DB(θd)

=
sin(ρ− θd)

sin(θd)

N∑
n=1

nan cosn−1(θd − ρ)

N∑
n=1

nan cosn−1(θd)

.

(8)
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Notice that if θd = ρ/2, then β = 1. In order to normalize
Bsum(θ), we set Bsum(θd) = 1, which is guaranteed by

ᾱ =
1

βB(θd) +B(θd − ρ)
, (9)

from which we can compute α as α = β/ᾱ. Bsum(θ) is
the beam pattern of a directional BF whose main lobe has
a maximum in θd. Fig. 1, Fig. 2, Fig. 3 and Fig. 4 show some
beam patterns derived using the presented approach.
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Fig. 1. A first-order (reference) pattern B(θ) with a1 = 0.5 (left); and two
patterns derived from B(θ) and B(θ − ρ) with ρ = π/3 (center and right).
The directions of the reference patterns are marked with green radial lines.
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Fig. 2. A second-order (reference) pattern B(θ) with a1 = 0.2 and a2 = 0.7
(left); and two patterns derived from B(θ) and B(θ − ρ) with ρ = π/5.9
(center and right).
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Fig. 3. A third-order (reference) pattern B(θ) with a1 = 0.1, a2 = 0.35
and a3 = 0.4 (left); and two patterns derived from B(θ) and B(θ− ρ) with
ρ = π/6.758 (center and right).
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Fig. 4. A third-order (reference) pattern B(θ) with a1 = 0.01, a2 = 0.04
and a3 = 0.7 (left); and two patterns derived from B(θ) and B(θ− ρ) with
ρ = π/6.758 (center and right).

B. Beam Similarity Error

Though similar, Bsum(θ) is generally different from the
reference pattern B(θ − θd). We would like, however, to
exercise some control over the “degree of similarity” of such
beam patterns through a careful selection of the parameters
an, ρ and θd. In order to do so, we define the shape error

E(θ) = Bsum(θ)−B(θ − θd) . (10)

and, using the definitions (5), (6) and (4), we derive the power
of its spectrum E(ψ)

WE = 1
2

N∑
n=1

(
|cn (ᾱβ + ᾱcos(nρ)− cos(nθd)) |2+

+|cn (ᾱsin(nρ)− sin(nθd)) |2
)
+ |c0 (ᾱβ + ᾱ− 1) |2 .

(11)
We then define the percentage similarity error

JE = 100× WE

WB
, (12)

which is expected to be small when Bsum(θ) and B(θ − θd)
are similar. Given ρ and ai, the largest JE always corresponds
to θd = ρ/2, which is the only one angle in which the beam
pattern Bsum(θ) is fully symmetric with respect to its main
lobe direction (like B(θ)). These facts can be readily verified
in Fig. 1, where the largest value JE ' 0.512 is reached at
θd = ρ/2, where at θd = ρ/5 we have JE ' 0.219.

In Fig. 5 we show the values of JE as a function of a generic
first-order beam pattern, assuming all the possible values of a1
in the range [0, 1] and ρ in the range [0, π/3]. The maximum
of the function in this plot is J∗

E ' 0.546. Let us assume in a

Fig. 5. Percentage similarity error JE as a function of ρ and a1. The
maximum of JE is J∗

E ' 0.546 with a1 = 0.569.

reference application J∗
E be the maximum allowed percentage

similarity error; we want to find the corresponding maximum
allowed ρ for each beam pattern order N , assuming the
parameters an can vary arbitrarily. Fig. 6 shows the maximum
allowed ρ for the first 5 orders, fixing θd = ρ/2 and picking
the ”worst” combination of an parameters. The values of ρ
plotted in Fig. 6 for the first 3 orders are used also in Fig. 1,
Fig. 2, Fig. 3 and Fig. 4.

C. Approximate computation of β

In real-time applications in which θd is time-varying and
a high update rate for the non-uniform weights is required,
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Fig. 6. Maximum allowed ρ for the first 5 orders, corresponding to a
maximum allowed percentage similarity error of J∗

E ' 0.546.

it might be useful to consider simpler expressions, which
approximate (9) and (8), for realizing even cheaper beam
steering implementations. While (9) is difficult to simplify
using a general form, in many cases some properties of (8)
can be exploited. Firstly, we notice that, in the first-order case,
(8) becomes β̂ = sin(ρ− θd)/sin(θd). Actually, β̂ is a good
simplification also for higher order beam patterns as the ratio
of summations in (8) is often close to 1. As for small angles y
the approximation sin(y) ≈ y is reasonable, a further rougher
simplification is β̃ = (ρ − θd)/θd. It is worth saying that
using β̂ or β̃ some accuracy is lost in terms of mainlobe
orientation, as B(θd) may not be anymore the maximum of
B(θ). However, we have experimentally verified that the use of
β̂ or β̃ may lead to BFs with lower JE . Therefore, β̂ or β̃ could
be fruitfully used in applications in which high orientation
accuracy is not required.

