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Abstract
In this paper we present efficient quadrature rules for the numerical approximation of inte-
grals of polynomial functions over general polygonal/polyhedral elements that do not require
an explicit construction of a sub-tessellation into triangular/tetrahedral elements. Themethod
is based on successive application of Stokes’ theorem; thereby, the underlying integral may
be evaluated using only the values of the integrand and its derivatives at the vertices of the
polytopic domain, and hence leads to an exact cubature rule whose quadrature points are
the vertices of the polytope. We demonstrate the capabilities of the proposed approach by
efficiently computing the stiffness andmassmatrices arising from hp-version symmetric inte-
rior penalty discontinuousGalerkin discretizations of second-order elliptic partial differential
equations.
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1 Introduction

In recent years the exploitation of computational meshes composed of polygonal and polyhe-
dral elements has becomevery popular in thefield of numericalmethods for partial differential
equations. Indeed, the flexibility offered by polygonal/polyhedral elements allows for the
design of efficient computational grids when the underlying problem is characterized by a
strong complexity of the physical domain, such as, for example, in geophysical applica-
tions, fluid-structure interaction, or crack propagation problems. Moreover, the possibility to
adopt computational meshes with hanging nodes is included in this framework by observing
that, for example, a classical quadrilateral element with a hanging node on one of its edges
can be treated as a pentagon with two aligned edges. Several conforming numerical dis-
cretization methods which admit polygonal/polyhedral meshes have been proposed within
the current literature; here, we mention, for example, the Composite Finite Element Method
[5,41,42], the Mimetic Finite Difference (MFD) method [4,18–21,44], the Polygonal Finite
Element Method [63], the Extended Finite Element Method [37,64], the Virtual Element
Method (VEM) [10,11,15–17] and the Hybrid High-Order (HHO) method [33–35]. In the
non-conforming setting, we mention Discontinuous Galerkin (DG) methods [1–3,6,9,14,22–
25,25],HybridizableDGmethods [29–32], non-conformingVEM[8,13,26], and theGradient
Schemes [36]; here the possibility of defining local polynomial discrete spaces follows nat-
urally with the flexibility provided by polytopic meshes.

One of the key aspects concerning the development of efficient finite element discretiza-
tions with polygonal/polyhedral grids is the construction of quadrature formulae for the
approximate computation of the terms appearing in the underlyingweak formulation. Indeed,
the design of efficient quadrature rules for the numerical computation of integrals over gen-
eral shaped polytopes is far from being a trivial task. The classical andmost widely employed
technique for the integration over polytopes is the Sub-Tessellation method, cf. [38,51,62];
here, the domain of integration is subdivided into standard-shaped elements, such as triangu-
lar/quadrilateral elements in 2D or tetrahedral/hexahedral elements in 3D, whereby standard
efficient quadrature rules are employed, cf. [50,60,70], and also [71] and [48], for an interpo-
lation technique based on the same idea. On the one hand this technique is easy to implement,
however, it is generally computationally expensive, particularly for high order polynomials,
since the number of function evaluations may be very large.

For this reason, the development of quadrature rules that avoid sub-tessellation is an
active research field. Several approaches have been proposed; in particular, we mention
[43,54,67,68], for example. One interesting method in this direction is represented by the
Moment Fitting Equation technique, firstly proposed by Lyness and Monegato in [49], for
the construction of quadrature rules on polygons featuring the same symmetry as the regular
hexagon. Generalizations to convex and non-convex polygons and polyhedra were proposed
by Mousavi et al. in [53]. Here, starting from an initial quadrature rule, given, for example,
by the sub-tessellation method described above, an iterative node elimination algorithm is
performed based on employing the least-squares Newton method [69] in order to minimise
the number of quadrature points while retaining exact integration. Further improvements
of the moment fitting equation algorithm can also be found in [52] and [61]. While this
method is optimal with respect to the number of function evaluations, the nodes and weights
must be stored for every polygon, thus affecting memory efficiency. An alternative approach
designed to overcome the limitations of the sub-tessellation approach is based on employing
the generalized version of Stokes’ theorem; here, the exploitation of Stokes’ theorem reduces
the integral over a polytope to an integration over its boundary; see [66] for details. For the
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two-dimensional case, in [59], Sommariva and Vianello proposed a quadrature rule based on
employing Green’s theorem. In particular, if an x- or y-primitive of the integrand is available
(as for bivariate polynomial functions), the integral over the polygon is reduced to a sum
of line integrations over its edges. When the primitive is not known, this method does not
directly require a sub-tessellation of the polygon, but a careful choice of the parameters in the
proposed formula leads to a cubature rule that can be viewed as a particular sub-tessellation of
the polygon itself. However, it is not possible to guarantee that all of the quadrature points lie
inside the domain of integration. An alternative and very efficient formula has been proposed
by Lasserre in [47] for the integration of homogeneous functions over convex polytopes. This
technique has been recently extended to general convex and non-convex polytopes in [27].
The essential idea here is to exploit the generalized Stokes’ theorem together with Euler’s
homogeneous function theorem, cf. [58], in order to reduce the integration over a polytope
only to boundary evaluations. The main difference with respect to the work presented in [59]
is the possibility to apply the same idea recursively, leading to a quadrature formula which
exactly evaluates integrals over a polygon/polyhedron by employing only point-evaluations
of the integrand and its derivatives at the vertices of the polytope.

In this articlewe extend the approachof [27] to the efficient computationof the volume/face
integral terms appearing in the discrete weak formulation of second-order elliptic problems,
discretized bymeans of high-orderDGmethods.We point out that our approach is completely
general and can be directly applied to other discretization schemes, such as VEM, HHO,
Hybridisable DG, and MFD, for example. We focus on the DG approach presented in [25],
where the local polynomial discrete spaces are defined based on employing the bounded box
technique [39]. We show that our integration approach leads to a considerable improvement
in the performance compared to classical quadrature algorithms based on sub-tessellation, in
both two- and three-dimensions. The outline of this article is as follows: in Sect. 2 we recall
the work introduced in [27], and outline how this approach can be utilized to efficiently
compute the integral of d-variate polynomial functions over general polytopes. In Sect. 3 we
introduce the interior penalty DG formulation for the numerical approximation of a second-
order diffusion–reaction equation on general polytopic meshes. In Sect. 4 we outline the
exploitation of the method presented in Sect. 2 for the assembly of the mass and stiffness
matrices appearing in the DG formulation. Several two- and three-dimensional numerical
results are presented in Sect. 5 in order to show the efficiency of the proposed approach.
Finally, in Sect. 6 we summarise the work undertaken in this article and discuss future
extensions.

2 Integrating Polynomials over General Polygons/Polyhedra

In this section we review the procedure introduced by Chin et al. in [27] for the integration
of homogeneous functions over a polytopic domain. To this end, we consider the numerical
computation of

∫
P g(x)dx, where

– P ⊂ R
d , d = 2, 3, is a closed polytope, whose boundary ∂P is defined by m (d − 1)-

dimensional faces Fi , i = 1, . . . ,m. Each face Fi lies in a hyperplane Hi identified by
a vector ai ∈ R

d and a scalar number bi , such that

x ∈ Hi ⇐⇒ ai · x = bi , i = 1, . . . ,m. (1)

We observe that ai , i = 1, . . . ,m, can be chosen as the unit outward normal vector to
Fi , i = 1, . . . ,m, respectively, relative to P , cf. Figs. 1 and 2.
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Fig. 1 Example of a
two-dimensional polytopeP and
its face Fi . The hyperplaneHi is
defined by the local origin x0,i
and the vector ei1

Fig. 2 The dodecahedronP with
pentagonal faces and the face
Fi ⊂ ∂P with unit outward
normal vector ni . Here, Fi has
five edges Fi j , j = 1, . . . , 5, and
five unit outward normal vectors
ni j , j = 1, . . . , 5, lying on the
plane Hi . The hyperplaneHi is
identified by the local origin x0,i
and the orthonormal vectors
ei1, ei2

– g : P → R is a homogeneous function of degree q ∈ R, i.e., for all λ > 0, g(λx) =
λqg(x) for all x ∈ P .

We recall that Euler’s homogeneous function theorem [58] states that, if g is a homogeneous
function of degree q ≥ 0, then the following identity holds:

q g(x) = ∇g(x) · x ∀x ∈ P. (2)

Next we introduce the generalized Stokes’ theorem, which can be stated as follows, cf. [66]:
given a generic vector field X : P → R

d , the following identity holds
∫

P
(∇ · X(x))g(x)dx +

∫

P
∇g(x) · X(x)dx =

∫

∂P
X(x) · n(x)g(x)dσ, (3)

where n is the unit outward normal vector to P and dσ denotes the (d − 1)-dimensional
(surface) measure. Selecting X = x in (3), and employing (2), gives

∫

P
g(x)dx = 1

d + q

∫

∂P
x · n(x)g(x)dσ = 1

d + q

m∑

i=1

bi

∫

Fi

g(x) dσ. (4)

Equation (4) states that if g is homogeneous, then the integral of g over a polytopeP can be
evaluated by computing the integral of the same function over the boundary faces Fi ⊂ ∂P ,
i = 1, . . . ,m. By applying Stokes’ theorem recursively, we can further reduce each term∫
Fi

g(x)dσ, i = 1, . . . ,m, to the integration over ∂Fi , i = 1, . . . ,m, respectively. To this
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end, Stokes’ theorem needs to be applied on the hyperplane Hi , i = 1, . . . ,m, in which
each Fi , i = 1, . . . ,m, lies, respectively. In order to proceed, let γ : Rd−1 → R

d be the
function which expresses a generic point x̃ = (x̃1, . . . , x̃d−1)


 ∈ R
d−1 as a point in Rd that

lies on Hi , i = 1, . . . ,m, i.e.,

x̃ �−→ γ (x̃) = x0,i +
d−1∑

n=1

x̃nein, with ein ∈ R
d , ein · eim = δnm .

