Modeling, Modeling, Modeling:
from Web to Enterprise to Crowd to Social

Marco Brambilla and Stefano Ceri

Politecnico di Milano. Dipartimento di Elettronica, Informazione e Bioingegneria.
Via Ponzio 34/5. 1-20133 Milano, Italy
marco.brambilla@polimi.it, stefano.ceri@polimi.it

Abstract. Data management is continuously evolving for serving the
needs of an increasingly connected society. New challenges apply not
only to systems and technology, but also to the models and abstractions
for capturing new application requirements. In this paper, we describe
several models and abstractions which have been progressively designed
to capture new forms of data-centered interactions in the last twentyfive
years — a period of huge changes due to the spreading of web-based
applications and the increasingly relevant role of social interactions. We
initially focus on Web-based applications for individuals, then discuss
applications among enterprises, then we discuss how these applications
may include rankings which are computed using services or using crowds;
we conclude with hints to a recent research discussing how social sources
can be used for capturing emerging knowledge.

1 Introduction

Long time ago, in the past century, the International DB Research Community
used to meet for assessing new research directions, starting the meetings with
2-minutes gong shows to tell each one’s opinion and influencing follow-up dis-
cussion. Bruce Lindsay from IBM had just been quoted for his message — very
brief: “there are 3 important things in data management: performance, perfor-
mance, performance”. The oldest author of this paper had a chance to speak out
immediately after and to give a syntactically similar but semantically orthog-
onal message: “there are 3 important things in data management: modeling,
modeling, modeling”.

Of course, if one compares the popularity of 3P and 3M in the data man-
agement scientific production, the balance is much in favor of 3P. Query opti-
mization, indexing, parallel and distributed databases, cloud engines are much
more popular than semantic models. Yet, we believe that performance is often
attacked without a solid understanding of application needs, resulting in a brute
force waste of energies — whereas more modeling could also lead to an overall
better performing data system.

As a convincing example, we recall a consultant job for an anonymous Cefriel
client!, concerned with the overall quality of a very large relational database,
originally designed for a commercial DBMS. By adopting systematic good mod-
eling practices for improving the diagram readability and after deep semantic
analysis with the designers, the original schema was progressively reduced from
Fig. 1a to Fig. 1d — and only then implemented for performance. Our claim is
that giving performance to the first schema would not solve its many problems
of data redundancy and lack of orthogonality.

In this specific real-life case, an initial sub-optimal design had to be rectified
though a number of modeling choices before even thinking to its performance;
we conjecture that this occurs in many other real-life data-centered applications.
Hence our "3M” motto. We argue that mastering ”3P” and disregarding ”3M”
could be very dangerous, and therefore equal relevance should be given to data
abstractions for semantics — e.g. in the form of high-level or abstract models
— and to data structures for implementation — e.g. in the form of specialized
persistent data structures or use of parallelism for performance.

We dedicated most of our research to 3M, by inventing new models and by
applying modes to real-life scenarios so as to validate and use them. This paper
is about model evolution in the last 25 years. Although we also worked on plain
data modeling, we keep this aspect outside of our outline of this paper, and
refer to Batini’s article in this same book. We instead focus on the so called
“emerging technologies” — although a 25-years-long period in ICT makes the
emerging technologies at the beginning of the period almost obsolete at its end.

Thus, we concentrate on the following technologies: (a) the web, with its
evolution throughout all the considered period — from exclusively desktop to
mostly mobile; (b) the services, both in their interaction with web models and
in their interplay for building search applications; (c) the crowds, and specifically
the evolution from strict use of marketplaces such as Amazon Mechanical Turk
to the adoption of social networks as sources of work; and (d) social sources
themselves, seen as potential repositories of up-to-date knowledge.

This journey of course capitalizes on our results and is very much biased to
emphasizing the 3Ms. We are aware that in certain cases some models apply to
very few instances, possibly just to our own work. In other cases, however, 3M has
been a successful vehicle for commercialization and standardization. Our work is
traced by papers that appeared at WWW Conferences of the period, dedicated
to WebML [17], to liquid queries over search services [4], to crowd-based search
[3] and to knowledge extraction for social sources [9].

2 Web Modeling with WebML

Several researches have applied software engineering and Web engineering tech-
niques to the specification of Web and multi-platform application interfaces and
user interaction in broad sense. Among them, we can cite OO-HDM [26], WAE

! Hereby acknowledged for allowing us to publish the anonymized database schemas
in Fig. 1; Cefriel is an IT center of excellence linked to Politecnico di Milano.

