
DR
AF
T.

This is the post peer-review accepted manuscript of:

Ricardo Nobre, Luís Reis, João Bispo, Tiago Carvalho, João Cardoso, Stefano Cherubin, Giovanni Agosta
Aspect-Driven Mixed-Precision Tuning Targeting GPUs

Proceedings of the 9th Workshop on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and the 7th Workshop on Design Tools and Architectures For Multicore Embedded

Computing Platforms
Jan, 2018, Manchester, United Kingdom.

The published version is available online at: https://doi.org/10.1145/3183767.3183776

©2018 ACM. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1

DR
AF
T.

Aspect-Driven Mixed-Precision Tuning Targeting GPUs
Ricardo Nobre∗,+, Luís Reis∗,+, João Bispo∗,+, Tiago Carvalho∗,+, João M.P. Cardoso∗,+,

Stefano Cherubin×, Giovanni Agosta×
{rjfn,luis.cubal,jbispo}@fe.up.pt,jmpc@acm.org,stefano.cherubin@polimi.it,agosta@acm.org

∗University of Porto, Portugal +INESC-TEC, Portugal ×Politecnico di Milano, Italy

ABSTRACT
Writing mixed-precision kernels allows to achieve higher through-
put together with outputs whose precision remain within given lim-
its. The recent introduction of native half-precision arithmetic ca-
pabilities in several GPUs, such as NVIDIA P100 and AMD Vega 10,
contributes to make precision-tuning even more relevant as of late.
However, it is not trivial to manually find which variables are to be
represented as half-precision instead of single- or double-precision.
Although the use of half-precision arithmetic can speed up kernel
execution considerably, it can also result in providing non-usable
kernel outputs, whenever the wrong variables are declared using
the half-precision data-type. In this paper we present an automatic
approach for precision tuning. Given an OpenCL kernel with a
set of inputs declared by a user (i.e., the person responsible for
programming and/or tuning the kernel), our approach is capable
of deriving the mixed-precision versions of the kernel that are bet-
ter improve upon the original with respect to a given metric (e.g.,
time-to-solution, energy-to-solution). We allow the user to declare
and/or select a metric to measure and to filter solutions based on
the quality of the output. We implement a proof-of-concept of our
approach using an aspect-oriented programming language called
LARA. It is capable of generating mixed-precision kernels that re-
sult in considerably higher performance when compared with the
original single-precision floating-point versions, while generating
outputs that can be acceptable in some scenarios.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Software and its engineering→ Source code gener-
ation;

This work was partially supported by the TEC4Growth project, NORTE-01-0145-
FEDER-000020, financed by NORTE 2020, under the PORTUGAL 2020 Partnership
Agreement, through the European Regional Development Fund (ERDF), and by
Fundação para a Ciência e a Técnologia (FCT) through PD/BD/105804/2014 and
SFRH/BPD/118211/2016. In addition, this work was partially supported in part by
EU H2020-FET HPC program through the ANTAREX project under grant 671623.
Finally, we acknowledge support from the HiPEAC4 Network of Excellence, financed
by the EU H2020 research and innovation programme under grant agreement number
687698.

DRAFT.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6444-7/18/01. . . $15.00
https://doi.org/10.1145/3183767.3183776

KEYWORDS
GPGPU, aspect-driven, mixed-precision

ACM Reference Format:
Ricardo Nobre∗,+, Luís Reis∗,+, João Bispo∗,+, Tiago Carvalho∗,+, João
M.P. Cardoso∗,+, Stefano Cherubin×, Giovanni Agosta× . 2018. Aspect-
Driven Mixed-Precision Tuning Targeting GPUs. In PARMA-DITAM ’18:
9th Workshop on Parallel Programming and RunTime Management Tech-
niques for Manycore Architectures and 7th Workshop on Design Tools and
Architectures for Multicore Embedded Computing Platforms, January 23,
2018, Manchester, United Kingdom. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3183767.3183776

1 INTRODUCTION
High Performance Computing (HPC) is evolving towards a stage
where resources, in particular energy, cannot be considered expend-
ables. Exascale HPC systems challenge the boundaries of the power
supply, and therefore energy and power efficiency are paramount to
exploit effectively such huge amount of resources. To address this
issue, heterogeneity is currently the most interesting option from
an architectural point of view. Nowadays most supercomputers
support heterogeneous accelerators and often they feature General
Processing Units (GPUs). GPUs allow HPC systems to significantly
improve their FLOPS/Watt metrics, as testified by their strong pres-
ence in the Green500. In this scenario, it is worth to consider the
impact of data precision on GPU computations.