Here, x0,i ∈ Hi , i = 1, . . . ,m, is an arbitrary point which represents the origin of the
coordinate system on Hi , and {ein}d−1

n=1 is an orthonormal basis on Hi , i = 1, . . . ,m; see
Figs. 1 and 2 for two- and three-dimensional examples, respectively. Notice that x0,i does not
have to lie inside Fi , i = 1, . . . ,m. Let F̃i ⊂ R

d−1 such that γ (F̃i ) = Fi , i = 1, . . . ,m,
then the following identity holds:

∫

Fi

g(x)dσ =
∫

F̃i

g(γ (x̃))dx̃, i = 1, . . . ,m. (5)

Before outlining the details regarding the recursive application of the Stokes’ Theorem to (4),
we first require the following lemma.

Lemma 1 Let Fi j ⊂ ∂Fi j = 1, . . . ,mi , be the vertices/edges of Fi , i = 1, . . . ,m, for
d = 2, 3, respectively, and let ni j be the unit outward normal vectors to Fi j lying in Hi .
Moreover, let F̃i j ⊂ ∂F̃i be the preimage of Fi j with respect to the map γ , and ñi j be the
corresponding unit outward normal vector. Then, the following holds

ñi j = E
ni j , i = 1, . . . ,m, j = 1, . . . ,mi ,

where E ∈ R
d×(d−1), whose columns are the vectors {ein}d−1

n=1, i = 1, . . . ,m.

Proof We first note that employing the definition of γ we have that

x = γ (x̃) = x0,i + Ex̃, i.e., x − x0,i = Ex̃. (6)

The proof now follows immediately from simple linear algebra considerations; for full details,
we refer to [7]. �


Given identity (5) and Lemma 1, we can prove the following result.

Proposition 1 LetFi , i = 1, . . . ,m, be a face of the polytopeP , and letFi j , j = 1, . . . ,mi ,
be the planar/straight faces/edges such that ∂Fi = ∪mi

j=1Fi j for some mi ∈ N. Then, for any
homogeneous function g, of degree q ≥ 0, the following identity holds

∫

Fi

g(x)dσ = 1

d − 1 + q

⎛

⎝
mi∑

j=1

di j

∫

Fi j

g(x)dν +
∫

Fi

x0,i · ∇g(x)dσ

⎞

⎠ ,

where di j denotes the Euclidean distance between Fi j and x0,i , x0,i ∈ Hi , is arbitrary,
i = 1, . . . ,m, and dν denotes the (d − 2)-dimensional (surface) measure.

Proof If we denote by ∇i = [
∂

∂ x̃1
, . . . , ∂

∂ x̃d−1

]
 the gradient operator on the hyperplane

H̃i , i = 1, . . . ,m, with respect to the coordinate system (x̃1, . . . , x̃d−1), then, upon appli-
cation of Stokes’ theorem, we have

∫

F̃i

(∇i · X̃)g(γ (x̃))dx̃

︸ ︷︷ ︸
1

+
∫

F̃i

X̃ · ∇i g(γ (x̃))dx̃

︸ ︷︷ ︸
2

=
∫

∂F̃i

X̃ · ñ g(γ (x̃))dν(x̃)

︸ ︷︷ ︸
3

, (7)
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where ñ is the unit outward normal vector of F̃i and X̃ is a vector field on R
d−1. Next, we

transform (7) back to the original coordinate system. To this end, denoting E ∈ R
d×(d−1) to

be the matrix whose columns are the vectors {ein}d−1
n=1, we observe that, if we choose X̃ = x̃,

then its divergence is ∇i · X̃ = d − 1. Exploiting (6), the term ∇i g(γ (x̃)) can be written as
follows:

∇i g(γ (x̃)) =

⎡

⎢
⎢
⎢
⎢
⎣

∂γ1
∂ x̃1

∂γ2
∂ x̃1

· · · ∂γd
∂ x̃1

∂γ1
∂ x̃2

∂γ2
∂ x̃2

· · · ∂γd
∂ x̃2

...
...

. . .
...

∂γ1
∂ x̃d−1

∂γ2
∂ x̃d−1

· · · ∂γd
∂ x̃d−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

∂g
∂ x̃1
∂g
∂ x̃2
...

∂g
∂ x̃d

⎤

⎥
⎥
⎥
⎥
⎦

= (E
∇g)(γ (x̃)). (8)

Exploiting (6) and (8), we can write 1 and 2 as

1 = (d − 1)
∫

F̃i

g(γ (x̃))dx̃ = (d − 1)
∫

Fi

g(x)dσ, (9)

2 =
∫

F̃i

x̃
E
∇g(γ (x̃))dx̃ =
∫

Fi

(x − x0,i ) · ∇g(x)dσ

= q
∫

Fi

g(x)dσ −
∫

Fi

x0,i · ∇g(x)dσ, (10)

respectively. Employing Lemma 1, together with (6), we have that

3 =
mi∑

j=1

∫

F̃i j

x̃
ñi j g(γ (x̃))dν(x̃) =
mi∑

j=1

∫

Fi j

(x − x0,i )
EE
ni j g(x)dν(x)

=
mi∑

j=1

∫

Fi j

(x − x0,i ) · ni j g(x)dν. (11)

We observe that the term (x − x0,i ) · ni j is constant for any x ∈ Fi j , and that it represents
the Euclidean distance between Fi j and x0,i ; thereby, we define di j = (x − x0,i ) · ni j . From
the above identities (9), (10) and (11) we deduce the statement of the Proposition. �


Using Proposition 1, together with Eq. (4), we obtain the following identity

∫

P
g(x)dx = 1

d + q

m∑

i=1

bi
d − 1 + q

( mi∑

j=1

di j

∫

Fi j

g(x)dν +
∫

Fi

x0,i · ∇g(x)dσ
)
, (12)

where we recall that ∂P = ∪m
i=1Fi and ∂Fi = ∪mi

j=1Fi j , for i = 1, . . . ,m.

Remark 1 If d = 2, then Fi j is a point and (12) states that the integral of g on P can be
computed by vertex-evaluations of the integrand plus a line integration of the partial derivative
of g. If d = 3we can apply Stokes’ Theorem recursively to

∫
Fi j

g(x)dν. Proceeding as before,
we get

∫

Fi j

g(x)dν = 1

d − 2 + q

(mi j∑

k=1

di jk

∫

Fi jk

g(x)dξ +
∫

Fi j

x0,i j · ∇g(x)dν
)
,

where ∂Fi j = ∪mi j
k=1Fi jk , x0,i j is an arbitrarily chosen origin forFi j , and di jk is the Euclidean

distance between Fi jk and x0,i j .
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Table 1 Polytopic domains of integration E considered in Algorithm 1 as a function of the dimension d

N = 3 N = 2 N = 1 N = 0

d = 3 E = P is a
polyhedron

E = Fi ⊂ ∂P is a
polygon

E = Fi j ⊂
∂Fi is an
edge

E = Fi jk ⊂ ∂Fi j
is a point

d = 2 E = P is a polygon E = Fi ⊂
∂P is an
edge

E = Fi j ⊂ ∂Fi is
a point

d = 1 E = P is an
interval

E = Fi ⊂ ∂P is
a point

In view of the application of Proposition 1 to finite element methods, we are interested in
the integration of a particular class of homogeneous functions, namely polynomial homoge-
neous functions of the form

g(x) = xk11 xk22 . . . xkdd , where kn ∈ N0 for n = 1, . . . , d.

In this case, g is a homogeneous function of degree q = k1 +· · ·+ kd , and the general partial
derivative ∂g

∂xn
is a homogeneous function of degree q − 1. With this in mind, it is possible

to recursively apply formula (12) to the terms involving the integration of the derivatives of
g. To this end, we write E ⊂ R

d , d = 2, 3, be a N -polytopic domain of integration, with
N = 1, . . . , d , and let ∂E = ∪m

i=1Ei , where each Ei ⊂ R
d is a (N − 1)-polytopic domain.

When N = d and d = 2, 3, Ei , i = 1, . . . ,m, will be an edge or a face, respectively; see
Table 1 for details. We define the function

I(N , E, k1, . . . , kd) =
∫

E
xk11 . . . xkdd dσN (x1, . . . , xd), (13)

Algorithm 1 I(N , E, k1, . . . , kd) = ∫E xk11 . . . xkdd dσN (x1, . . . , xd)

if N = 0 (E = (v1, . . . , vd ) ∈ R
d is a point)

return I(N ,E, k1, . . . , kd ) = v
k1
1 · · · vkdd ;

else if 1 ≤ N ≤ d − 1 (E is a point if d = 1 or an edge if d = 2 or a face if d = 3)

I(N ,E, k1, . . . , kd ) = 1

N +∑d
n=1 kn

( m∑

i=1

di I(N − 1,Ei , k1, . . . , kd )

+ x0,1 k1 I(N ,E, k1 − 1, k2, . . . , kd )

+ · · · + x0,d kd I(N ,E, k1, . . . , kd − 1)
)
;

else if N = d (E is an interval if d = 1 or a polygon if d = 2 or a polyhedron if d = 3)

I(N ,E, k1, . . . , kd ) = 1

N +∑d
n=1 kn

( m∑

i=1

bi I(N − 1,Ei , k1, . . . , kd )
)
.

end if
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which returns the integral of the polynomial xk11 . . . xkdd over E , where dσN is the N -
dimensional (surface) measure, N = 1, 2, . . . , d . According to Proposition 1, the recursive
definition of the function I(·, ·, . . . , ·) is given in Algorithm 1.

