
This is the post peer-review accepted manuscript of:

Davide Gadioli, Ricardo Nobre, Pedro Pinto, Emanuele Vitali, Amir H. Ashouri, Gianluca Palermo, Joao
Cardoso, Cristina Silvano
SOCRATES - A Seamless Online Compiler and System Runtime AutoTuning Framework for Energy-Aware
Applications
Design, Automation and Test in Europe, 2018

The published version is available online at: https://doi.org/10.23919/DATE.2018.8342183

©2018 IEEE. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

SOCRATES - A Seamless Online Compiler and System Runtime
AutoTuning Framework for Energy-Aware Applications

Davide Gadioli∗, Ricardo Nobre+, Pedro Pinto+, Emanuele Vitali∗

Amir H. Ashouri×, Gianluca Palermo∗, Joao Cardoso+, Cristina Silvano∗
∗Politecnico di Milano, Italy ×University of Toronto, Canada +University of Porto, Portugal

Abstract—Configuring program parallelism and selecting op-
timal compiler options according to the underlying platform
architecture is a difficult task. Tipically, this task is either
assigned to the programmer or done by a standard one-fits-
all policy generated by the compiler or runtime system. A
runtime selection of the best configuration requires the insertion
of a lot of glue code for profiling and runtime selection. This
represents a programming wall for application developers. This
paper presents a structured approach, called SOCRATES, based
on an aspect-oriented language (LARA) and a runtime autotuner
(mARGOt) to mitigate this problem. LARA has been used to hide
the glue code insertion, thus separating the pure functional appli-
cation description from extra-functional requirements. mARGOT
has been used for the automatic selection of the best configuration
according to the runtime evolution of the application. 1

I. INTRODUCTION

Performance portability across different computing plat-
forms is a challenging problem for application developers
working on different computing fields from embedded to
HPC systems. The problem is that application performance is
strongly dependent on the underlying target platform, system
runtime, and input data. Ideally, the solution can be expressed
as a morphable code capable of adapting to the environment
conditions. However, this approach faces several challenging
problems not yet solved. Among them, we can mention that
writing such a kind of code would require a flexible high-level
language capable of expressing functional aspects, that can be
easily manipulated and customized for later compilation and
code generation phases.

In the past, customizing applications without a complete
rewriting of the code, in terms of parallelism and compiler
transformations, has been envisioned as a promising path [1],
[7]. These approaches are typically based on the tuning of
the application, compiler and system runtime knobs before
the actual code deployment, thus finding a one-fits-all config-
uration for the target platform. However, selecting the most
suitable configuration can be a hard task, if we consider that
the application workload and resource partitioning change dy-
namically and the energy/power budget can evolve depending
on external events. Only a few recent efforts (see, e.g., [6],
[8], [13]) are applying strategies once the application has been
deployed on the target system. The main problem of runtime
solutions for application tuning is that they require a high-level
of intrusiveness in the source code. Indeed, the original source

1This work has been partially funded by the EU H2020-FET-HPC program
under the project ANTAREX - AutoTuning and Adaptivity appRoach for
Energy efficient eXascale HPC systems (grant number 671623).

code implementing the functional aspects should be enhanced
with glue code needed to profile, monitor and configure the
application according to extra-functional aspects.

This paper introduces a structured approach, called
SOCRATES, for the runtime selection of the most suitable
application configuration in terms of compiler flags and
parallelism parameters of the OpenMP runtime. The main
contribution of SOCRATES is to offer runtime autotuning fea-
tures while avoiding any manual intervention by the applica-
tion developer. SOCRATES uses an aspect-oriented language,
LARA [3], to implement the separation of concerns between
the functional and extra-functional parts of the application,
while an application-level autotuner, mARGOt [6], is inte-
grated for the optimal configuration selection. All changes to
the application code required by SOCRATES are automatically
performed by LARA. Furthermore, SOCRATES supports an
energy efficient execution by introducing energy consumption
as a key variable to be considered at runtime.

II. PROPOSED METHODOLOGY

The main goal of the SOCRATES framework is to provide
to the application developer an energy-aware framework to
enhance the application with a kernel-level compiler auto-
tuning and adaptation layer in a seamless way. In particular,
the starting point of the approach is a generic source code
that describes the functional behavior of the application, i.e
o = f(i) where a generic function f computes the desired
output o from the given input i. To reach the adaptivity goal,
the framework performs two major actions on the original
application. The first action consists of transforming the ap-
plication into a tunable version, enhancing its structure to
take as input a set of knobs (k1, k2, . . . , kn) that affect its
behavior, i.e. o = f(i, k1, k2, . . . , kn). The idea is that a
change in the configuration of the knobs results in a change
of the extra-functional property (EFP) of the application f
and its output o. Examples of EFPs of the function f might
be execution time and power consumption, while EFPs of
the output o might be solution accuracy and output file size.
The second action consists of enhancing the tunable version
of the application with the intelligence needed to configure
dynamically its knobs according to application requirements
and environment conditions. Thus, the application is enhanced
with an adaptation layer that provides the ability to monitor its
behavior and select the most suitable configuration. Even if the
overall approach is suitable for different contexts, SOCRATES
has been designed to address the following autotuning space:

Figure 1. Tool flow of the SOCRATES approach from the original application
source code to the generation of the application adaptive binary.