Modern GPUs with support for native half-precision (i.e., 16-
bit floating point) arithmetic with up to 2× the peak arithmetic
throughput of single-precision include the NVIDIA P100 (Pascal
architecture) and V100 (Volta architecture), the AMDVega 10 XT/XL
(Vega architecture), and integrated GPUswithin the Intel CPUswith
the Skylake, Kaby Lake, and Coffee Lakemicro-architectures (Gen9+
architecture). These GPUs can be used to accelerate a number of
applications that can work with 16-bit floating-points, which have
less precision and range than 32-bit and 64-bit precision floating-
points.

The use of data-types smaller than 32-bit can be useful in a broad
selection of applications such as deep neural network training [7,
29] and inferencing [30], some image processing kernels [28] and
radioastronomy [16].

The benefit potential is not limited to the higher arithmetic
throughput of the GPUs, we should also consider the benefit of
performing memory operation on a reduced amount of data. This
consideration is valid for various memory levels, from the local
memory to all the levels of the cache, from the GPU memory to the
host memory. For instance, using a 16-bit float instead of a 32-bit
float can make data accesses faster, both for reading and for writing.

In this paper, we present a LARA-based [17] approach for precision-
tuning and we evaluate it in the context of compilation of OpenCL
kernels for a GPU. We present our work-in-progress in terms of the

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 2 of 1–7.

https://doi.org/10.1145/3183767.3183776
https://doi.org/10.1145/3183767.3183776

DR
AF
T.

Aspect-Driven Mixed-Precision Tuning Targeting GPUs PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

development of a tool for automatically generating and evaluating
(considering both performance and the quality of the generated
outputs) alternative versions of given GPU code. The purpose of
this easy-to-use tool is to help GPGPU programmers to better use
the floating-point capabilities of their GPUs.

Section 2 presents our approach. The methodology behind the
experiments presented in this paper is described in detail in section
3. Section 4 presents experimental results and a brief discussion.
Related work in the context of precision tuning is presented in
section 5. Finally, section 6 presents concluding remarks about the
work presented in this paper.

2 PROPOSED APPROACH
We use the LARA language [17] to develop a dedicated tool. Our
tool takes an OpenCL kernel as input, it generates and evaluates
multiple versions of the input kernel. Those versions exploit mixed-
precision data types to achieve performance improvements over the
original kernel, while they satisfy a user-defined constraint on the
quality of the output. The tool supports specifying the following
parameters:

• A set (or multiple sets) of inputs to the kernel;
• A metric for evaluating the quality of the outputs of the
generated kernels;

• A threshold value which represents the maximum difference
between the outputs of the original kernel and the candidates
generated during exploration which is considered acceptable;

• A goal metric, such as execution performance.
The overall flow for the user is as follows. First, the user decides

which metric they want to use to measure the quality of the output.
They can pick ametric available from our library, or they canwrite a
custom metric. Then, the user has to define an initialization routine
for the GPU kernel under inspection. Our tool runs the original
GPU kernel to generate a reference for the output. Then, it uses a
Design Space Exploration (DSE) loop to evaluate several versions
of the kernel. Our tool uses the selected goal metric as the target of
a DSE optimization. Different OpenCL versions are automatically
generated by our tool by mixing different combinations of data
types for the declarations of variables in the GPU kernel. We target
half-, single-, and double-precision floating-point. At the end, the
tool reports the solution(s) that achieves best score according to
the given quality metric. The tool excludes from the report the
solution(s) that exceeds the desired precision threshold.

Our current implementation of the tool only supports auto-
matic generation of code for the different OpenCL kernel versions,
whereas the generation of the corresponding host-side code is still
work-in-progress. For this reason, for the experiments we report
in this paper we manually modified the host code for each set of
kernels.

The automatic transformation of already existing OpenCL host
code can be too complex in the general case. Therefore, the approach
we suggest for the host code generation requires to start from an
host code version which features a call to a function written in
C. Such C function should hold the code of the OpenCL kernel.
This allows the source-to-source compiler to easily recognize and
modify the data types in the OpenCL code, and to properly insert
code to perform the data type conversion at runtime.

Let us consider the example of a kernel where all floating-point
variables are declared as single-precision. Some of the inputs and/or
outputs of the kernel should be converted to a different precision
level, in this case half-precision floating point. This process entails
three stages of conversion. First, input data must be converted
from original data type to the destination data type before their
transfer from the host to the GPU. In this case, the 32-bit floating-
point input data must be converted to the 16-bit floating-point
representation, which is used by the half OpenCL data-type. Then,
the code of the OpenCL kernel is adapted to match the desired
precision level. Finally, a conversion of the output data back to the
original single precision floating-point representation is required.
The latter conversion is performed after transferring the output data
from the GPU to the host. In the host code, we rely on functions
from the half project – which is an open-source half-precision
floating point library [25] – for the conversion from 32-bit floating
points to 16-bit floating points and vice-versa. The representation
we use to store 16-bit floats is based on the standard IEEE 754.
Therefore, it is compatible with the half OpenCL data type.