Remark 2 With a slight abuse of notation, when 1 ≤ N ≤ d − 1, in Algorithm 1 (and for the
purposes of the following discussion), the point x0 = (x0,1, . . . , x0,d)
 denotes an arbitrarily
chosen origin for the coordinate system which defines the N -polytope E and di represents
the Euclidean distance between the (N − 1)-polytopes Ei , which form the boundary of E ,
and x0, i = 1, . . . ,m. Furthermore, in Algorithm 1, bi , i = 1, . . . ,m, is the same constant
appearing in (1). Here it can be evaluated as bi = ni · v, where v is a vertex of Ei and ni is
the unit outward normal vector, i = 1, . . . ,m.

Remark 3 We point out that in (12), cf. also (13), the shape of the underlying polytope can
be general: indeed, nonconvex simply-connected domains E are admissable.

2.1 Integration of Bivariate Polynomials over Polygonal Domains

In order to test the performance of the method proposed in Algorithm 1, we consider the
integration of bivariate homogeneous functions on a given polygonP ⊂ R

2 based on using
the three different approaches:

A.1 Recursive algorithmdescribed inSect. 2, basedon the formula (13):
∫
P xk yldx =

I(2,P, k, l), cf. Algorithm 1.

Fig. 3 Triangle (P1)

Fig. 4 Irregular polygon with 5
faces (P2)

Fig. 5 Irregular polygon with 15
faces (P3)
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A.2 Use of the formula (4) together with numerical integration employed for the
evaluation of the edge integralswith knownone-dimensionalGaussian quadrature
rules, as recently proposed in [28];

A.3 Sub-tessellation technique: the domain of integration P is firstly decomposed
into triangles where standard efficient quadrature rules are then employed.

We test the three different approaches for integrating bivariate polynomials of different poly-
nomial degrees on the triangle depicted in Fig. 3 and the two irregular polygons shown in
Figs. 4 and 5, cf. Table 2 for the list of coordinates for each domain; the actual values of the
integrals are given in Table 3. In Table 4 we show the average CPU-time taken to evaluate
the underlying integral using each method. We point out that, for each integrand and each
integration domainP , the relative errors between the output of the three different approaches
are of the order of machine precision; that is, all three algorithms return the exact integral up
to roundoff error. For completeness, we note that the times for A.1 include the computation
of bi , ni , and di j , j = 1, . . . ,mi , i = 1, . . . ,m. For A.2 we take into account the evaluation
of bi , ni , i = 1, . . . ,m, and the one-time computation of the one-dimensional quadrature
defined on (−1, 1), consisting of N nodes and weights, employed for the line integrations.
Here, we selectN = ⌈ k+l

2

⌉+1, in order to guarantee the exact integration of xk yl . The times
for A.3 include the one-time computation of the N 2 nodes and weights on the reference tri-

Table 2 Coordinates of the polygons of Figs. 3, 4, and 5

Vertex x-cordinates y-cordinates

P1 1 −1.000000000000000 −1.000000000000000

2 1.000000000000000 0.000000000000000

3 −1.000000000000000 1.000000000000000

P2 1 −0.666666666666667 −0.789473684210526

2 0.555555555555556 −1.000000000000000

3 1.000000000000000 −0.052631578947368

4 −0.555555555555556 1.000000000000000

5 −1.000000000000000 −0.157894736842105

P3 1 0.413048522141662 0.781696234443715

2 0.024879797655533 0.415324992429711

3 −0.082799691823524 0.688810136531751

4 −0.533191422779328 1.000000000000000

5 −0.553573605852999 0.580958514816226

6 −0.972432940212767 0.734117068746903

7 −1.000000000000000 0.238078507228890

8 −0.789986179147920 0.012425068086110

9 −0.627452906935866 −0.636532897516109

10 −0.452662174765764 −1.000000000000000

11 −0.069106265580153 −0.289054989277619

12 0.141448047807069 −0.464417038155806

13 1.000000000000000 −0.245698820584615

14 0.363704451489016 −0.134079689960635

15 0.627086024018283 −0.110940423607648
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Table 3 The approximated values of the integral over the three polygons in Figs. 3, 4 and 5 obtained with
approach A.1

P1 P2 P3

∫
E x5y5 0 − 0.0020324991 − 0.002589861
∫
E x10y10 0.0111339078 7.4274779926 × 10−5 1.5738050178 × 10−4

∫
E x20y20 0.0030396808 6.0738145408 × 10−8 1.3793481020 × 10−6

∫
E x40y40 7.9534562047 × 10−4 2.2238524572 × 10−12 4.2588831784 × 10−10

∫
E x10y5 0 − 2.0911953867 × 10−4 0.0014996521
∫
E x20y5 0 − 1.3797380205 × 10−5 7.0356275077 × 10−4

∫
E x40y5 0 − 7.9203571311 × 10−7 2.5065856538 × 10−4

∫
E x5y20 − 0.005890191 8.08469022058 × 10−5 − 1.330384913 × 10−4

∫
E x5y40 − 0.001868889 4.37593748009 × 10−5 − 3.963064075 × 10−5

Table 4 CPU times as a function of the integrand and the integration domainP for the three approachesA.1,
A.2 and A.3

P1 P2 P3

2pt A.1 A.2 A.3 A.1 A.2 A.3 A.1 A.2 A.3

x5y5 0.054 0.159 0.616 0.083 0.244 0.973 0.227 0.678 2.856

x10y10 0.078 0.221 1.359 0.123 0.328 2.321 0.351 0.939 7.301

x20y20 0.124 0.344 4.060 0.207 0.540 7.399 0.580 1.498 22.70

x40y40 0.208 0.578 14.79 0.377 0.934 27.24 1.073 2.671 86.63

x10y5 0.064 0.191 0.999 0.081 0.296 1.699 0.237 0.833 5.125

x20y5 0.078 0.240 1.955 0.089 0.412 3.690 0.274 1.093 10.99

x40y5 0.107 0.363 4.975 0.085 0.616 9.504 0.332 1.680 29.40

x5y20 0.052 0.244 1.971 0.085 0.412 3.662 0.243 1.117 11.07

x5y40 0.051 0.365 5.009 0.082 0.597 9.295 0.272 1.673 29.17

angle, whereN is selected as inA.2, the time required for sub-tessellation, as well as the time
needed for numerical integration on each sub-triangle. The results shown in Table 4 illustrate
that the sub-tessellation approach A.3 is the slowest while the proposed method A.1 is the
fastest for all of the considered cases; in particular, we highlight that, even for just a single
domain of integration, the former method is between one- to two-orders of magnitude slower
than the latter approach proposed in this article. Moreover, when the integration domain
consists of a triangle, our algorithm A.1 still outperforms classical quadrature rules, cf. A.3,
even though in this case no sub-tessellation is undertaken. When comparingA.1 and A.2, we
observe that the former algorithm is again superior in terms of CPU time in comparison with
the latter approach; this difference seems to growwhen the exponents k and l of the integrand
function xk yl are very different. This is because in A.1 we have made an optimal selection
of the points x0,i = (x0i,1, x0i,2)
, i = 1, . . . ,m, appearing in (12). Indeed, performing the
geometric reduction of the edges of the domain of integration, we then choose x0i,1 = 0 or
x0i,2 = 0, i = 1, . . . ,m, if the exponents of the integrand function xk yl are k ≥ l or k < l,
respectively. The choice x0i,1 = 0 or x0i,2 = 0, i = 1, . . . ,m, allows us to avoid the recursive
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calls to the function I(·, ·, . . . , ·) related to the x- or y-partial derivatives, respectively. In
this way the approach A.1 is able to exploit the form of the integrand in order to optimize
the evaluation of the corresponding integral. To explore this issue further, in the following
section we consider the computational complexity of A.1 in both the cases when an optimal
and non-optimal selection of the points x0,i , i = 1, . . . ,m, is made.

2.2 Computational Complexity of Algorithm 1

The computational complexity of Algorithm 1, which is employed inA.1, depends in general
on the number of recursive calls of the function I(·, ·, . . . , ·). In particular, using the short-
hand notation introduced in Remark 2, the selection of the points x0 = (x0,1, . . . , x0,d)
,
which are used to define the origin of the coordinate system of each N -polytope E which
defines the facets of P is crucial. In general, any (d − 1)-dimensional hyperplane in R

d

possesses a non-empty intersection with some axis of the Cartesian reference system, which
means that it is always possible to choose (d − 1) components of x0 as zero. Without loss of
generality we select x0,r = bi/ni,r and x0,s = 0 for s �= r , where bi and ni are as defined in
Remark 2, and r ∈ {1, . . . , d} is chosen so that kr = min{k1, . . . , kd}.
Remark 4 In general, if E ⊂ H is a N -polytopic domain in R

d , then at most N components
of x0 ∈ H can be selected to be zero.

In thisway, the selection of kr essentially fixes the number of recursive calls ofI(·, ·, . . . , ·)
in Algorithm 1. More precisley, we write |I(N , E, k1, . . . , kd)|Fl to denote the number of
FLOPs to perform I(N , E, k1, . . . , kd), and let CN be the number of FLOPs required by
I(N , E, k1, . . . , kd), without considering the recursive calls of I(·, ·, . . . , ·) to itself. With
this in mind, let us consider the following two examples:

– Set d = 2 and assume k1 ≤ k2, so that we can choose x0,1 �= 0 and x0,2 = 0 on each of
the edges of P . Then, according to Algorithm 1 we have

|I(2, E, k1, k2)|Fl = C2 +
m∑

i=1

|I(1, Ei , k1, k2)|Fl︸ ︷︷ ︸
i

and

i = C1 +
2∑

j=1

|I(0, vi j , k1, k2)|Fl + |I(1, Ei , k1 − 1, k2)|Fl

= C1 + 2C0 + C1 +
2∑

j=1

|I(0, vi j , k1 − 1, k2)|Fl + |I(1, Ei , k1 − 2, k2)|Fl

= · · · = k1(C1 + 2C0),

where we have denoted the vertices of the edge Ei as vi1 and vi2. Hence,

|I(2,P, k1, k2)|Fl = C2 + mk1(C1 + 2C0) ∼ O(k1).