(c) (d)

Fig. 1. Schema redesign in three steps. Step 1 eliminates from the diagram the tables
which are only used as active domains, i.e. carry legal values for given domains. Step 2
isolates small stars, i.e. subentities carrying multivalued attributes. Step 3 eliminates
redundant information from the schema and was the result of long discussions about
data semantics.

[19], WebDSL [21], OOH-Method [20], WebML [16], RUX-Model [23], HERA
[28], and rapid UI development [25] and modeling languages like USIXML [22].
Commercial vendors are nowadays proposing tools for Web development, like
Mendix (http://www.mendix.com), Outsystems (http://www.outsystems.com) and
Webratio (http://www.webratio.com). However, none of them has managed to
become widely adopted in the software industry yet. For this reason, front-end
development continues to be a costly and ineflicient process, where manual cod-
ing is the predominant development approach, reuse is low, and cross-platform
portability remains difficult.

WebML was an offspring of several EU-Funded project. It was first presented
at the WWW Conference in 2000 [17] and then consolidated in a monogra-
phy [18]. The specification of a Web application in WebML consists of a set of
orthogonal models: the application data model (a standard Entity-Relationship
model), one or more hypertext models expressing the navigation paths and the

Harmes gige E Lias gage Chasis Loan page _” = \
[ESTENTE S Loan Dalas oo s r Cazidiz Prep Canned
I=das
= Mo = - O
Lusn Laan LnanPaapoea tj‘) 0
JLnanTnR impaend] LaanPeopaen He TaFrop e

Fig. 2. Example of WebML hypertext

page composition; and the presentation model, describing the visual aspect of
the pages. The presentation model is quite interesting, as it enables producing
Web pages with the desired layout and looké&feel for any rendition technology,
but is outside the scope of this paper.

The hypertext model consists of one or more site views, each of them tar-
geted to a specific user role or client device. A site view is a collection of pages
(possibly grouped into areas for modularization purposes); the content of pages
is expressed by components for data publishing (called content units); the busi-
ness logic triggered by the users interaction is instead represented by sequences of
operation units, which denote components for modifying data or for performing
arbitrary business actions (e.g., sending email). Content and operations units are
connected by links, which specify the data flow between them and the process
flow for computing page content and for enacting the business logic, in reaction
to users generated navigation events.

Consider for instance a simple scenario, whose hypertext is shown in Figure
2; users browse a Home Page, from where they can navigate to a page showing an
index of loan products. When the user selects a loan from the index, he is taken
to the Chosen Loan page, showing the loan details. In this page, a data unit,
labeled Loan Details, displays the attributes of the loan (e.g. the company, the
total amount and the rate), and is linked to another index unit, labeled Proposals
Index, which displays the plan options. Then, the Enter New Proposal entry unit
is used for data entry; the outgoing link of the Enter New Proposal entry unit
activates a sequence of create and connect units, which respectively create an
instance of the LoanProposal entity and connect it with a relationship instance
to the Loan entity.

Syntactically, each type of unit has a distinguished icon and the entity name
is specified at the bottom of the unit; below the entity name, predicates (called
selectors) express conditions filtering the entity instances to be shown. WebML
distinguishes between normal, transport, and automatic links. Normal links (de-
noted by solid arrows) enable navigation and are rendered as hypertext anchors
or form buttons, while transport links (denoted by dashed arrows) enable only
parameter passing and are not rendered as navigable widgets. Automatic links
are automatically navigated by the system on page load.

WebML is associated with a page computation algorithm deriving from the
formal definition of the models semantics, which describes how the content of
the page is determined after a navigation event produced by the user. Page
computation amounts to the progressive evaluation of the various units of a

Supply Asa
SupplySeanch Products
SeachPoducts ncmnmsem:n\l FProcucts ProducDeils

~ el -

4 B | =" @

; b

Froaust Froguet
L
FmoducEManapement Fart

Sowehgololt Frodupiist XML Out SearchA espanse
o
I = . I
L) =

Fig. 3. Example of WebML hypertext model with invocation of remote service

1.

page, starting from input parameters associated with the navigation of a link.
This process implies the orderly propagation of the value of link parameters, from
an initial set of units, whose content is computable when the page is accessed, to
other units, which expect input from automatic or transport links exiting from
the already computed units of the page. In WebML, pages are the fundamental
unit of computation. A WebML page may contain multiple units linked to each
other to form a complex graph, and may be accessed by means of several different
links, originating from other pages, from a unit inside the page itself, or from an
operation activated from the same page or from another page.

3 Enterprise Modeling with Services and Processes

Five years after we developed it, WebML evolved from model-driven web page
generation to model-driven integration of applications within the enterprise. We
discuss embedding of web services within WebML, and then use of WebML from
within a generic enterprise workflow engine.