To generate the various OpenCL kernel versions we exploit
Clava1, which is an aspect-oriented source-to-source compiler. It
allows the programmer to use the LARA language to describe
analyses, transformations, and instrumentations of C, C++, and
OpenCL code. Figure 1 shows the LARA aspect2 that we use to
generate the several versions of the OpenCL kernel. This aspect has
three inputs parameters numIndependentParams, maxVersions
and combinationFilter.

The numIndependentParams represents the first N parameters
of the kernel that we will freely combine. We use it to group the
generated kernels in folders according to their interface: kernels
with the same parameter signature will be in the same folder. This
classification allows us to group all kernels that correspond to the
same host code. When the automatic host code generation will be
implemented, this input will no longer be required.

The parameter maxVersions indicates the maximum number of
kernel versions that we want to generate. For the experiments in
the paper we used the value undefined, which means we do not
restrict the number of versions to be generated.

The combinationFilter is an array where each element repre-
sents a variable declaration in the OpenCL code. They are sorted
by the order they appear in the kernel. They can have one of three
values: 0, 1, or undefined. During code generation, a value of 0
means that the corresponding variable should maintain its original
type in all versions. A value of 1 requires that all the generated
versions have that variable declared as half. The undefined value
means that the variable may preserve its original data type or it
may have its data type changed to half in the generated kernel
versions. An empty array means that all values are undefined.
The combinationFilter parameter helps to reduce the number of
kernels to generate. However, in our experimental campaign we
choose not to introduce any constraint in the combinationFilter
and we generate all possible combinations.

1The source-code code of the Clava compiler is available at https://github.com/
specs-feup/clava/tree/master/ClavaWeaver
2An extended version of this example is available at https://github.com/specs-feup/
specs-lara/tree/master/ANTAREX/HalfPrecisionOpenCL

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 3 of 1–7.

https://github.com/specs-feup/clava/tree/master/ClavaWeaver
https://github.com/specs-feup/clava/tree/master/ClavaWeaver
https://github.com/specs-feup/specs-lara/tree/master/ANTAREX/HalfPrecisionOpenCL
https://github.com/specs-feup/specs-lara/tree/master/ANTAREX/HalfPrecisionOpenCL

DR
AF
T.

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom R. Nobre et al.

1 aspectdef HalfPrecisionOpenCL

2 input
3 numIndependParams ,

4 maxVersions = undefined ,

5 combinationFilter = []

6 end
7
8 // Get the list of float and double variables

9 // declared in the OpenCL kernel (including parameters)

10 call result : OpenCLVariablesToTest;

11 var variablesToTest = result.variablesToTest;

12
13 // Generates combinations of variables

14 var sequenceGenerator = new SequentialCombinations(

15 variablesToTest.length , maxVersions);

16
17 var counter = 0;

18 while(sequenceGenerator.hasNext ()) {

19
20 // Get a new combination of variables

21 var combination = sequenceGenerator.next ();

22
23 // Number that was used to generate the sequence

24 var lastSeed = sequenceGenerator.getLastSeed ();

25
26 // Check if combination passes the filter

27 if(! isCombinationValid(lastSeed , combinationFilter)) {

28 continue;
29 }

30
31 // Save original kernel version

32 Clava.pushAst ();

33
34 // Change the builtin type of the variables

35 for(var index of combination) {

36 var $vardecl = Clava.findJp(variablesToTest[index]);

37 changeTypeToHalf($vardecl);

38 }

39
40 // Add to the OpenCL kernel the pragma that enables half -precision

41 call addHalfPragma ();

42
43 // Choose output folder based on the

44 // number of independent parameters of the kernel

45 var baseFolder = getBaseFolder(lastSeed , numIndependParams);

46 var kernelFolder = "half_version_" + counter;

47 var outputFolder = Io.getPath(baseFolder , kernelFolder);

48
49 // Generate code

50 Clava.writeCode(outputFolder);

51
52 // Discard modified kernel and restore original one

53 Clava.popAst ();

54
55 counter ++;

56 }

57
58 end

Figure 1: LARA aspect that generates alternative versions of
OpenCL kernels using different types for the input parame-
ters and the kernel body variables.