In general, for d = 2 we deduce that

|I(2,P, k1, k2)|Fl ∼ O(min{k1, k2}). (14)
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– Set d = 3 and assume k1 = min{k1, k2, k3}, so that we may select x0,1 �= 0 and
x0,2 = x0,3 = 0 on each of the faces ofP . Thereby, employing Algorithm 1 we deduce
that

|I(3, E, k1, k2, k3)|Fl = C3 +
m∑

i=1

|I(2, Ei , k1, k2, k3)|Fl︸ ︷︷ ︸
i

where, for each i = 1, . . . ,m,

i = C2 +
mi∑

j=1

|I(1, Ei j , k1, k2, k3)|Fl + |I(2, Ei , k1 − 1, k2, k3)|Fl

= 2C2 +
mi∑

j=1

|I(1, Ei j , k1, k2, k3)|Fl

+
mi∑

j=1

(|I(1, Ei j , k1 − 1, k2, k3)|Fl) + |I(2, Ei , k1 − 2, k2, k3)|Fl

= · · · = k1C2 +
k1∑

k=1

⎛

⎝
mi∑

j=1

|I(1, Ei j , k, k2, k3)|Fl
⎞

⎠

Here, the computational complexity of I(1, Ei j , k, k2, k3) depends on the choice of x0 ≡
x0,i j which defines the origin of the coordinate system for Ei j , j = 1, . . . ,mi , i =
1, . . . ,m. According to Remark 4, two components of x0,i j can possibly be different
from zero, which implies that the complexity of Algorithm 1 increases exponentially
when d = 3. However, it is possible to modify Algorithm 1 in order to avoid the double
recursive calls which cause this exponential complexity. In particular, in Sect. 2.3 we
propose an alternative algorithm which exploits the same idea of Algorithm 1 and allows
us to overcome this issue.

In order to confirm (14), we use the tool [56] to measure the number of FLOPs required
to exactly compute

∫
P xk1 yk2dx; moreover, comparisons will also be made with A.3. To

simplify the presentation, the polygonP is selected to be the triangle with vertices (−1, 0.3),
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Fig. 6 Comparison of the number of FLOPs required to evaluate
∫
P xk1 yk2dx, based on fixing k1 and varying

k2 ∈ {0, . . . , 50}: a Quadrature free method A.1; b Sub-tessellation method A.3
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Fig. 7 Comparison of the number of FLOPs required to evaluate
∫
P xk ykdx as k increases employing both

the quadrature free and sub-tessellation methods: a Excludes function evaluations; b Total cost including
function evaluations

(1,−1), and (0.3, 1); thereby, A.3 does not require the computation of a sub-tessellation.
In Fig. 6, we plot the number of FLOPs needed to evaluate

∫
P xk1 yk2dx by fixing k1 and

varying k2 ∈ {0, . . . , 50} employing both A.1 and A.3. In particular, Fig. 6a shows that
the number of FLOPs required by the quadrature free method A.1 growths linearly with
respect to k2 when k1 > k2 and becomes constant as k2 increases when k1 ≤ k2. Figure 7
confirms the asymptotic behaviour of the two algorithms in the case when k1 = k2; here,
the number of FLOPs required by the sub-tessellation method is reported in both the case
when the cost of the evaluation of the quadrature nodes and weights employing the function
gauleg, cf. [55], for example, is included/excluded. In particular, we show results both in
the case when the cost of the function evaluations is excluded, cf. Fig. 7a, as well as the total
number of FLOPs required by each algorithm to exactly evaluate

∫
P xk ykdx, cf. Fig. 7b.

As expected, the computational complexity of A.3 grows as O(k2) and O(k3) in these two
latter cases, respectively, while the cost of the quadrature free method is always O(k) as k
increases.

Thus far, the numerical results presented for the proposed quadrature free method have
assumed that the points x0, which are used to define the origin of the coordinate system of
each N -polytope E which defines the facets of P , has been chosen in an optimal manner
to ensure that the number of recursive calls of I(·, ·, . . . , ·), cf. Algorithm 1, is minimized.
Indeed, a sub-optimal choice of these points leads to an exponential growth in the number
of recursive calls of the function I(·, ·, . . . , ·) in Algorithm 1. For example, if d = 2 the
non-optimal choice of x0 implies that each call of I(·, ·, . . . , ·) with N = 1 leads to a double
recursive call of I(·, ·, . . . , ·), up to when a zero exponent k1 or k2 appears as input. In
particular, if k1 = k2 = k, it is possible to show that the number of FLOPs required by the
quadrature free method grows asO(22k−1), as k increases, cf. Fig. 8. In the following section,
we present an alternative implementation of the quadrature free algorithm which avoids this
exponential growth, irrespective of the selection of the points x0.

2.3 Integration of Families of Monomial Functions

In the context of employing the quadrature free approach within a finite element method, in
practice we are not interested in integrating a single monomial function, but instead an entire
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Fig. 8 Number of FLOPs
required to evaluate

∫
P xk ykdx

as k increases, based on
employing the quadrature free
method, with a sub-optimal
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family of monomials, which, for example, form a basis for the space of polynomials of a
given degree over a given polytopic element κ which belongs to the underlying computational
mesh. For example, when d = 2, let us consider the evaluation of

∫

κ

xk1 yk2dx ∀ k1, k2 ≥ 0, k1 + k2 ≤ p. (15)

We note that even when employing the Approach A.1 with an optimal choice of the points
x0, the total number of FLOPs required for the computation of (15) is approximatelyO(p3),
as p increases.

To improve the dependence on p we propose an alternative approach, cf. Algorithm 2;
this is based on the observation that, using the notation of Algorithm 1, if the values of
I(N−1, E j , k1, . . . , kd), j = 1, . . . ,m, I(N , E, k1−1, . . . , kd) . . . I(N , E, k1, . . . , kd−1),
for 1 ≤ N ≤ d − 1, in Algorithm 1, have already been computed, then the computation of
I(N , E, k1, . . . , kd) is extremely cheap. Indeed, since we must store the integrals of all the
monomials on κ anyway, we can start by computing and storing

∫
κ
xk1 yk2dx1dx2 related

to the lower degrees k1, k2 and N = 1, then exploit these values in order to compute the
integrals with higher degrees k1, k2 and higher dimension N of the integration domain E .
This leads to an algorithm, whereby the number of FLOPs required to compute and store
{∫

κ
xk11 . . . xkdd dσd(x1, . . . , xd), k1, . . . , kd ≥ 0, k1 + k2 +· · ·+ kd ≤ p} is of orderO(pd),

as p increases, irrespective of the selection of choice of the points x0. In Fig. 9 we now
compare these two approaches for d = 2, when the underlying element is selected to be the
triangular region employed in the previous section. Here, we compare Algorithm 1, with an

Fig. 9 Number of FLOPs
required to evaluate
{∫κ xk1 yk2dx ∀ k1, k2 ≥
0, k1 + k2 ≤ p} based on
employing Algorithm 1 (with an
optimal selection of the points
x0), and Algorithm 2
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Algorithm 2 Algorithm for integrating all monomials up to order p
∂E = {E1, . . . ,Em } where Ei ⊂ ∂E;
F = FaceIntegrals(d − 1,E1, . . . ,Em , k1, . . . , kd );
for a1 = 0 : k1, . . . , ad = 0 : kd ; k1 + k2 + . . . + kd ≤ p do

V (a1, . . . , ad ) = 1
d+∑d

n=1 an

∑m
i=1 bi F(a1, . . . , ad , i);

end for
procedure F = FaceIntegrals(N ,E1, . . . ,Em , k1, . . . , kd )

F(−1 : k1, . . . , −1 : kd , 1 : m) = 0;
for i=1:m do

choose x0 as the first vertex of Ei ;
∂Ei = {Ei1, . . . ,Eimi } where Ei j ⊂ ∂Ei , j = 1, . . . ,mi ;
if N-1>0

E = FaceIntegrals(N − 1,Ei1, . . . ,Eimi , k1, . . . , kd );
else if N-1=0 (Ei j = (v1, . . . , vd ) ∈ R

d is a point)

E(a1, . . . , ad , j) = v
a1
1 . . . v

ad
d ∀ 0 ≤ an ≤ kn , j = 1, . . . ,mi ;

end if
for a1 = 0 : k1, . . . , ad = 0 : kd ; k1 + k2 + . . . + kd ≤ p do

F(a1, . . . , ad , i) = 1

N +∑d
n=1 an

( mi∑

j=1

di j E(a1, . . . , ad , j)

+ x0,1k1F(a1 − 1, . . . , ad , i)

+ · · · + x0,1k1F(a1, . . . , ad − 1, i)
)
;

end for
end for

end procedure

optimal selection of the points x0, with Algorithm 2, where in the latter case the points x0 are
simply selected to be equal to the first vertex defining each edge; here, we clearly observe
the predicted increase in FLOPs of O(p3) and O(p2), as p increases, for each of the two
algorithms, respectively.

3 Application to hp-Version DGMethods

We consider the following elliptic model problem, given by: find u such that

−
u + u = f in Ω ,

u = 0 on ∂Ω ,
(16)

where Ω ⊂ R
d , d = 2, 3, is a polygonal/polyhedral domain with boundary ∂Ω and f is a

given function in L2(Ω).