3.1 Service Integration

The first WebML extension is towards Service Oriented Architectures, with a
focus on provisioning of well-designed services, usable across different Web ap-
plications [24]. Extensions to the hypertext model cover both service publication
and consumption; service publication is expressed as a Service View, which is
analogous to a site view, but contains specifications of services instead of pages.
A service specification is denoted by a Port, which models the operations trig-
gered upon invocation of the service.

Service invocation and reaction to messages are supported by specialized
components, called Web Service units. These primitives correspond to the clas-
sical WSDL classes of Web service operations and comprise:

— Web service publication primitives: Solicit unit (representing the end-point
of a Web service), and Response unit (providing the response at the end of
a Web service implementation).

— Web Service invocation primitives: Request-response and Request units; they
denote the invocation of remote Web Services from the front-end of a web
application.

For instance, Figure 3 shows a hypertext that specifies a front-end for invok-
ing a web Service and the specification of the web Service within a port container.
In the former, the user can access the SupplySearch page, in which the Search-
Products entry unit enables the input of search keywords. The submission of the
form, denoted by the navigation of the outgoing link of the entry unit, triggers
a request-response operation (RemoteSearch), which builds the XML input re-
quested by the service and collects the XML response returned by it. From the
service response, a set of instances of the Product entity are displayed to the
user by means of the Products index unit in the Products page; the user may
continue browsing, e.g., by choosing one of the displayed products and looking
at its details.

The lower part of Fig. 3 represents the service view that publishes the Re-
moteSearch service. The sequence starts with the SearchSolicit unit, which de-
notes the reception of the message. Upon the arrival of the message, an XML-
out operation extracts from the service provider’s database the list of desired
products and formats it as an XML document. The service terminates with the
SearchResponse unit, which returns the response message to the invoker .

3.2 Business Process Integration

With web services, the Web became a popular implementation platform for
B2B applications, whose goal is not only the navigation of content, but also the
enactment of intra- and inter-organization business processes. Web-based B2B
applications exhibit much more sophisticated interaction patterns than tradi-
tional Web applications: they back a structured process, consisting of activities
governed by execution constraints, serving different user roles, whose joint work
must be coordinated. They may be distributed across different processor nodes,
due to organizational constraints, design opportunity, or existence of legacy sys-
tems to be reused.

We extended our approach to cover business process based modeling [10],
with a technique that exploits the BPMN notation for the description of the
business requirements, and then maps them to hypertext model chunks that
describe the user interaction of every task of the business process. The intuition
is that the process progresses as the actors navigate the front-end, provided
that the hypertext model and the process metadata are kept in synch. To this
end, new primitives were added to the hypertext model, for specifying activity
boundaries (namely activity areas) and process-dependent navigation (namely
workflow links).

Activity Areal Adtivity Area’?

= e
/] R 8 [-

Fig. 4. Two activity areas and the start and end links that denote the initiation and
termination of an activity

Figure 4 shows some of these primitives: Activity Areas denote groups of
pages that implement the front-end for executing an activity; specialized links
represent the workflow-related side effects of navigation: starting, ending, sus-
pending, and resuming activities. Model transformations were used for trans-
lating a business process model into a skeleton of WebML hypertext model; a
one-click code generator from the BPMN models generates running prototypes
starting from the business processes, without the need of WebML modeling.

4 From WebML to the IFML Standardization and
Commercialization

When we designed WebML, we thought that it was strategic to protect it through
a US patent; WebML was implemented by WebRatio, a spinoff of Politecnico
di Milano, which had unlimited rights of use of the patent. In the following
ten years, the world of software tools drastically changed, and within and to-
gether with WebRatio we ended up promoting an open standard for enhanced
hypertexts called Interaction Flow Modeling Language (IFML) [12], that was
largely inspired by WebML; IFML was adopted in 2014 by the Object Manage-
ment Group as an international standard after a 3-years adoption process. In
the course of this operation, we had to give up on the protection of our ideas
and completely change our approach [11].

4.1 IFML

From the technical perspective, IFML supports a much wider set of usage sce-
narios. Indeed, it aims at the platform independent description of graphical user
interfaces for applications accessed or deployed on such systems as desktop com-
puters, laptop computers, PDAs, mobile phones, and tablets. IFML adds to
WebML several innovations: it increases separation of concerns, completely for-
bidding the integration of business logic into the user interaction specification;
it defines a set of very generic concepts (the core of the language) which can
be applied to any kind of user interface; it brings in the concept of event and
asynchronous interactions; and it integrates seamlessly with UML and BPMN
notations. The focus of the description is on the structure and behavior of the
application front-end as perceived by the end user. Hence, with respect to the
popular Model-View-Controller (MVC) model of an interactive application, the
focus of IFML is mainly on the view part.