From the code in Figure 1 we can analyze the behaviour of the
aspect. First, it obtains the list of variable declarations in theOpenCL
kernel that use a float or a double. These declarations are not
restricted to built-in data types, it also detects arrays, typedefs and
pointers. Then, it creates generator for the variable combinations
we will test. In this case, we sequentially generate all possible
combinations. The aspect performs a loop through all combinations.
For each combination, the aspect tests if it is a valid combination,
according to the given combinationFilter. If it passes the test,
the aspect saves the original version of the kernel, so that it can be

loaded again before testing the next combination, and change all
the variable types of the combination to half-types. Then, it adds to
the OpenCL kernel the pragma required to support half-precision,
writes the modified kernel version, and restores the original kernel.

3 EXPERIMENTAL METHODOLOGY
In this section we describe the setup of the experiment we present in
this paper. It includes a description of the hardware, the benchmarks,
the validation approach, and validation metrics.

3.1 Target Platform
We execute our experiments on a Sapphire Radeon Vega 64 Limited
Edition graphics card (part number 21275-01-20G), which features
an AMD Vega 10 XT GPU [2]. The GPU has a peak compute per-
formance of 12, 759, 12, 874, and 815 GFLOPS respectively with
single-, half-, and double-precision scalar data-types. The use of
vector data-types with width 2 – i.e., float2, half2 and double2 –
results in performance improvement that brings the previous met-
rics to 12, 690, 24, 294 and 808 GFLOPS. As expected, the use of
vector data-types results in a peak performance boost of 2× for
half-precision computations, and a non-improvement for the oth-
ers. In the case of single-precision and of double-precision data
types, the peak compute performance does not increase with the
use of any of the vector data-types. It is also worth mentioning that
using the half scalar data-type results in similar peak compute
performance as using float. The use of half4, half8, and half16
results in performance close to when using half2, as operating
on two half-precision floats at a given time per OpenCL kernel in-
stance saturates the FPUs. We extract the peak performance metrics
through clpeak [4], a tool for profiling OpenCL devices.

Notice that, on GPUs such as the one we used, half-precision
arithmetic peak performance can only be achieved if vectorization
is used. Otherwise, the performance of single- and half-precision
versions of the same code can be identical for some OpenCL kernels.
Although vectorization is an important part of accelerating half-
precision applications – i.e., the use of the packed half-precision
floating-point arithmetic capabilities of the GPU– we consider
auto-vectorization to be outside the scope of this paper. Never-
theless, a tool implementing the approach described in this paper
can be a key component in a mapping strategy for generating high-
performance vectorized implementations of OpenCL kernels, as
using half-precision data-types is required for vectorization to have
a considerable impact on GPU kernel code.

The graphics card is installed on a desktop computer with an
Intel Xeon E3-1245 V3 @3.6GHz and 16GB of DDR3 @2400MHz in
a dual channel configuration. We use Ubuntu 16.04 64-bit with the
ROCm [1] driver stack (ver. 1.6). The GPU is set to high performance
mode using the ROCm System Management Interface (rocm-smi),
in order to reduce the variability introduced by the more aggressive
dynamic frequency scaling of other more energy efficient modes.

3.2 Kernels and Goal Metric
In this paper we use kernels from the Polybench/GPU benchmark
suite [26] to evaluate our approach. We selected this particular
benchmark suite as it is freely available and thus contributes to
making the results presented in this paper reproducible.

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 4 of 1–7.

DR
AF
T.

Aspect-Driven Mixed-Precision Tuning Targeting GPUs PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

Table 1: Number of floating-point (FP) input parameters of
the OpenCL kernel, number of floating-point variables in
the kernel body, number of possible kernel signatures, and
number of possible versions for each of the benchmarks
used in the experiments.

Benchmark # FP params. # FP vars. # signatures # versions

2DCONV 2 9 4 2,048
GEMM 5 0 32 32

Polybench/GPU is a collection of codes implemented for GPUs
using CUDA, OpenCL, and HMPP. This benchmark suite includes
kernels from benchmarks from different domains which represent
computations that would be performed on GPUs in the context
of HPC. We rely on the OpenCL kernels from the 2DCONV and the
GEMM benchmarks for the purpose of demonstrating our approach.

Table 1 shows a number of metrics related with the design space
of the possible solutions. For the experiments presented in this
paper, we allow each floating-point variable to be either a float or
an half.