- Compiler Options (CO): This knob represents a combination
of compiler flags. We used four standard optimization levels
from gcc: Os, O1, O2, O3, in addition to specific trans-
formations such as: -funsafe-math-optimizations, -fno-guess-
branch-probability, -fno-ivopts, -fno-tree-loop-optimize, -fno-
inline-functions, -funroll-all-loops derived from [4];
- Number of threads (TN): This knob sets the number of
OpenMP threads between 1 and the number of logical cores;
- Binding Policy (BP): This knob sets the OpenMP binding
policy: spread or close. We set the environmental variable
OMP PLACES to cores.

Figure 1 shows the SOCRATES toolchain. The proposed
methodology targets applications with one or more kernels
representing different phases of the computation. To reduce the
compiler space, every kernel of the original code is analyzed
and code features are extracted by GCC-Milepost [5]. Then,
the compiler autotuning framework COBAYN [2] is used to
infer and extract the most promising compiler flags for every
kernel. We generated several versions of the kernel, according
to the autotuning space by using a LARA-controllable toolbox,
while the code is enhanced with runtime autotuning capability
by mARGOt. The enhanced code is then profiled for all the
alternatives to create the application knowledge required by
the final adaptive application binary.

Reducing the compiler space complexity. The first step of
SOCRATES consists of pruning the compiler optimization
space. An appropriate methodology is to select efficiently the
most promising compiler options given a target application. To
this end, we adopted the COBAYN framework to select the
best optimization passes. COBAYN is an autotuning frame-
work that identifies the most suitable compiler optimizations
by using Bayesian Networks (BN). It uses application char-
acterization to induce a prediction distribution by an iterative
compilation methodology. This technique identifies a suitable
set of compiler optimizations to be applied to the target kernel,
thus reducing the cost of the compiler optimization phase.

Figure 2. Example of the automatic application code transformation from the
original code (a) to the final adaptive code (c).

We used GCC standard optimization levels and COBAYN
predictions as reduced design space for the compiler flags.
Application characterization is done by extracting static code
features by GCC-Milepost, while COBAYN has been adapted
to work at kernel function granularity. In SOCRATES, we used
the compiler space adopted in the original COBAYN paper
(128 flags combination) by reducing it to four alternatives.

Runtime configuration selection. The objective of
SOCRATES is to tune dynamically the target application
according to the system evolution. We used the mARGOt
autotuning framework to select dynamically the most suitable
configuration based on the classical MAPE-K loop [9] for
autonomous systems. mARGOt is a dynamic autotuner where
the definition of application requirements might change at
runtime (e.g. considering different energy requirements) and
adaptivity layer changes the configuration accordingly. The
intrusiveness of mARGOt in the application code is limited to
an initialization call in the application and to start/stop/update
calls around the regions of interest. mARGOt is partitioned
into two modules: the monitoring infrastructure and the
Application-Specific Run-Time Manager (AS-RTM). The
monitoring gathers insight on the actual behavior of the
target kernel and execution environment. The AS-RTM is
in charge of selecting the most suitable configuration at
runtime based on three types of information: i) application
requirements; ii) design-time knowledge of the kernel (i.e.
profiling information) and iii) feedback information collected
from monitors. The application requirements are defined
as a constrained multi-objective optimization problem, thus
the application designer is able to define the most suitable
configuration defining only extra-functional objectives and
constraints.

Integration issues. LARA strategies are used to enhance
automatically the original source code for making the ap-
plication tunable and to integrate the mARGOt framework.
In particular, we use code transformation and code insertion
strategies specified in LARA aspects to interact with the
application source code. MANET [11] is used as source-to-
source compiler to weave the cross-cutting concerns described
in the aspects in C applications.