IV. FREQUENCY-DEPENDENT BEAM PATTERNS

The beam steering approach described in Section III relies
on frequency-independent beam patterns, therefore we expect
it to be well-suited for DMAs, which are known to exhibit a
near-constant behavior over a wide range of frequencies [6].
In order to show that, we now apply the weight-derivation
procedure described in Section III to the mildly frequency-
dependent beam patterns that we encounter in the case of linear
DMAs and we show that the resulting weights can be well
approximated, over a wide range of frequencies, by frequency-
independent weights.

As a relevant example, let us consider a compact arrange-
ment of M omnidirectional microphones made of a pair of
coincident small-size ULAs, and let ρ be the angle between
them. We can express a frequency-dependent beam pattern
obtained from a differential ULA as

B(θ, ω) =

M∑
m=1

Hm (ω) ej(m−1)ωτ0cosθ , (13)

where the filters Hm (ω) are designed as described in [35];
ω = 2πf is the normalized temporal frequency (f > 0
is the temporal frequency in hertz); τ0 = δ/c is the delay
between two adjacent microphones at the angle θ = 0; δ is
the spacing between each pair of microphones; and c is the
speed of sound. From this expression we can readily compute
the derivative D(θ, ω) of B(θ, ω) with respect to the angle θ
as well as a general expression B(θ − ρ, ω) for the rotated
version of B(θ, ω). Finally, we can compute the frequency-
dependent weights α(ω) and ᾱ(ω) as described in the previous
Sections. Fig. 7 shows a comparison between the weights

that are computed using frequency-dependent and frequency-
independent beam patterns of cardioids up to order three. As

0 1000 2000 3000 4000 5000 6000
f [Hz]

0

1
1-st Orderj,1(w)j ,1 j7,1(w)j 7,1

0 1000 2000 3000 4000 5000 6000
f [Hz]

0

1
2-nd Orderj,2(w)j ,2 j7,2(w)j 7,2

0 1000 2000 3000 4000 5000 6000
f [Hz]

0

1
3-rd Orderj,3(w)j ,3 j7,3(w)j 7,3

Fig. 7. Comparison between frequency-independent weights and frequency-
dependent weights. The subscripts in the legends indicate the order of the
reference patterns. The imaginary part of frequency-dependent weights is very
small with respect to the real part. The reference beam pattern is the N -th
order cardioid B(θ) = (0.5 + 0.5 cos(θ))N . The frequency-dependent beam
pattern is computed using eq. 13. We set M = 2 for N = 1, M = 3 for
N = 2 and M = 4 for N = 3. The other parameters are ρ = π/5,
θd = 3ρ/4, δ = 0.0075 m and c = 340 m/s.

we can see, the deviations are always minimal (visible only
for higher-order DMAs and at higher frequencies).
As expected, we also verified that the frequency dependence
is more pronounced for larger values of δ.

V. CONCLUSIONS

In this letter we showed that, starting from two identical
(reference) beams pointing in different directions, it is possible
to construct a closely matching beam pointing anywhere in
between, as a linear combination of the reference beams. We
show under which conditions this operation can be done in
a shape-preserving fashion. In particular, using the Fourier
descriptors of the reference polar patterns, we showed how
to find a trade-off between the shape invariance of the steered
beam, and the maximum angular displacement between the
two reference beams. The method proved particularly promis-
ing for applications such as DMA-based beamforming.

APPENDIX A
DERIVATION OF COEFFICIENTS cn

The coefficients cn in eq. (3) are derived using trigonometric
power-reduction formulas [36] and rewriting (1) as

B(θ) = 1−
N∑
n=1

an +

N∑
n=1

an (on + en)

where on is defined as

on =
(−1)n+1 + 1

2n

(n−1)/2∑
k=0

(
n

k

)
cos
(
(n− 2k)θ

)
and en is defined as

en =
(−1)n + 1

2n+1

(n
n
2

)
+ 2

n/2−1∑
k=0

(
n

k

)
cos
(
(n− 2k)θ

) .
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