For instance, the OpenCL kernel of the 2DCONV benchmark has
2 floating-point parameters, matrices A and B. Therefore, there are
four possible kernel signatures, as such: A and B float, A and B
half, A float and B half and vice-versa. The 2 floating-point inputs,
combined with the fact that there are 9 floating-point variables in
the kernel body, and that each variable is allowed to assume one
of two different data-types (float or half) results in 2048 (= 22+9)
possible solutions. The GEMM kernel has no floating-point variables
in it’s body, therefore, considering it has 5 floating-point parameters
(matrices A, B and C, and alpha and beta) the number of possible
OpenCL kernel versions is 32 (= 25), each having a unique function
signature.

In this paper, when representing an OpenCL kernel signature,
we use 0 or 1 at a given position n to denote that input number n of
the kernel is of data type float or half, respectively. For instance,
siд01101 represents a function kernel where the first and fourth
inputs are of data type float and all other are of data type half.

The goal metric in the experiments presented in this paper is the
minimization of execution time of a given OpenCL kernel, through
evaluation of alternative versions of the kernel. The performance
reported in this paper are averaged over 30 executions. We kept
the computer load as low as possible to avoid interferences from
other processes.

To determine whether the obtained error is within an acceptable
margin, we compute the relative solution error [12], computed as:

η =

Aapprox −A

F

∥A∥F
(1)

Where ∥X ∥F is defined as the Frobenius matrix norm, computed
as the square root of the sum of the squares of all elements of the
specified matrix:

∥X ∥F =

√√√ m∑
i=1

n∑
j=1

(Xi, j)2 (2)

0E+00 1E-04 2E-04 3E-04 4E-04 5E-04 6E-04 7E-04 8E-04
400

450

500

550

600

650

700

750

2DCONV

sig_00

sig_11

sig_10

sig_01

Figure 2: Output error (X axis) and performance inmicrosec-
onds (Y axis) for the 2,048 variations of the 2DCONV kernel.

Note that ∥X ∥F is 0 when the matrix is composed entirely of
zeros, so if Aapprox = A (i.e., if the results are exact), then the
relative solution error will be 0.

4 RESULTS
In this section, we present results that can be used to infer the
performance/error trade-offs of the different versions generated by
our tool from the OpenCL codes considered for demonstrating our
approach.

Figure 2 depicts the results for 2DCONV, for the four possible
signatures this OpenCL convolution kernel can have when each
of its floating-point parameters is allowed the freedom to be a
float or a half. The cases when both A and B input matrices
are half-precision (i.e., signature siд11) results generally in higher
performance than the original solution (data-point most at left with
error of 0.0) at the cost of a larger difference between the output
from execution of the original kernel and the output from execution
of the modified kernels (see, section 3.2). However, some of these
solutions result in a smaller output error than some of the solutions
with each of the other possible signatures, therefore increasing the
merit of performing an exploration on the data-types of both the
kernel parameters and the variables in the kernel body. Some of
the solutions that have some of the variables declared as half might
be useful in scenarios where some loss of accuracy in the output
of the kernel is allowed, resulting in a speedup up to 1.13× (0.46
seconds for the fastest version and 0.51 seconds for the original
version). The OpenCL version with all variables (both input and
kernel body variables) declared as half was the solution measured
to achieve higher performance. However, it results in a large error
(see, section 3) of 0.000702 when compared with the other versions
(error of 0.000716 was the highest registered). Other solutions that
differ from the former by having some of the kernel body variables
declared as float can result in smaller output error while having
close to the same performance. For instance, there is a solution that
results on an output error of 0.000489 while having close to the
same execution time as the fastest solution (0.47 vs. 0.46 seconds).

Compared with 2DCONV, the GEMM kernel lead to more problems
when using half-precision when using the original PolyBench/C

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 5 of 1–7.

DR
AF
T.

PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom R. Nobre et al.

0E+00 2E-04 4E-04 6E-04 8E-04 1E-03 1E-03 1E-03 2E-03 2E-03
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

GEMM

sig_00000 sig_00101 sig_00110 sig_00111 sig_01000

sig_01001 sig_01010 sig_01011 sig_01100 sig_01101

sig_01110 sig_01111 sig_01111 sig_10000 sig_10001

sig_10010 sig_10011 sig_10100 sig_10101 sig_10110

sig_10111 sig_11000 sig_11001 sig_11010 sig_11011

sig_11100 sig_11101 sig_11110 sig_11111 sig_00011

sig_00100 sig_00001 sig_00010

Figure 3: Output error (X axis) and performance inmicrosec-
onds (Y axis) for the 32 variations of the GEMM kernel.

initialization data. There were many instances where some half-
precision floating-point variables represented inf, which is indica-
tive of an overflow. This resulted in inf being also reported as error
measurement (see, section 3.2).