There are two main strategies: Multiversioning and
Autotuner. Figure 2 shows an example of how the application

code evolves during the entire process: from pure functional
code to adaptive code, ready to be deployed. The first strategy,
Multiversioning, generates different versions of the target
kernel and a mechanism to choose which version to call at
runtime. The autotuning space is composed of GCC compiler
flags, binding policy and number of OpenMP threads. The first
two parameters must be statically defined, while the number
of OpenMP threads can be controlled dynamically. The first
action of the Multiversioning strategy clones the kernel several
times. Each function clone represents a different version of
the kernel in terms of compiler options and binding strategy.
No cloned versions have been generated to manage the
number of threads variable because it does not require to be
known at compile time. For each function clone, the strategy
inserts GCC pragmas to set compilation flags (e.g., #pragma
GCC optimize ("O2,no-inline")) and OpenMP
pragmas (e.g., #pragma omp for num_threads(NT)
proc_bind(close)) to configure the parallelization of
the kernels. The strategy also generates a wrapper, which
selects the target version of the kernel, according to control
variables. Afterwards, the strategy replaces each call of the
kernel from application source files, with a call to the wrapper
(see Figure 2b). The entire process is fully automated. The
second strategy, Autotuner, is responsible for integrating
mARGOt into the application. First, the connection between
the generated kernel versions and the autotuner is done by
exposing variables containing the current configuration. Then,
the strategy inserts the required headers and the initialization
function call at the main function. Finally, as shown in
Figure 2c, the strategy surrounds the call to the wrapper with
the mARGOt API code to monitor EFPs and to update the
most suitable configuration.

III. EXPERIMENTAL RESULTS

The platform used for the experiment is a NUMA machine
with two Intel Xeon E5-2630 V3 CPUs for a total of 16
cores with hyperthreading enabled and 128 GB of DDR4
memory (@1866 MHz). The experimental campaign is based
on 12 apps from the Polybench/C benchmark suite [12]. We
used SOCRATES framework to automatically generate the
additional code without any manual intervention on the target
applications. In the experimental campaign, we considered the
autotuning space presented in Section II. We used mARGOt
to perform two tasks. The first one to profile the application
to perform a Design Space Exploration (DSE) and build
the knowledge required by the autotuner. The second task
to tune the application at runtime according to application
requirements given by the experiment. In this work, we used
a full-factorial analysis over the design space, however our
approach is agnostic with respect to the used DSE strategy.

Table I presents some metrics regarding the developed
strategy and its application to each benchmark code. Att is the
number of attributes checked in the LARA strategy about the
source code of the application, including function signature
information and OpenMP pragma information. Act is the
number of actions performed on the code, including code

Table I
METRICS COLLECTED FROM THE APPLICATION OF LARA STRATEGIES.

Benchmark Att Act O-LOC W-LOC D-LOC Bloat

2mm 698 378 136 2068 1932 7.29
3mm 708 378 125 1801 1676 6.32
atax 684 250 81 1071 990 3.74
correlation 1347 410 138 2366 2228 8.41
doitgen 561 218 72 1018 946 3.57
gemver 631 218 94 1008 914 3.45
jacobi-2d 4429 154 145 2918 2773 10.46
mvt 339 154 64 571 507 1.91
nussinov 551 154 78 1356 1278 4.82
seidel-2d 445 154 47 565 518 1.95
syr2k 376 186 66 749 683 2.58
syrk 370 186 62 743 681 2.57

Average 928 237 92 1353 1261 4.10

insertions, cloning and pragma insertion. The LOC columns
represent, in order, the number of logical lines of code of
the original (O-) benchmark, the weaved (W-) benchmark and
their difference (D-). The number of logical lines of source
code in the complete LARA strategy is 265. This is used to
calculate the Bloat metric [10], that roughly estimates how
much code is weaved in the original application per line of
code in the aspect files. These data present an overview of
how complicated, time-consuming and error-prone it would
be to execute these tasks manually. For instance, take the case
of 2mm, on the first row. The weaver automatically inspects
multiple points in the program code, checking the value of
698 attributes and performs transformations (or insertions) on
378 of the inspected points. The resulting code has a number
of logical lines of code that is an order of magnitude larger
than the original one. From the Bloat value for 2mm, we can
see that, on average, we insert 7.29 lines of C code per line
of LARA aspect code. The large differences from benchmark
to benchmark are explained because their kernels may be very
different in size and have different numbers of loops, which
are closely related to the number of lines of code and actions
performed, respectively.

The experiment shown in Figure 3 analyzes the trade-off
space between power consumption and throughput of the target
kernels by using a full-factorial DSE. In particular, it shows the
distribution (as boxplot) between the throughput and the av-
erage power consumption. The values on the y-axis represent
the distribution of the target metrics, for each evaluated ap-
plication, considering only the Pareto-optimal configurations.
Given the large power/performance swing, there is no one-
fits-all configuration, thus confirming the importance of the
proposed approach.