ProductList Product

«List»

ProductList J

«Details»
Product

Details

«ParameterBindingGroup»
SelectedProduct - Product

Fig. 5. Example of IFML model showing a list of products and the details view.

IFML models support the following design perspectives: (1) The view struc-
ture specification, which consists of the definition of view containers; (2) The view
content specification, which consists of the definition of view components, i.e.,
content publishing and data entry elements contained within view containers;
(3) The events specification, which consists of the definition of events (coming
from user’s interaction, application logic, or external agents) that may affect
the state of the UI; (4) The event transition specification, which consists of the
definition of the effect of an event on the user interface; and (5) The parameter
binding specification, which consists of the definition of the input-output de-
pendencies between model elements. Furthermore, IFML can be complemented
with external models for connecting to any kind of content model (representing
databases, ontologies, file systems or other resources) and any kind of dynamic
model (describing the business logic behind the application front end).

Figure 5 shows a simple example of IFML diagram, where a starting page
displays a list of products and, upon selection by the user, a target page shows
the details of the selected product.

4.2 WebRatio

WebRatio is a commercial tool and company, born as spin-off of Politecnico di
Milano, that has backed the development of WebML by progessively extend-
ing its supported features. Today, the WebRatio Platform? is a model-driven
development tool based on IFML, which features two editions, respectively fo-
cusing on Web and mobile applications [1]. WebRatio provides an integrated
environment for supporting the specification of IFML diagrams, including the
view description, UML class diagrams for the information design, and optionally
the integration with BPMN diagrams for the specification of business process
aspects. It also includes a development environment for supporting the imple-
mentation of custom components and the layout template and style design en-
vironment, which allows the highest possible level of Ul sophistication, thanks
to full support of HTML 5, CSS and JavaScript based styling.

Based on the input provided through these environments, WebRatio applies
a full-fledge model-driven development approach (as described a book of one

2 www.webratio.com

¥ Sea Paint
. Gea Pam
& Geo Area

~
N
N

- o R L
P~ ¥ ¥ ¥ ~
Il \| Theatre | | Holel | | Natianal Parkﬁ'| | Metro Siation School]

| Country D| | rAe!rnLne"'| | Museum

Fig. 6. Conceptual model with geo-referenced concepts

of the authors of this paper [6], which has become one of the reference read-
ings in the MDD field), which provides model checking, full code generation,
group—work support and lifecycle management. The generated code consists of:
automatic cloud-deployed Java EE code covering both front-end of back-end of
web applications for the Web version of WebRatio; and ready-to-deploy cross-
platform mobile applications for the Mobile version of WebRatio. In the deploy,
integration and coherency between mobile and web application is granted by a
common modeling approach.

5 Search Modeling and Computing

With the start of Search Computing, an ERC-funded project (2008-2012)3 our
interest moved into the integration of search services, i.e. of services capable of
extracting ranked responses [13-15]. In this context, modeling interest turns to
understanding effective ways of combining services so as to extract only a few
answers from them - top answers combine in creating query responses. Although
search services can be part of arbitrarily complex applications, their typical
usage is to answer queries, such as: Who is the best doctor to cure insomnia in a
nearby hospital? Where can I attend an interesting conference in my field close
to a sunny beach?; such queries are normally geo-referenced and dealing with
distances is part of the ranking problem. The Search Computing project devised
exploratory user interfaces, service registration tools, query configuration tools,
and execution plan optimization techniques.

In particular, at the conceptual level, location-based resources are annotated
with labels denoting their geometrical class (point, path, area) and grouped
within a specific geo-concept region of the domain diagram. Fig. 6 shows a sample
domain diagram including general entities and relationships and a geo-referenced
region comprising entities such as: Museum, Restaurant, etc. Users can explore
concepts by requesting for details of a specific entity or by moving to other,
geographically or semantically related entity; we called such search paradigm a
liquid query [4].

The exploratory search strategy evolves as follows. Users start by selecting
one of the available entities, and submit a query to extract a subset of object
instances. Among these, they select the instances they are interested in and then

3 http://search-computing.deib.polimi.it.

Theatre Restaurant

Spatial Mear
Conceptual level

Restauant, I Addwes | HAMB | Cyiine | Pries
|
Trogte, |vwmans | wes | demec oo | o

e
¥ i v ¥

(b) ——

Fig. 7. Example of conceptual and logical service invocations

proceed by selecting the next entity to explore; the system retrieves connected
object instances and forms several combinations with the previously retrieved
ones; top-ranked combinations are displayed in ranking order. For instance, they
can select a concert nearby their current location, then relate it to close-by trans-
portation and parking facilities (spatial nearness), to other shows taking place
the same night in town (spatial nearness and temporal proximity), performing
artists (semantic relationships), etc.