In order to discretize problem (16), we introduce a partition Th of the domain Ω , which
consists of disjoint (possibly non-convex) open polygonal/polyhedral elements κ of diam-
eter hκ , such that Ω = ⋃

κ∈Th
κ̄ . We denote the mesh size of Th by h = maxκ∈Th hκ .

Furthermore, we define the faces of the mesh Th as the planar/straight intersections of the
(d − 1)-dimensional facets of neighbouring elements. This implies that, for d = 2, a face
consists of a line segment, while for d = 3, the faces of Th are general shaped polygons;
without loss of generality, for the definition of the proceeding DG method we assume that

123



1354 Journal of Scientific Computing (2018) 77:1339–1370

the faces are (d−1)-dimensional simplices, cf. [24,25] for a discussion of this issue. In order
to introduce the DG formulation, it is helpful to distinguish between boundary and interior
element faces, denoted by F B

h and F I
h , respectively. In particular, we observe that F ⊂ ∂Ω

for F ∈ F B
h , while for any F ∈ F I

h we assume that F ⊂ ∂κ±, where κ± are two adjacent
elements in Th . Furthermore, we write Fh = F I

h ∪ F B
h to denote the set of all mesh faces of

Th . For simplicity of presentation we assume that each element κ ∈ Th possesses a uniformly
bounded number of faces under mesh refinement, cf. [24,25].

We associate to Th the corresponding discontinuous finite element space Vh , defined by
Vh = {v ∈ L2(Ω) : v|κ ∈ Ppκ (κ), κ ∈ Th},where Ppκ (κ) denotes the space of polynomials
of total degree at most pκ ≥ 1 on κ ∈ Th , cf. [24,25].

In order to define the DG method, we introduce the jump and average operators:

�τ � = τ+ · n+ + τ− · n−, {{τ }} = τ+ + τ−

2
, F ∈ F I

h ,

�v� = v+n+ + v−n−, {{v}} = v+ + v−

2
, F ∈ F I

h ,

�v� = v+n+, {{τ }} = τ+, F ∈ F B
h , (17)

where v± and τ± denote the traces of sufficiently smooth scalar- and vector-valued functions
v and τ , respectively, on F taken from the interior of κ±, respectively, and n± are the unit
outward normal vectors to ∂κ±, respectively, cf. [12].

We then consider the bilinear form Ah(·, ·) : Vh × Vh → R, corresponding to the sym-
metric interior penalty DG method, defined by

Ah(u, v) =
∑

κ∈Th

∫

κ

∇u · ∇v dx −
∑

F∈Fh

∫

F

({{∇hu}} · �v� + �u� · {{∇hv}}) ds

+
∑

F∈Fh

∫

F
αh�u� · �v� ds, (18)

where ∇h denotes the broken gradient operator, defined elementwise, and αh ∈ L∞(Fh)

denotes the interior penalty stabilization function, whose precise definition, based on the
analysis introduced in [24,25], is given below. To this end, we first need the following defi-
nition.

Definition 1 Let T̃h be the subset of elements κ ∈ Th such that each κ ∈ T̃h can be covered
by at most nT shape-regular simplices Ki , i = 1, . . . , nT , such that

dist(κ, ∂Ki ) < Cas
diam(Ki )

p2κ
, and |Ki | ≥ cas |κ|

for all i = 1, . . . , nT , for some nT ∈ N, where Cas and cas are positive constants, indepen-
dent of κ and Th .

Given Definition 1, we recall the following inverse inequality, cf. [24,25].

Lemma 2 Let κ ∈ Th, F ⊂ ∂κ denote one of its faces, and T̃h be defined as in Definition 1.
Then, for each v ∈ Ppκ (κ), we have the inverse estimate

‖v‖2L2(F)
≤ CI NV (pκ , κ, F)

p2κ |F |
|κ| ‖v‖2L2(κ)

,
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where

CI NV (pκ , κ, F) := Cinv

⎧
⎪⎨

⎪⎩

min
{ |κ|
sup

κF



⊂κ
|κF


 | , p
2(d−1)
κ

}
, if κ ∈ T̃h,

|κ|
sup

κF



⊂κ
|κF


 | , if κ ∈ Th \ T̃h,

and κF

 denotes a d-dimensional simplex contained in κ which shares the face F with κ ∈ Th.

Furthermore, Cinv is a positive constant, which if κ ∈ T̃h depends on the shape regularity of
the covering of κ given in Definition 1, but is always independent of |κ|/ supκF


 ⊂κ |κF

 |, pκ

and v.

Based on Lemma 2, together with the analysis presented in [24,25], the parameter αh can
be defined as follows.

Definition 2 Let αh : Fh → R+ be defined facewise by

αh(x) := Cα

⎧
⎪⎪⎨

⎪⎪⎩

max
κ∈{κ+,κ−}

{
CI NV (pκ , κ, F)

p2κ |F |
|κ|

}
, x ∈ F, F ∈ F I

h , F ⊂ ∂κ±,

CI NV (pκ , κ, F)
p2κ |F |
|κ| , x ∈ F, F ∈ F B

h , F ⊂ ∂κ,

with Cα > Cmin
α , where Cmin

α is a sufficiently large lower bound.

The DG discretization of the problem (16) is given by: find uh ∈ Vh such that

Ah(uh, vh) +
∫

Ω

uhvh dx =
∫

Ω

f vh dx ∀vh ∈ Vh . (19)

By fixing a basis {φi }Nh
i=1, Nh denoting the dimension of the discrete space Vh , (19) can be

rewritten as: find U ∈ R
Nh such that

(A + M)U = f, (20)

where fi = ∫
Ω

f φidx ∀i = 1, . . . , Nh , A is the stiffness matrix, given by Ai j =
Ah(φ j , φi ) ∀i, j = 1, . . . , Nh , M is the mass matrix, and U contains the expansion coeffi-
cients of uh ∈ Vh with respect to the chosen basis. In order to assemble (A+M) we need to
compute the following matrices:

Mi, j =
∫

Ω

φiφ jdx, Vi, j =
∫

Ω

∇φi · ∇φ j dx, (21)

Si, j =
∑

F∈Fh

∫

F
αh�φi � · �φ j �dσ, Ii, j =

∑

F∈Fh

∫

F
{{∇φi }} · �φ j �dσ, (22)

for i, j = 1, . . . , Nh , where as before Nh denotes the dimension of the DG space Vh . In
particular, the stiffness matrix related to the DG approximation of problem (19) is defined as
A = V − I
 − I + S.

4 Elemental Stiffness andMass Matrices

In this section, we outline the application of Algorithm 2 for the efficient computation of the
mass and stiffness matrices appearing in (20).
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4.1 Shape Functions for the Discrete Space Vh

To construct the discrete space Vh we exploit the approach presented in [25], based on
employing polynomial spaces defined over the bounding box of each element.More precisely,
given an element κ ∈ Th , we first construct the Cartesian bounding box Bκ , such that κ ⊂ Bκ .
Given Bκ , κ ∈ Th , it is easy to define a linear map between Bκ and the reference element
B̂ = (−1, 1)d as follow: Fκ : B̂ → Bκ such that Fκ : x̂ ∈ B̂ �−→ Fκ (x̂) = Jκ x̂ + tκ ,

where Jκ ∈ R
d×d is the Jacobi matrix of the transformation which describes the stretching

in each direction, and tκ ∈ R
d is the translation between the point 0 ∈ B̂ and the baricenter

of the bounded box Bκ , see Fig. 10. We note that since Fκ affinely maps one bounding box
to another (without rotation), the Jacobi matrix Jκ is diagonal.

Employing the map Fκ , κ ∈ Th , we may define a standard polynomial space Pp(Bκ )

on Bκ spanned by a set of basis functions {φi,κ } for i = 1, . . . , Npκ = dim(Pp(Bκ )).
More precisely, we denote by {Ln(x)}∞n=0 the family of one-dimensional and L2-orthonormal
Legendre polynomials, defined over L2(−1, 1), i.e.,

Ln(x) = Ln(x)

‖Ln‖L2(−1,1)
, with Ln(x) = 1

2nn!
d

dx

[
(x2 − 1)n

]
,

cf. [40,57]. We then define the basis functions for the polynomial space Pp(B̂) as follows:
writing I = (i1, i2, . . . , id) to denote the multi-index used to identify each basis function
{φ̂I }0≤|I |≤p, where |I | = i1 + · · · + id , we have that

φ̂I (x̂) = φ̂I (x̂1, . . . , x̂d) = Li1(x̂1)Li2(x̂2) · · ·Lid (x̂d).

Then, the basis functions for the polynomial space Ppκ (κ) are defined by using the map Fκ ,
namely:

φI ,κ (x) = φ̂I (F−1
κ (x)) ∀x ∈ κ ⊂ Bκ ∀I : 0 ≤ |I | ≤ pκ . (23)

The set {φI ,κ : 0 ≤ |I | ≤ pκ , κ ∈ Th} forms a basis for the space Vh . On each element
κ ∈ Th we introduce a bijective relation between the set of multi-indices {I = (i1, . . . , id) :
0 ≤ |I | ≤ pκ } and the set {1, 2, . . . , Npκ }.