The experiment shown in Figure 4 assesses the benefits
of the proposed approach when autotuning is done stat-
ically (compile-time) according to a given power budget.
It shows the results in terms of execution time and se-
lected configuration (y-axis), while changing the available
power budget, for the target application (2mm). The plot
shows the power-performance trade-off available in the Pareto
curve and also highlight that there is not a clear trend on

 0

 0.5

 1

 1.5

 2

 2.5

2m
m

3m
m

atax
correlation

doitgen

gem
ver

jacobi-2d

m
vt

nussinov

seidel-2d

syr2k

syrk

N
o
rm

a
liz

e
d

 M
e
tr

ic
s

Power Throughput

Figure 3. Power/Throughput distribution over the Pareto curve.

 1095

 8185

 15275

E
xe

c
ti

m
e
 [

m
s]

-O3

CF1

CF2

CF3

CF4

C
o
m

p
ile

r
Fl

a
g
s

 0

 7

 14

 21

 28

 35

O
M

P
 T

h
re

a
d
s

C
S

 45 64 83 102 121 140O
M

P
 b

in
d

Power Budget [W]

Figure 4. Static analysis of the proposed approach, that aims at minimizing
execution time given a constraint on power budget (x-axis).

the selected software-knobs. For this experiment, the cus-
tom flag combinations suggested by COBAYN (CF1-CF4)
are: CF1) O3, no-guess-branch-probability, no-ivopts, no-tree-
loop-optimize, no-inline; CF2) O2, no-inline,unroll-all-loops;
CF3) O2, unsafe-math-optimizations, no-ivopts, no-tree-loop-
optimize, unroll-all-loops; CF4) O2, no-inline.

The last experiment shows the runtime effectiveness of
SOCRATES. Figure 5 reports an execution trace of the tar-
get application (2mm), when the requirement changes from
an energy-efficient policy optimizing Throughput per Watt2

(Thr/W 2) – in the 0s-100s interval – to a performance-
oriented policy optimizing the Throughput – 100s-200s inter-
val – and back to optimizing Thr/W 2 – 200s-300s interval.
When changing from an energy-aware to a performance-
oriented policy (and viceversa), we can notice how the pa-
rameter sets change dynamically to meet the requirements.

IV. CONCLUSIONS

The paper introduced the SOCRATES framework to se-
lect application parallelism and compiler options at runtime.

 80
 93

 106
 119
 132
 145

Po
w

e
r

[W
]

 90

 125

 160

 195

E
xe

c
Ti

m
e
 [

m
s]

C

S

B
in

d

CF1

CF2

C
o
m

p
ile

r
Fl

a
g
s

 5
 20
 35

 0 50 100 150 200 250 300

T
h
re

a
d
s

Timestamp [s]

Figure 5. Execution trace of the 2mm application by varying application
requirements at runtime.

SOCRATES is based on the mARGOt autotuner and the
LARA aspect-oriented language and its main contribution con-
sists of reaching this goal avoiding any manual intervention by
the application developer. SOCRATES has been applied to the
OpenMP Polybench suite by varying application requirements.
Reported results show how SOCRATES can reach significant
benefits in terms of exploiting runtime energy-performance
trade-offs in a dynamic environment.

REFERENCES

[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe. Petabricks: A language and compiler for algorithmic
choice. In Programming Language Design and Implementation, 2009.

[2] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and
C. Silvano. Cobayn: Compiler autotuning framework using bayesian
networks. ACM Trans. Archit. Code Optim., 13(2):21:1–21:25, 2016.

[3] J. M. P. Cardoso, J. G. F. Coutinho, T. Carvalho, P. C. Diniz, Z. Petrov,
W. Luk, and F. Gonçalves. Performance-driven Instrumentation and
Mapping Strategies Using the LARA Aspect-oriented Programming
Approach. Softw. Pract. Exper., 2016.

[4] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam, and
C. Wu. Deconstructing iterative optimization. ACM Trans. Archit. Code
Optim., 9(3):21:1–21:30, Oct. 2012.

[5] G. Fursin et al. Milepost-gcc: Machine learning enabled self-tuning
compiler. Intern, Journal of Parallel Programming, 2011.

[6] D. Gadioli, G. Palermo, and C. Silvano. Application autotuning to
support runtime adaptivity in multicore architectures. In Embedded
Computer Systems: Architectures, Modeling and Simulation, 2015.

[7] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based empirical
performance tuning using Orio. In IEEE IPDPS, 2009.

[8] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for responsive power-aware computing. In
ACM SIGPLAN Notices, 2011.

[9] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1), 2003.

[10] C. V. Lopes and G. Kiczales. D: A language framework for distributed
programming. PhD thesis, Northeastern University, 1997.

[11] P. Pinto, R. Abreu, and J. M. P. Cardoso. Fault Detection in C Programs
using Monitoring of Range Values: Preliminary Results. ArXiv, 2015.

[12] L.-N. Pouchet. Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/pouchet/software/polybench.

[13] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali. Proactive control of
approximate programs. ACM SIGOPS Operating Systems Review, 2016.