We opted to, for the experiments presented here, reduce both
the initialization values for the positions of matrices A, B and C, as
well as alpha and beta by a factor of 1000×. Figure 3 depicts the
results for GEMM, for the 32 possible versions the OpenCL matrix
multiplication kernel can have.

In the case of GEMM, all four mixed-precision variations of the
original kernel that have matrix A and matrix B as half and matrix
C as float (i.e., siд11000, siд11001, siд11010 and siд11011) take close
to 0.5 seconds to execute, while incurring in a smaller output error
than many other versions in the solution space. This experimental
result is particularly interesting: with respect to these four mixed-
precision versions not only result in smaller error, but also have
considerably higher performance and than the four versions where
all three input matrices are of the data type half. This consid-
eration includes the version where all input floating-point input
matrices and scalars of data type half (i.e., siд11111), which is ar-
guably the solution that at first would be intuitively expected to
result in the highest performance compared with other versions.
This occurs due to strict aliasing, a concept from the C language
standard which indicates that two pointers to different base types
never alias. When matrix C points to half values and matrices A
and B point to float values, or vice-versa, then the compiler may
assume that matrix C never aliases with the other pointers (as doing
so would be undefined behavior). The GEMM benchmarks contains a
loop where the same position of C is continuously overwritten. If C
is known to never alias with A and B, then the store instruction can
be moved out of the loop, resulting in significantly fewer memory
instructions. The same optimization can be enabled by explicitly
marking C as restrict. When this happens, the version where all

vectors are of data type half (i.e., siд11100) executes in roughly the
same performance as siд11000 (approximately 0.5 seconds). Versions
using only single-precision floating point also benefit from restrict.
For instance, the version where all inputs are of data type float takes
approximately 1.3 seconds to execute if the C matrix is declared
with the restrict keyword (the original takes 2.0 seconds).

The version measured to execute faster (siд11010) (although very
close in terms of execution performance to the other three ver-
sions with signature siд110XX) results in an improvement of 4.06×
over the original version (the generated mixed-precision version
takes 0.49 seconds and the original single-precision version takes 2
seconds), in cases the error that results from using that version is
acceptable. With respect to the effect of the data-type of the two
input scalars on the quality of the output of this specific matrix
multiplication kernel, the declaration of alpha as a half floating-
point always results in considerably increasing the output error,
while declaring beta as a half has a much smaller effect.

5 RELATEDWORK
Approximate computing have been investigated at several levels,
from energy-efficient hardware design [15] to software tools for
high performance computing [12, 21]. Researchers developed entire
frameworks [5] to analyze the effects of several approximate com-
puting techniques. However, the effectiveness of such frameworks
has yet to be proved.

A large share of the work in this field is related to the adaptation
of the data to hardware and energy constraints. In the embedded
system domain, floating point values are usually converted to fixed
point one [24] to limit the area cost and power consumption of
the architecture. Hardware designers developed tools to support
the automatic conversion of floating point values to fixed point
ones [3, 13, 19, 27]. More recent work in this field aims at exploiting
fixed point arithmetics on FPGA accelerators to speedup floating
point applications, such as [20].

In high performance computing the effects of reduced precision
has been investigated in [12] on the Intel x86 architecture. Fixed
point arithmetics has been exploited with good results on GPUs
in the field of computer physics simulations. An interesting mixed
precision approach involving both fixed point and floating point
data types has been applied to molecular dynamics simulations
in [14].

A common approach to apply reduced and mixed precision on
GPU requires the programmer to manually substitute the data type
in the problem as presented in [22]. More complex frameworks
can provide an automated approach to reduced precision. Lam
introduces in [21] an automated procedure to identify portions of
code which can be safely computed with reduced floating point
precision without affecting result accuracy. In order to be able
to select the best precision configuration, the work presented in
[21] requires to generate and execute several versions of the same
program.

Analysis and profiling tools, such as Precimonius [6] and later
works [11], provide hints to the programmer on which data type is
the most efficient while satisfying a given error threshold on the
output. However, their implementations focus only on CPUs and
do not deal with accelerators neither they support OpenCL.

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 6 of 1–7.

DR
AF
T.

Aspect-Driven Mixed-Precision Tuning Targeting GPUs PARMA-DITAM ’18, January 23, 2018, Manchester, United Kingdom

An holistic approach described in [8] merges the error require-
ments introduced by reduced precision with a contract-based pro-
grammingmodel which supports both floating point and fixed point
arithmetics. According to the methodology described in [8], the pro-
grammer has to specify annotations on the source code to describe
the precision requirements through a DSL specifically designed for
that purpose.