4.2 Volume Integrals Over Polytopic Mesh Elements

In the following we describe the application of Algorithm 2 to compute the entries in the
local mass and element-based stiffness matrices

Mκ
i, j =

∫

Ω

φi,κφ j,κdx, Vκ
i, j =

∫

Ω

∇φi,κ · ∇φ j,κdx i, j = 1, . . . , Npκ , (24)

respectively, for all κ ∈ Th . For simplicity of presentation, we restrict ourselves to two-
dimensions, though we emphasize that the three-dimensional case is analogous, cf. Sect. 5.2
below. Since the basis functions are supported only on one element, employing the transfor-
mation Fκ , we have

Mκ
i, j =

∫

κ

φi,κ (x, y)φ j,κ (x, y)dx =
∫

κ̂

φ̂i (x̂, ŷ)φ̂ j (x̂, ŷ)|Jκ |dx̂, i, j = 1, . . . , Npκ ,

where in the last integral κ̂ = F−1
κ (κ) ⊂ B̂, see Fig. 10. Here, the Jacobian of the trans-

formation Fκ is given by |Jκ | = (Jκ )1,1(Jκ )2,2, which is constant, due to the definition of
the map. In order to employ the homogeneous function integration method described in the
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Fig. 10 Example of a polygonal
element κ ∈ Th , the relative
bounded box Bκ , the map Fκ and
κ̂ = F−1

κ (κ)

previous section, we need to identify the coefficients of the homogeneous polynomial expan-
sion for the function φ̂i (x̂, ŷ)φ̂ j (x̂, ŷ). We observe that φ̂i (x̂, ŷ) = Li1(x̂)Li2(ŷ), and each
one–dimensional Legendre polynomial can be expanded as

Li1(x̂) =
i1∑

m=0

Ci1,m x̂m, Li2(ŷ) =
i2∑

n=0

Ci2,n ŷn . (25)

Therefore, we have

Mκ
i, j =

∫

κ̂

(
i1∑

m=0

Ci1,m x̂
m

)(
i2∑

n=0

Ci2,n ŷ
n

)⎛

⎝
j1∑

s=0

C j1,s x̂
s

⎞

⎠

⎛

⎝
j2∑

r=0

C j2,r ŷ
r

⎞

⎠ |Jκ |dx̂

=
∫

κ̂

⎛

⎝
i1+ j1∑

k=0

Ci1,i2,k x̂k
⎞

⎠

⎛

⎝
i2+ j2∑

l=0

Ci2, j2,l ŷl
⎞

⎠ |Jκ |dx̂

=
i1+ j1∑

k=0

i2+ j2∑

l=0

Ci1, j1,k Ci2, j2,l |Jκ |
∫

κ̂

x̂ k ŷldx̂.

Here, we have written

Ci, j,k =
∑

n+m=k

(
Ci,n C j,m

)
, for 0 ≤ i, j ≤ pκ , 0 ≤ k ≤ i + j . (26)

Notice that the coefficients Ci, j,k can be evaluated, once and for all, independently of the
polygonal element κ .Wenowconsider the general element of the volumematrixVi, j , cf. (24).
Proceeding as before, let I , J be the two multi-indices corresponding respectively to i and
j , we have

Vκ
i, j =

∫

κ

∇φi · ∇φ j dx =
∫

κ

∂φI ,κ

∂x

∂φJ ,κ

∂x
dx

︸ ︷︷ ︸
1

+
∫

κ

∂φI ,κ

∂ y

∂φJ ,κ

∂ y
dx

︸ ︷︷ ︸
2

. (27)
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Proceeding as before, we apply a change of variables to the terms 1 and 2 with respect to
the map Fκ ; thereby, we obtain

1 =
∫

κ̂

∂φI ,κ

∂x
(Fκ (x̂))

∂φJ ,κ

∂x
(Fκ (x̂))|Jκ |dx̂,

2 =
∫

κ̂

∂φI ,κ

∂ y
(Fκ (x̂))

∂φJ ,κ

∂ y
(Fκ (x̂))|Jκ |dx̂.

From the definition of Fκ , the inverse map is given by F−1
κ (x) = J−1

κ (x− tκ ). Then, using the
definition (23) of the basis functions, we have the following characterization of the partial
derivatives appearing in the terms 1 and 2 :

∂

∂x
φI ,κ (x) = ∂φ̂I

∂ x̂
(F−1

κ (x)) (J−1
κ )1,1,

∂

∂ y
φI ,κ (x) = ∂φ̂I

∂ ŷ
(F−1

κ (x)) (J−1
κ )2,2

where we have used that (J−1
κ )2,1 = (J−1

κ )1,2 = 0 since Jκ is diagonal. Then, 1 can be
written as:

1 =
∫

κ̂

∂φ̂I

∂ x̂
(x̂)

∂φ̂J

∂ x̂
(x̂) (J−1

κ )21,1|Jκ |dx̂.

Since (J−1
κ )21,1|Jκ | is constant, the integrand function of term 1 is a polynomial. Thereby,

we have the following relation:

∂φ̂I

∂ x̂
(x̂) = L′

i1(x̂) Li2(ŷ),

∂φ̂J

∂ x̂
(x̂) = L′

j1(x̂) L j2(ŷ),

⎫
⎪⎪⎬

⎪⎪⎭
⇒ ∂φ̂I

∂ x̂
(x̂)

∂φ̂J

∂ x̂
(x̂) = L′

i1(x̂) Li2(ŷ) L′
j1(x̂) L j2(ŷ).

From the expansion (25) of the Legendre polynomials, we note that

L′
0(x̂) = 0, L′

i (x̂) =
i−1∑

m=0

(m + 1)Ci,m+1 x̂
m =

i−1∑

m=0

C ′
i,m x̂m, for i > 0; (28)

where the indices C ′
i,m = (m + 1)Ci,m+1 are the coefficients for the expansion of L′

i (·). We

deduce that 1 = 0 if i1 = 0 or j1 = 0, and

1 =
i1+ j1−2∑

k=0

i2+ j2∑

l=0

C′
i1, j1,k Ci2, j2,l (J−1

κ )21,1|Jκ |
∫

κ̂

x̂ k ŷldx̂, i1, j1 > 0,

where Ci2, j2,l is defined in (26), and

C′
i, j,k =

∑

n+m=k

C ′
i,n C

′
j,m, 1 ≤ i, j ≤ pκ , for 0 ≤ k ≤ i + j − 2,

withC ′
i,n = (n+1)Ci,n+1,C ′

j,m = (m+1)C j,m+1, cf. (28), is the expansion of the derivatives
of the Legendre polynomials which is computable independently of the element κ , κ ∈ Th .
Analogously, we deduce the following expression for the second term of Eq. (27):

2 =
i1+ j1∑

k=0

i2+ j2−2∑

l=0

Ci1, j1,k C′
i2, j2,l (J−1

κ )22,2|Jκ |
∫

κ̂

x̂ k ŷldx̂.
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4.3 Interface Integrals over Polytopic Mesh Elements

With regards the interface integrals appearing in Eq. (18), we describe the method by
expanding the jump and average operators and computing each term separately, working,
for simplicity, again in two-dimensions. Firstly, we discuss how to transform the integral
over a physical face F ⊂ ∂κ to the corresponding integral over the face F̂ = F−1

κ (F) ⊂ ∂κ̂

on the reference rectangular element κ̂ . To this end, let F ⊂ ∂κ be a face of the polygon κ ,
κ ∈ Th , and let x1 = (x1, y1) and x2 = (x2, y2) denote the vertices of the face, based on
counter clock-wise ordering of the polygon vertices. The face F̂ = F−1

κ (F) is identified by
the two vertices x̂1 = F−1

κ (x) and x̂2 = F−1
κ (x2). For a general integrable function g : κ → R

we have ∫

F
g(x, y)dσ(x, y) =

∫

F̂
g(Fκ (x̂, ŷ)) dσ(Fκ(x̂, ŷ)),

where dσ(Fκ (x̂, ŷ)) = JF dσ̂ and JF is defined as JF = ‖J−

κ n̂F̂‖|Jκ |, where n̂F̂ is the

unit outward normal vector to F̂ .
We next describe how to compute the interface integrals. From the definition of the jump

and average operators, cf. (17), on each edge F ∈ F I
h shared by the elements κ± we need to

assemble

S+/+
i, j =

∫

F
αh φi,κ+ φ j,κ+ dσ, I+/+

i, j = 1

2

∫

F
(∇φi,κ+ · n+) φ j,κ+ dσ,

S−/−
i, j =

∫

F
αh φi,κ− φ j,κ− dσ, I−/−

i, j = 1

2

∫

F
(∇φi,κ− · n−) φ j,κ− dσ,

S+/−
i, j = −

∫

F
αh φi,κ+ φ j,κ− dσ, I+/−

i, j = −1

2

∫

F
(∇φi,κ+ · n+) φ j,κ− dσ,

S−/+
i, j = −

∫

F
αh φi,κ− φ j,κ+ dσ, I−/+

i, j = −1

2

∫

F
(∇φi,κ− · n−) φ j,κ+ dσ,

for i, j = 1, . . . , Npκ± . Analogously, on the boundary face F ∈ F B
h belonging to κ+ ∈ Th

we only have to compute

S+/+
i, j =

∫

F
αh φi,κ+ φ j,κ+ dσ, I+/+

i, j =
∫

F
(∇φi,κ+ · n+) φ j,κ+ dσ,

for i, j = 1, . . . , Npκ+ . We next show how to efficiently compute a term of the form

S+/+
i, j =

∫

F
αh φI ,κ+(x, y) φJ ,κ+(x, y)dσ,

where I , J are the suitable multi-indices associated to i, j = 1, . . . , Npκ+ , respectively.
Proceeding as before, we have

S+/+
i, j =

∫

F
αhφI ,κ+(x, y)φJ ,κ+(x, y)dσ(x, y) =

∫

F̂
αh φ̂I (x̂, ŷ)φ̂J (x̂, ŷ)JFdσ̂

=
i1+ j1∑

k=0

i2+ j2∑

l=0

αh Ci1, j1,k Ci2, j2,l JF

∫

F̂
x̂ k ŷldσ̂ .
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Analogously, we have

S+/−
i, j = −

∫

F
αh φI ,κ+(x, y)φJ ,κ−(x, y)dσ(x, y)

= −
∫

F−1
κ+ (F)

αh φI ,κ+(Fκ+(x̂))
︸ ︷︷ ︸

a

φJ ,κ−(Fκ+(x̂))
︸ ︷︷ ︸

b

JF+dσ. (29)

For the term a , we directly apply the definition of the basis function, and obtain

a = φI ,κ+(Fκ+(x̂)) = φ̂I (F
−1
κ+ (Fκ+(x̂))) = φ̂I (x̂) =

i1∑

k=0

i2∑

l=0

Ci1,k Ci2,l x̂
k ŷl , (30)

while for the term b we have

b = φJ ,κ−(Fκ+(x̂)) = φ̂J (F
−1
κ− (Fκ+(x̂))).