The registration of geographical services and their relations used YAGO as
reference knowledge base. At the logical level, spatial accesses are supported by
services, e.g., GoogleMovies outputs movie shows ranked by distance from an in-
put Location. Alternatively, spatial filters may be supported by ad-hoc services
made available in the framework. Fig. 7 shows an example of how spatial con-
cepts can be supported. At the conceptual level (Fig. 7(a)) the query searches for
theatres close to restaurants. At the logical level, Fig. 7(b) it exploits the a ser-
vice implementation of Theatrel supporting distance, by matching the Address
output of the service Restaurantl to the UserAddress attribute of access pat-
tern Theatrel. The nearness function is supported only by the Theatrel service,
therefore the relationship at the logical level is directed, indicating that accesses
are possible by first selecting restaurants and then theatres, but not vice-versa.

This process can be particularly useful and efficient for geo-referenced objects
that are searched on a mobile device. Fig. 8 presents a query combining concerts,
restaurants, and hotels in San Francisco. By selecting one or more object combi-
nations (Fig. 8(a)), users can prune the set of available options and look at the
details of any object in the map (Fig. 8(b)), including related, non geo-referenced
objects. Thanks to the conceptual model representation, the system clusters non
geo-referenced items with the semantically closest geo-referenced item. Further-
more, starting from a given object, users can decide the exploration direction
to follow towards other types of items (Fig. 8(c)) based on geographical rela-
tionships. In this case, additional objects appear in the map and contribute to
the newly calculated combinations (and rankings), as shown in Figure 8(d). The
exploration step can be iterated.

At any stage, users can move forward in the exploration by adding a new
object to the query, starting from the available connections and from the objects
that have been previously extracted. Users can also move backwards by excluding
one of the entities from the query (e.g., removing hotels), or by deselecting previ-
ous manually selected objects. Backtracking at the level of individual conditions
may help, e.g., in changing the restaurant choice from vegetarian to Japanese.

e Ara=taamgl o 5 . & e ® | et | msmsass pewr | vaprva o
i Z W ares | e B oo o &

[oy

Fig. 8. (a) Visualization of best night-plan as combinations of hotel-restaurant-show;
user selects combinations 1 and 3; (b) for the specific hotel Hyatt Regency of com-
bination 1, a popup opens containing guest reviews; (c) a menu suggests exploration
options relevant to the selected hotel metros and shopping centers; (d) user explores
additional shopping centers near the selected hotel.

6 Crowd Modeling using CrowdSearcher

Amazon Mechanical Turk, the most widely used crowdsourcing marketplace,
was created in 2005; but crowd-based computations became much more popular
about 5 years later, when social communities (engaged though social platforms)
were recognized as much wider and knowledgeable crowds. Humans were found
more competent than machines in solving many tasks, ranging from simple ones
(such as tagging images) to complex ones (such as finding optimal protein bind-
ings in the 3D space); for what concerns search, the new trend of asking the crowd
became popular: small local crowds could be selected based on geolocalization,
expertise, memberships within special interest groups, or simply friendship —
thereby complementing the results of search systems.

A that time, we developed CrowdSearcher, a model and tool for engaging
crowds in the context of search queries [3]. Our complete paradigm, illustrated
in Fig. 9, was alternating steps of search queries, using the search computing
platform, and crowd-based queries, using a variety of social systems that could
be invoked for providing human rankings. For instance, while planning a move

Job pogition

: Select
Select
Jab o Mause for
rent
T
S S
Dalasouros Datasawroe Carnmunity

Search
— for public
tramspon

Ask
suggestions an
transport

Session: Marco searching for Jobs and Houses.

soh Postions g Houmestorent s

Sourca: ndradcom

Fig. 10. Example of intertwining crowd-based search within a search sessiom

to a new condition which was taking into account job availability, housing, and
availability of public transport, experts could be asked to judge the alternative
jobs or to comment about public transports.

An example of simple interaction for involving the crowd in suggesting jobs
is illustrated in Fig. 10, where friends are asked to provide suggestions on the
Facebook personal page of the person looking for jobs; in this case, the page dis-
playing results displays for each result category the command Ask the friends
which brings to an entry form where the user selects the social network and en-
gagement process, including its duration; answers are automatically extracted
and reproduced on a modified Ul at the end of the period.