Our approach leverages an existing DSL which is already used
within the embedded system and HPC domains (see, e.g., [9, 10,
18, 23]). Although our work focus only on the HPC use case, our
approach can be generalized to whichever target domain.

The effort we require from the programmer is limited to a de-
scription of the transformation’s scope, the precision threshold,
and the metric to evaluate the quality of the output. Moreover, our
approach allows the evaluation metric and the precision threshold
to be selected from an existing preset.

6 CONCLUSIONS
We presented a LARA-based approach for precision-tuning and we
evaluated it in the context of compilation of OpenCL kernels for
GPU. Our tool generated alternative versions of the GPU kernels re-
sulted in improving performance over the original single-precision
versions on an AMD Vega 10 XT GPU. These versions also pro-
duced outputs which have a difference from the original outputs
that might be acceptable for some use-cases. Moreover, some of
the solutions obtained in our experiments clearly demonstrate the
importance of using mixed-precision when striving to increase the
performance of a given OpenCL kernel while also having require-
ments in terms of the quality of the generated output.

We are confident that our approach and the tool we are cur-
rently developing can be useful, especially given the ease-of-use,
to GPGPU programmers. It helps programmers to better use the
floating-point capabilities of modern GPUs with support for native
half-precision arithmetic with 2× peak performance throughput
compared with peak the performance arithmetic throughput with
single-precision, such as the NVIDIA P100 (Pascal architecture)
and V100 (Volta architecture), the AMD Vega 10 XT/XL (Vega ar-
chitecture) and current Intel integrated GPUs that are part of the
Intel CPUs with the Skylake, Kaby Lake and Coffee Lake micro-
architectures.

In the current implementation, our tool generates all OpenCL
versions for evaluation, which corresponds to performing a full
search in the design space during the exploration. As a future di-
rection, we will work on integrating with specialized DSE tools
to allow for faster exploration. Finally, we plan to add support for
CUDA in our tool in a near future.

REFERENCES
[1] 2017. ROCm, a New Era in Open GPU Computing. (2017). https://rocm.github.io/
[2] AMD. 2017. Radeon’s next-generation Vega architecture. (2017). https://radeon.

com/_downloads/vega-whitepaper-11.6.17.pdf
[3] P. Belanovic and M. Rupp. 2005. Automated floating-point to fixed-point conver-

sion with the fixify environment. In 16th IEEE International Workshop on Rapid
System Prototyping (RSP’05). 172–178.

[4] Krishnaraj Bhat. 2017. clpeak: A tool which profiles OpenCL devices to find their
peak capacities. (2017). https://github.com/krrishnarraj/clpeak

[5] Christos Sakalis et al. 2017. A Software Framework for Investigating Software and
Hardware Approximate Computing. In ACACES 2017 Poster Abstracts (ACACES
2017). HiPEAC, 225–228.

[6] Cindy Rubio-González et al. 2013. Precimonious: Tuning assistant for floating-
point precision. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 27.

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2014. Low preci-
sion arithmetic for deep learning. CoRR abs/1412.7024 (2014). arXiv:1412.7024
http://arxiv.org/abs/1412.7024

[8] Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA, 235–248.

[9] Cristina Silvano et al. 2016. The ANTAREX Approach to Autotuning and Adaptiv-
ity for Energy Efficient HPC Systems. In International Conference on Computing
Frontiers (CF ’16). ACM, 288–293.

[10] Cristina Silvano et al. 2016. Autotuning and adaptivity approach for energy
efficient Exascale HPC systems: The ANTAREX approach. In 2016 Design, Au-
tomation Test in Europe Conference Exhibition (DATE). 708–713.

[11] Cindy Rubio-González et al. 2016. Floating-point Precision Tuning Using Blame
Analysis. In Proceedings of the 38th International Conference on Software Engineer-
ing (ICSE ’16). ACM, New York, NY, USA, 1074–1085.

[12] Stefano Cherubin et al. 2017. Implications of Reduced-Precision Computations
in HPC: Performance, Energy and Error. In to appear in Proceedings of the 2017
International Conference on Parallel Computing (ParCo 2017).

[13] Gaël Deest et al. 2014. Toward Scalable Source Level Accuracy Analysis
for Floating-point to Fixed-point Conversion. In International Conference on
Computer-Aided Design (ICCAD). San Jose, United States, 726–733.

[14] Scott Le Grand, Andreas W. Götz, and Ross C. Walker. 2013. SPFP: Speed without
compromise - A mixed precision model for GPU accelerated molecular dynamics
simulations. Computer Physics Communications 184, 2 (2013), 374 – 380.