In order to obtain a homogeneous polynomial expansion for b we have to write explicitly
the composite map F̃(x̂) = F−1

κ− (Fκ+(x̂)). That is

F̃(x̂) = J−1
κ− (Jκ+ x̂ + tκ+) − J−1

κ− tκ− = J−1
κ−Jκ+
︸ ︷︷ ︸

J̃

x̂ + J−1
κ− (tκ+ − tκ−)
︸ ︷︷ ︸

t̃

,

where the matrix J̃ is diagonal since J−1
κ− and Jκ+ are diagonal. We then have

b = φ̂J (F̂(x̂)) = φ̂J (J̃x̂ + t̃) = φ̂J (J̃1,1 x̂ + t̃1, J̃2,2 ŷ + t̃2)

=
j1∑

k=0

j2∑

l=0

C j1,k C j2,l (J̃1,1 x̂ + t̃1)k(J̃2,2 ŷ + t̃2)l . (31)

Combining (30) and (31), and denoting by F̂+ = F−1
κ+ (F), cf. Fig. 11, from (29) we obtain

S+/−
i, j = −

i1+ j1∑

k=0

i2+ j2∑

l=0

X̃i1, j1,k Ỹi2, j2,l JF+
∫

F̂+
x̂ k ŷldσ̂ ,

where X̃ and Ỹ are defined as

X̃i, j,k =
∑

n+m=k

(
Ci,n X̃ j,m

)

Ỹi, j,k =
∑

n+m=k

(
Ci,n Ỹ j,m

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

for 0 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ− , 0 ≤ k ≤ i + j .

Here, as before, Ci,n are the coefficients of the homogeneous function expansion of the
Legendre polynomials in (−1, 1), while X̃ j,m and Ỹ j,m are defined by

X̃ j,m =
j∑

r=m

C j,r

(
r

m

)

(J̃1,1)m (t̃1)r−m

Ỹ j,m =
j∑

r=m

C j,r

(
r

m

)

(J̃2,2)m (t̃2)r−m

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for 0 ≤ m ≤ pκ− , m ≤ j ≤ pκ−;
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Fig. 11 Example of a polygonal elements κ± ∈ Th , together with the bounded boxes Bκ± , and the local maps
Fκ± : κ̂ → κ± for the common face F ⊂ κ±

here, we have exploited the Newton-binomial expansion of the terms (J̃1,1 x̂ + t̃1)k and
(J̃2,2 ŷ + t̃2)l appearing in equation (31).
Similar considerations allow us to compute

I+/+
i, j = 1

2

(∫

F

∂φI ,κ+

∂x
(x, y)φJ ,κ+(x, y)n+

x +
∫

F

∂φI ,κ+

∂ y
(x, y)φJ ,κ+(x, y)n+

y

)

= 1

2

(∫

F̂
(J−1

κ+ )1,1
∂φ̂I

∂ x̂
φ̂J n

+
x JFdσ̂ +

∫

F̂
(J−1

κ+ )2,2
∂φ̂I

∂ ŷ
φ̂J n

+
y JFdσ̂

)

= 1

2
JF

⎛

⎝(J−1
κ+ )1,1n

+
x

i1+ j1−1∑

k=0

i2+ j2∑

l=0

C′′
i1, j1,kCi2, j2,l

∫

F̂
x̂ k ŷldσ̂

+ (J−1
κ+ )2,2n

+
y

i1+ j1∑

k=0

i2+ j2−1∑

l=0

Ci1, j1,k C′′
i2, j2,l

∫

F̂
x̂ k ŷldσ̂

⎞

⎠ ,

where C′′
i, j,k are defined as

{
C′′
0, j,k = 0 ∀ j, ∀k,

C′′
i, j,k =∑n+m=k C

′
i,nC j,m, 1 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ+ , 0 ≤ k ≤ i + j − 1,

and where n+ = [n+
x , n+

y ]
 is the unit outward normal vector to the physical face F from
κ+. Similarly,

I+/−
i, j = −1

2

∫

F
(∇φI ,κ+ · n+)φJ ,κ−dσ

= −1

2

(∫

F

∂φI ,κ+

∂x
φJ ,κ−n+

x dσ +
∫

F

∂φI ,κ+

∂ y
φJ ,κ−n+

y dσ

)

= −1

2
JF

⎛

⎝(J−1
κ )1,1

i1+ j1−1∑

k=0

i2+ j2∑

l=0

X̃ ′
i1, j1,kỸi2, j2,l

∫

F̂+
x̂ k ŷldσ̂

+ (J−1
κ )2,2

i1+ j1∑

k=0

i2+ j2−1∑

l=0

X̃i1, j1,k Ỹ ′
i2, j2,l

∫

F̂+
x̂ k ŷldσ̂

⎞

⎠ ,
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where we have also introduced X̃ ′ and Ỹ ′ defined as

X̃ ′
i, j,k =

∑

n+m=k

(
C ′
i,n X̃ j,m

)
,

Ỹ ′
i, j,k =

∑

n+m=k

(
C ′
i,n Ỹ j,m

)
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

for 1 ≤ i ≤ pκ+ , 0 ≤ j ≤ pκ− , 0 ≤ k ≤ i + j − 1.

Remark 5 The coefficients X̃ and Ỹ depend on the maps Fκ+ and Fκ− , as well as X̃ , X̃ ′, Ỹ
and Ỹ ′; thereby, they must be computed for each element κ in the mesh Th .

Remark 6 With regards the computation of the forcing term

fi =
∫

Ω

f (x)φi (x)dx, ∀i = 1, . . . , Nh, (32)

we point out that the quadrature method proposed in this paper allows to exactly evalu-
ate (32) when f is a constant or a polynomial function. If f is a general function, an explicit
polynomial approximation of f is required.

5 Numerical Experiments

We present some two- and three-dimensional numerical experiments to test the practical
performance of the proposed approach.Here, the results are comparedwith standard assembly
algorithms based on employing efficient quadrature rules on a sub-tessellation.

5.1 Two-Dimensional Test Case

We test the performance of the algorithm outlined in Sect. 4 for the computation of the
elemental mass and stiffness matrices resulting from the DG discretization (19) on Voronoi
decompositions as shown inFig. 12. In particular,we compare theCPU-timeneeded to assem-
ble the local and global elemental matrices using Algorithm 2, cf. Sect. 4, with Quadrature
Integration over polygonal domains, based on the sub-tessellation method on polygons and
Gaussian line integration for the related interface terms. More precisely, given κ ∈ Th , the
sub-tessellation scheme on κ is performed by constructing a non-overlapping sub-tessellation
κS = {τκ } consisting of standard triangular elements; in particular, as, for our tests, we con-
sider Voronoi numerical grids, we exploit the convexity of κ and define κS by connecting the
centre of mass of κ with its vertices. As an example, if we consider computing the elemental
mass matrix Mκ

i, j , we have that

Mκ
i, j =

∫

κ

φiφ jdx ≈
∑

τκ∈κS

qτκ∑

r=1

φi (Fτκ (ξ r ))φ j (Fτκ (ξ r ))|Jτκ |ωr ,

where Fτκ : τ̂ → τκ is the mapping from the reference simplex τ̂ to τκ , with Jacobian |Jτκ |,
and {(ξ r , ωr )}qκ

r=1 denotes the quadrature rule defined on τ̂ . The construction of quadrature
rules on τ̂ may be computed based on employing the Duffy transformation, whereby the
reference tensor-product element (−1, 1)2 is mapped to the reference simplex. As the algo-
rithm outlined in Sect. 4 does not require the definition of quadrature nodes and weights, in
the following we will refer to it as the Quadrature Free Method. Consider the problem (19)
introduced in Sect. 3 with d = 2 and Ω = (0, 1)2, where we select the set of basis functions
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(a) (b) (c)

Fig. 12 Example of Voronoi mesh on Ω = (0, 1)2. a 50 elements. b 250 elements. c 1000 elements
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Fig. 13 Comparison of the CPU time needed to assemble the global matricesM and V for a two-dimensional
problem by using the proposed quadrature free method and the classical sub-tessellation scheme. For each
algorithm, each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3} (left) and
p ∈ {4, 5, 6} (right), and measuring the CPU time by varying the number of elements in the underlying mesh.
a Comparison for p ∈ {1, 2, 3}. b Comparison for p ∈ {4, 5, 6}

{φi }Nh
i=1 for Vh as described in Sect. 4. In order to quantify the performance of the proposed

approach, we consider a series of numerical tests obtained by varying the polynomial degree
pκ = p for all κ ∈ Th , between 1 and 6 and by employing a series of uniform polygo-
nal meshes of different granularity, cf. Fig. 12. The numerical grids are constructed based
on employing PolyMesher, cf. [65]. Here, we are interested in the CPU time needed to
assemble the matrices (21) and (22).