More in general, the input of a CrowdSearcher query QI is a triple < C, N, S >
where C is a data collection, N is a textual query expressed in natural language,
and S is a collection of structured queries. Every component is optional. We next
detail each component.

— C is an initial data collection which is proposed to the crowd for crowd-
searching. For ease of description, we use the relational model, and therefore
C is a collection of tuples. C can be sorted, in which case an attribute POS
indicates the position of each tuple in the input sorting.

— N is a natural language query which is presented to the crowd. It can be
mechanically generated, e.g. in relationship with specific structured queries,
or instead be written by the user who starts the crowd search.

— S is a collection of structured queries that are asked to the crowd, relative
to the collection C. Queries allow to express preferences about the elements
of C, to rank them, cluster them, and change their content.

Preference queries correspond to typical social interactions (like, dislike, com-
ment, tag); the other structured queries abstract simple and classical primitives
of relational query languages which are common in human computation and
social computation activities. The preference queries include:

— Like query, counting the individuals who like specific tuples of C.
Dislike query, counting the individuals who dislike specific tuples of C.

— Recommend query, asking users to provide recommendations about specific
tuples of C.

— Tag query, asking users to provide either global tags or tags about specific
attributes of C.

The rank queries include:

— Score query, asking users to assign a (1..N) score to tuples of C.
— Order query, asking users to order the (top N) tuples in C.

The cluster queries include:

— Group query, asking users to cluster the tuples in C into (at most N) distinct
groups.

— OrderGroup query, asking users to cluster the tuples in C into (at most N)
distinct groups and then order the (top M) tuples in each group.

— MergeGroup query, asking users to merge N sorted groups producing a single
ordering.

— TopGroup query, asking users to cluster the tuples in C into (at most N)
distinct groups and then select the top element of each group.

The modification queries include:

Insert query, asking users to add tuples to C.

Delete query, asking users to delete tuples from C.

— Correct queries, asking users to identify and possibly correct errors in the
tuples of C.

— Connect query, asking users to match pairs of similar tuples.

Our approach was subsequently integrated with a reactive paradigm so as to
allow dynamic and continuous evolution of crowdsourcing strategies based on
the response of the workers [5], by applying techniques largely inspired by the
works on reactive databases and datawarehousing.

7 Using Social Content for discovering Emerging
Knowledge

More recently, we focused on using big data produced by social interactions on
platforms such as Facebook, Twitter, LinkedIn, Instagram. Some of our work was
dedicated to using social sources for answering questions about Milano, such as
understanding the languages being used in the various parts of the city [2], or
the geographic spreading of Instagram posts after events such as the Fashion
Week [7]. But we also tackled a more general research, consisting of using social
content for capturing knowledge.

The most well-developed ontologies, such as DBpedia, Yago, the Knowledge
Graphs in Google and Facebook, derive from structured or semi-structured, cu-
rated data. This process has involved huge efforts but had a huge payoff: DBpe-
dia is now the crystallization point of linked data, while Google and Facebook
saw the business value of this idea and have hugely invested in continuous and
manual integration of databases for the development of knowledge graphs. So
far, the effort of deriving knowledge has disregarder the contribution of social
media, although social content has fueled the new discipline of Social Media An-
alytics [27], concerned with analyzing real world phenomena using social media.

We started a new research [8] targeted to discovering less popular items,
those belonging to the long tail (e.g., the portion of the entity distribution hav-
ing a large number of occurrences far from the “head” or central part of the
distribution itself). Even the largest knowledge bases are largely incomplete for
what concerns low-frequency data. It turns out, however, that knowing the long
tail has a strong relevance, e.g., in e-commerce or search.* While high-frequency
entities include well established brands, low-frequency data typically include
emerging brands, those that have a small impact today but may have a high
one tomorrow. The early discovery of low-frequency data and their ontologi-
cal properties is thus a very interesting problem, with economic and practical
implications in the innovation process.

Given these premises, our research focuses on the problem of discovering
emerging knowledge belonging to the long tail, by extracting the low-frequency
entities and relationships, with their attributes, from social content, thereby
enriching existing domain knowledge [9]. We did so by using the methods for
crawling social content and for entity recognition which are well established
within social media analytics; our notion of ontology is broad, and includes
classic cases, such as DBpedia or PubMed, but also any authoritative source
of knowledge, such as the NY Stock Exchange Listings, or software projects in
Github, or locations available in Open Street Map. These sources are used to
define the ontological content of high-frequency entities.