[15] J. Han and M. Orshansky. 2013. Approximate computing: An emerging paradigm
for energy-efficient design. In 2013 18th IEEE European Test Symposium (ETS).
1–6.

[16] Mark Harris. 2016. Mixed-Precision Programming with CUDA
8 | Parallel Forall. https://devblogs.nvidia.com/parallelforall/
mixed-precision-programming-cuda-8/. (Dec. 2016). Accessed: Novem-
ber 11th, 2017.

[17] João M. P. Cardoso et al. 2012. LARA: an aspect-oriented programming language
for embedded systems. In Proceedings of the 11th annual international conference
on Aspect-oriented Software Development. ACM, 179–190.

[18] José G. F. Coutinho et al. 2013. Deriving Resource Efficient Designs Using
the REFLECT Aspect-oriented Approach. In Proceedings of the 9th International
Conference on Reconfigurable Computing: Architectures, Tools, and Applications
(ARC’13). Springer-Verlag, Berlin, Heidelberg, 226–228.

[19] Ki-Il Kum, Jiyang Kang, and Wonyong Sung. 2000. AUTOSCALER for C: an
optimizing floating-point to integer C program converter for fixed-point digital
signal processors. IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing 47, 9 (Sep 2000), 840–848.

[20] L. Gan et al. 2013. Accelerating solvers for global atmospheric equations through
mixed-precision data flow engine. In 2013 23rd International Conference on Field
programmable Logic and Applications. 1–6.

[21] Michael O Lam and Jeffrey K Hollingsworth. 2016. Fine-grained floating-point
precision analysis. The International Journal of High Performance Computing
Applications (2016), 1–15.

[22] M.A. Clark et al. 2010. Solving lattice QCD systems of equations using mixed
precision solvers on GPUs. Computer Physics Communications 181, 9 (2010), 1517
– 1528.

[23] Martin Golasowski et al. 2017. Expressing and Applying C++ Code Transformations
for the HDF5 API Through a DSL. Springer International Publishing, Cham, 303–
314.

[24] Daniel Menard, Daniel Chillet, and Olivier Sentieys. 2006. Floating-to-fixed-point
Conversion for Digital Signal Processors. EURASIP J. Appl. Signal Process. 2006
(Jan. 2006), 77–77.

[25] Christian Rau. 2017. half: IEEE 754-based half-precision floating point library.
(2017). http://half.sourceforge.net/

[26] Louis-Noel Pouchet Scott Grauer-Gray. 2012. PolyBench/GPU: Implementation
of PolyBench codes for GPU processing. (2012). http://web.cs.ucla.edu/~pouchet/
software/polybench/GPU/index.html

[27] N. Simon, D. Menard, and O. Sentieys. 2011. ID.Fix-infrastructure for the design of
fixed-point systems. In University Booth of the Conference on Design, Automation
and Test in Europe (DATE), Vol. 38. http://idfix.gforge.inria.fr

[28] SiSoftware. 2017. FP16 GPGPU Image Processing Perfor-
mance & Quality. (2017). http://www.sisoftware.eu/2017/04/14/
fp16-gpgpu-image-processing-performance-quality/

[29] Suyog Gupta et al. 2015. Deep Learning with Limited Numerical Precision. In
Proceedings of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37 (ICML’15). JMLR.org, 1737–1746. http://dl.acm.
org/citation.cfm?id=3045118.3045303

[30] Ganesh Venkatesh, Eriko Nurvitadhi, and Debbie Marr. 2016. Accelerating Deep
Convolutional Networks using low-precision and sparsity. CoRR abs/1610.00324
(2016). arXiv:1610.00324 http://arxiv.org/abs/1610.00324

Submission ID: 123-A12-B3. 2019-01-04 18:16. Page 7 of 1–7.

https://rocm.github.io/
https://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf
https://radeon.com/_downloads/vega-whitepaper-11.6.17.pdf
https://github.com/krrishnarraj/clpeak
http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/parallelforall/mixed-precision-programming-cuda-8/
http://half.sourceforge.net/
http://web.cs.ucla.edu/~pouchet/software/polybench/GPU/index.html
http://web.cs.ucla.edu/~pouchet/software/polybench/GPU/index.html
http://idfix.gforge.inria.fr
http://www.sisoftware.eu/2017/04/14/fp16-gpgpu-image-processing-performance-quality/
http://www.sisoftware.eu/2017/04/14/fp16-gpgpu-image-processing-performance-quality/
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1610.00324

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Experimental Methodology
	3.1 Target Platform
	3.2 Kernels and Goal Metric

	4 Results
	5 Related Work
	6 Conclusions
	References