In the first test case, we consider the CPU time needed to assemble the matrices M and
V. As pointed out in Sect. 4, these matrices are block diagonal and each block consists of an
integral over each polygonal element κ ∈ Th . In Fig. 13 we present the comparison between
the CPU times needed to assemble the global matrices M and V based on employing the
quadrature free method and quadrature integration (based on sub-tessellation) when vary-
ing the number of elements Ne ∈ {64, 256, 1024, 4094, 16384, 65536} and the polynomial
degree p ∈ {1, 2, 3} (left), and p ∈ {4, 5, 6} (right). Clearly, our approach outperforms
the classical sub-tessellation method leading to substantial gains in efficiency. For a more
detailed comparison, we have presented in Fig. 15a the logarithmic-scaled graphs of each
computation: from the results of Fig. 15a we observe that the CPU time grows like O(Ne),
as Ne increases, as expected.
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Fig. 14 Comparison of the CPU time needed to assemble the global matrices S and I for a two-dimensional
problem by using the proposed quadrature free method and the classical Gauss line integration scheme. For
each approach, each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3} (left) and
p ∈ {4, 5, 6} (right), and measuring the CPU time by varying the number of elements in the underlying mesh.
a Comparison for p ∈ {1, 2, 3}. b Comparison for p ∈ {4, 5, 6}
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Fig. 15 Comparison between the CPU time needed by the two method to assemble the global matricesM and
V (left) and S and I (right) for a three-dimensional problem, versus the number of elements and for different
choices of p = 3, . . . , 6 (log–log scale). a CPU time comparison needed to assemble M and V in log–log
scale. b CPU time comparison needed to assemble S and I in log-log scale

We have repeated the same set of numerical experiments measuring the CPU times needed
to assemble the face terms appearing in the matrices S and I; these results are reported in
Fig. 14. Here, the domains of integration of the integrals involved are the edges of the
polygonal elements, which are simply line segments in the plane R2. Here, we compare the
quadrature free method described in Sect. 4.3 with classical Gaussian line integration, where
the integrating function is pointwise evaluated on the physical numerical nodes lying on each
face. The graphs in Fig. 14a, b show the comparison between the CPU time taken for the two
different approaches. Here, we again observe that significant computational savings are made
when the proposed quadrature free method is employed, though the increase in efficiency is
less than that attained for the computation of the volume integrals. In Fig. 15b we plot the
logarithmic-scaled CPU time with respect to the number of mesh elements; again the CPU
time grows as O(Ne) as Ne increases.

Referring to Figs. 13 and 14, we observe that the cost of assembly of the matrices M
and V, which involve volume integrals over each element κ in the computational mesh Th ,
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is more expensive than the time it takes to assemble the face-based matrices S and I, when
the classical Gaussian line integration method is employed. This is, of course, due to the
greater number of function evaluations required to computeM and V on the underlying sub-
tessellation; note that in two-dimensions, a sub-tesellation of the faces is not necessary, since
they simply consist of line segments. However, the opposite behaviour is observed when the
quadrature free method is employed; in this case, the volume integrals can be very efficiently
computed since the coefficients Ci, j,k and C′

i, j,k only need to be computed once, cf. Sect. 4.2.
On the other hand, computing the face integrals present in S and I requires the evaluation of
the coefficients X̃ j,m, X̃i, j,k, X̃ ′

i, j,k, Ỹ j,m, Ỹi, j,k , and Ỹ ′
i, j,k , cf. Sect. 4.3, which must be

computed for each face F ∈ Fh .

5.2 Three-Dimensional Test Case

We now consider the diffusion–reaction problem (19) with d = 3 and Ω = (0, 1)3. The
polyhedral grids employed for this test case are defined by agglomeration: starting from

a fine partition T f ine of Ω consisting of N f ine disjoint tetrahedrons {κ i
f }

N f ine
i=1 , such that

Ω = ∪N f ine
i=1 κ i

f , a coarse mesh Th of Ω consisting of disjoint polyhedral elements κ can be
defined such that

κ = ∪κ ′
f ∈Sκ

κ ′
f ∀κ ∈ Th, (33)

where Sκ ⊂ T f ine
h denotes the set of fine elements which forms κ . Here, the agglomer-

ation of fine tetrahedral elements is performed based on employing the METIS library for
graph partitioning, cf., for example, [45,46]. With this definition each polyhedral element is
typically non-convex. For simplicity, we have considered only the case of simply connected
elements. In this particular case, the faces of the mesh Th are the triangular intersections of
two-dimensional facets of neighbouring elements. Figure 16 shows three examples of the
polyhedral elements resulting from agglomeration.

We perform a similar set of experiments as the ones outlined in Sect. 5.2 for the two-
dimensional case. Again, we compare the CPU time required by the proposed quadrature
free method with the quadrature integration/sub-tessellation approach to assemble the stiff-

(a) (b) (c)

Fig. 16 Example of polyhedral elements κ ∈ Th obtained by agglomeration of tetrahedrons. κ1 has 18
triangular faces, κ2 has 20 triangular faces and κ3 has 22 triangular faces. a Element κ1. b Element κ2. c
Element κ3
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ness and mass matrices resulting from the DG discretization of problem (19). Numerical
integration over a polyhedral domain is required to assemble the matricesM and V, cf. (21),
whereas for the computation of S and I, cf. (22), a cubature rule over polygonal faces (here
triangular shaped) is needed. In general, for three-dimensional problems the quadrature inte-
gration approach consists in the application of the sub-tessellation method both for volume
and face integrals, although in this particular case no sub-tessellation is required for the
face integrals, since they simply consist of triangular domains. Moreover, as in this case a
sub-tessellation into tetrahedral domains is already given by the definition of the polyhedral
mesh, the quadrature integration for volume integrals on a general agglomerated polyhedral
element κ = ∪κ ′

f ∈Sκ
κ ′
f is realized by applying an exact quadrature rule on each tetrahe-

dron κ ′
f ∈ Sκ . The comparison of the CPU times for the two methods outlined here are
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Fig. 17 Comparison of the CPU time needed to assemble the global matricesM andV for a three-dimensional
problem by using the proposed quadrature free method and the classical sub-tessellation method. For each
approach, each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈
{4, 5, 6} (right), and measuring the CPU time by varying the number of elements of the underlying mesh. a
Comparison for p ∈ {1, 2, 3}. b Comparison for p ∈ {4, 5, 6}
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Fig. 18 Comparison of the CPU time needed to assemble the global matrices S and I for a three–dimensional
problem by using the proposed quadrature free method and the classical sub-tessellation method. For each
approach, each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3} (left) and p ∈
{4, 5, 6} (right), and measuring the CPU time by varying the number of elements of the underlying mesh. a
Comparison for p ∈ {1, 2, 3}. b Comparison for p ∈ {4, 5, 6}
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Fig. 19 Comparison between the CPU time needed by the two method to assemble the global matricesM and
V (left) and S and I (right) for a three-dimensional problem, versus the number of elements and for different
choices of p = 3, . . . , 6 (log–log scale). a CPU time comparison needed to assemble M and V in log–log
scale. b CPU time comparison needed to assemble S and I in log–log scale

presented for a set of agglomerated polyhedral grids where we vary the number of elements
Ne ∈ {5, 40, 320, 2560, 20480}, and the polynomial degree p ∈ {1, 2, 3, 4, 5, 6}. For each
agglomerated polyhedral gridTh wehave chosen the corresponding fine tetrahedral gridT f ine

such that the cardinality of the set Sκ appearing in (33) is |Sκ | ∼ 10 ∀κ ∈ Th . The results
are shown in Fig. 17 for the computation of the matricesM andV, and in Fig. 18 for the com-
putation of matrices S and I. Here, we observe analogous behaviour to the two-dimensional
case: the quadrature free method substantially outperforms quadrature integration both for
the computation of the volume and face integrals. We also have reported in Fig. 19 the
logarithmic-scaled graphs of each computation, showing that, as expected, the gain in terms
of CPU time attained by exploiting the proposed method is more evident here, with respect
to the two-dimensional case, also for the face integrals.

6 Conclusions

In this article we have proposed a new approach for the numerical evaluation of the
integrals required to assemble the mass and stiffness matrices arising from the DG dis-
cretization of diffusion–reaction problems, where the underlying mesh is composed of
polygonal/polyhedral elements. Starting from the idea proposed in [27] for the integration of
homogeneous functions, we have developed a cubature method which does not require the
definition of a set of nodes and weights on the domain of integration, and allows for the exact
integration of polynomial functions based on evaluating the integrand and its derivatives
only at the vertices of the polytopal integration domain. This approach shows a remarkable
gain in terms of CPU time with respect to classical quadrature rules, maintaining the same
degree of accuracy. On the one hand, the number of computations is optimized, with respect
to the polynomial degree of the integrand, and moreover less memory storage is required as
no sub-tessellation and quadrature nodes and weights are required. With regards the three-
dimensional tests presented in Sect. 5.2, we note that more substantial gains in terms of CPU
time, with respect to classical approaches, can be obtained if the underlying grid is composed
of pure (not agglomerated) polyhedral elements: firstly, this is because a sub-partition should
be defined on the fly for each element, and secondly, as faces are not only triangles but pos-
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sibly polygons of arbitrary shape, a sub-tessellation is needed also for surface integrals. The
proposed technique is completely general and can be extended to several numerical methods
based on discrete spaces defined on polygonal/polyhedral meshes, such as Virtual Element
Methods, Mimetic Finite Differences, Hybrid High-OrderMethods, Hybridizable Discontin-
uous Galerkin Schemes, and Polygonal Finite Element Methods, for example. We stress that
for moderate polynomial degrees, the proposed integration technique, which involves exact
integration of bivariate and trivariate functions in two- and three-dimensions, respectively,
has been observed to be numerically stable.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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