We approach this problem with general, domain independent methods, but
also with a well defined focus. We do not attempt at building full knowledge
graphs, but rather we build small graphs, called enriched domain graphs, where

4 The commercial success of Amazon and Google is due to their ability to discover
goods or pages in the long tail.

the emphasis is on a given domain, and the enrichment is concerned with emerg-
ing concepts extracted from the long tail. Examples are: discovering emerging
fashion designers (their identity / trends / brands)®; or discovering bloggers
or narrative writers; or scouting emerging startups or products while they are
becoming popular.

Domain knowledge is of course very useful in order to extract the relevant
facts about the domain, e.g., high-frequency entities or relationships (thus, we
know about Gucci or Prada) or structures from existing knowledge graphs (thus,
we know that data about fashion designers can be linked to hubs such as fairs or
magazines). We use such domain knowledge as the driver to select and organize
relevant social content.

The method takes advantage of initial knowledge, that we call seeds and
is typically provided by domain experts, to scout relevant candidates for the
various kinds of emerging knowledge, extracted from social content, and ranked
according to a variety of mechanisms, from syntactic to semantic ones, from
information retrieval to machine learning, possibly helped by crowdsourcing; the
first elements in the ranking are new concepts (e.g., entities or relationships),
that can be validated by domain experts or, when confidence is sufficient, entered
in the enriched domain graph.

In our future work, we plan to use social content to approach the dual prob-
lem of detecting obsolete knowledge, i.e., of knowledge that may have appeared
at a given time but has not been confirmed as it has lost social confirmation.
Examples in the medical domain include therapeutic options or theories about
diseases which are very popular for a limited amount of time but then they either
are ignored or confuted. In this case, we start from domain graphs, i.e., restric-
tions of knowledge graphs to specific domains, and we solve the dual problems
of finding obsolete entities, relationships or attributes, and of discovering that
certain types of the domain graph have lost relevance.

As an intellectual exercise, we are also interested in detecting and confuting
factoids, i.e., studying the correctness of the domain graph. Specifically, one can
search for factoids, i.e., assumptions or speculations that have been reported
and repeated so often that they have become commonly accepted “facts,” even
though they lack any validity or truth. For instance, the belief that the Great
Wall of China is visible from the moon is a factoid, as doing so would require a
17,000 times better eye resolution than we actually have.

8 Conclusions

Starting from the 3M motto, we presented several contributions to data-centered
modeling of applications in the last twenty-five years. The lessons we learnt
throughout our research is that modeling must adapt to new concepts
and that focusing on the static aspects of conceptual schemas is not enough, as
data has its own dynamics within constantly evolving applications. We started

5 This problem is particularly relevant in Milano with its well-known fashion industry;
it has been presented to us by the Fashion Design research group within Politecnico.

with hypertexts, added them services, workflows, and crowd-based computa-
tions which embed social contributions. Our recent work turned towards model
construction, using social information.

Acknowledgement

We acknowledge many contributors to this work; among them, Piero Frater-
nali has a predominant role, being the main motor in all our works related to
WebML and IFML. We also acknowledge the contributions of Alessandro Boz-
zon, Emanuele Della Valle and Florian Daniel, as well as a continuous interaction
with Stefano Butti, Roberto Acerbis and Aldo Bongio from WebRatio.

References

1. Roberto Acerbis, Aldo Bongio, Marco Brambilla, and Stefano Butti. Model-driven
development based on omg’s IFML with webratio web and mobile platform. In
Engineering the Web in the Big Data Era - 15th International Conference, ICWE
2015, Rotterdam, The Netherlands, June 23-26, 2015, Proceedings, pages 605—608,
2015.

2. Michela Arnaboldi, Marco Brambilla, Beatrice Cassottana, Paolo Ciuccarelli, Da-
vide Ripamonti, Simone Vantini, and Riccardo Volonterio. Studying multicultural
diversity of cities and neighborhoods through social media language detection. In
CitiLab, Papers from the 2016 ICWSM Workshop, Cologne, Germany, May 17,
2016, 2016.

3. Alessandro Bozzon, Marco Brambilla, and Stefano Ceri. Answering search queries
with crowdsearcher. In 21st Int.l Conf. on World Wide Web 2012, WWW ’12,
pages 1009-1018. ACM, 2012.

4. Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and Piero Fraternali. Liquid
query: multi-domain exploratory search on the web. In Proceedings of the 19th
international conference on World wide web, WWW ’10, pages 161-170, New York,
NY, USA, 2010. ACM.

5. Alessandro Bozzon, Marco Brambilla, Stefano Ceri, and Andrea Mauri. Reactive
crowdsourcing. In 22nd International World Wide Web Conference, WWW 13,
Rio de Janeiro, Brazil, May 13-17, 2013, pages 153-164, 2013.

6. Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software en-
gineering in practice, volume 1 of Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2nd edition, 2017.

7. Marco Brambilla, Stefano Ceri, Florian Daniel, and Gianmarco Donetti. Spatial
analysis of social media response to live events. In LocWeb , Papers from the
2017 WWW Conference Workshop, Perth, Australia. WWW Companion Volume,
i print, 2017.

8. Marco Brambilla, Stefano Ceri, Florian Daniel, and Emanuele Della Valle. On the
quest for changing knowledge. In Proceedings of the Workshop on Data-Driven In-
novation on the Web, DDIQWebSci 2016, Hannover, Germany, May 22-25, 2016,
pages 3:1-3:5, 2016.

9. Marco Brambilla, Stefano Ceri, Emanuele Della Valle, Riccardo Volonterio, and
Felix Acero Salazar. Extracting emerging knowledge from social media. In Int.l
Conf. on World Wide Web 2017, WWW ’17, page in print. ACM, 2017.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Marco Brambilla, Stefano Ceri, Piero Fraternali, and Ioana Manolescu. Process
modeling in Web applications. ACM Transactions on Software Engineering and
Methodology, 2006.

Marco Brambilla and Piero Fraternali. Interaction flow modeling language: Model-
driven Ul engineering of web and mobile apps with IFML. Morgan Kaufmann -
The OMG Press, 2014.

Marco Brambilla, Piero Fraternali, and et al. The interaction flow modeling lan-
guage (ifml), version 1.0. Technical report, Object Management Group (OMG),
http://www.ifml.org, 2014.

Stefano Ceri and Marco Brambilla, editors. Search Computing - Challenges and
Directions, volume 5950 of Lecture Notes in Computer Science. Springer, March
2010.

Stefano Ceri and Marco Brambilla, editors. Search Computing - Trends and
Developments [outcome of the second SeCO Workshop on Search Computing,
Como/Milan, Italy, May 25-31, 2010], volume 6585 of Lecture Notes in Computer
Science. Springer, 2011.

Stefano Ceri and Marco Brambilla, editors. Search Computing - Broadening Web
Search, volume 7538 of Lecture Notes in Computer Science. Springer, 2012.
Stefano Ceri, Marco Brambilla, and Piero Fraternali. The history of webml lessons
learned from 10 years of model-driven development of web applications. In Con-
ceptual Modeling: Foundations and Applications, volume 5600 of LNCS, pages 273~
292. Springer, 2009.

Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web modeling language (webml):
a modeling language for designing web sites. Computer Networks, 33(1-6):137-157,
2000.

Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, and
Maristella Matera. Morgan Kaufmann series in data management systems: De-
signing data-intensive Web applications. Morgan Kaufmann, 2003.

J. Conallen. Building Web applications with UML. Addison Wesley, 2002.

Jaime Gdémez, Cristina Cachero, and Oscar Pastor. Conceptual modeling of device-
independent web applications. pages 26-39, 2001.

Danny M. Groenewegen, Zef Hemel, Lennart C. L. Kats, and Eelco Visser.
WebDSL: a domain-specific language for dynamic web applications. In Gail E.
Harris, editor, OOPSLA Companion, pages 779-780. ACM, 2008.

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and
Victor Lopez-Jaquero. USIXML: A language supporting multi-path development
of user interfaces. In Engineering Human Computer Interaction and Interactive
Systems, volume 3425 of LNCS, pages 200—220. Springer, 2005.

Marino Linaje, Juan Carlos Preciado, and Fernando Sénchez-Figueroa. A Method
for Model Based Design of Rich Internet Application Interactive User Interfaces.
In Proceedings of International Conference on Web Engineering, July 16-20, 2007,
Como, Italy, pages 226—241, 2007.

Toana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Frater-
nali. Model-driven design and deployment of service-enabled web applications.
ACM Trans. Inter. Tech., 5(3):439-479, 2005.

Arne Schramm, Andre Preussner, Matthias Heinrich, and Lars Vogel. Rapid UI de-
velopment for enterprise applications: Combining manual and model-driven tech-
niques. In Model Driven Engineering Languages and Systems, volume 6394 of
LNCS, pages 271-285. Springer, 2010.

26.

27.

28.

Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa. Systematic Hyper-
media Application Design with OOHDM. In Proc. Hypertext’96, pages 116-128,
1996.

Stefan Stieglitz, Linh Dang-Xuan, Axel Bruns, and Christoph Neuberger. Social
media analytics. Business & Information Systems Engineering, 6(2):89-96, 2014.
Richard Vdovjak, Flavius Frasincar, Geert-Jan Houben, and Peter Barna. Engi-
neering Semantic Web Information Systems in Hera. Journal of Web Engineering,
1(1-2):3-26, 2003.

