
On the Semantics of Distributed Reactive
Programming: the Cost of Consistency

Alessandro Margara, Guido Salvaneschi

Abstract—
The reactive programming paradigm aims to simplify the development of reactive systems. It provides abstractions to define
time-changing values that are automatically updated by the runtime according to their dependencies. The benefits of reactive
programming in distributed settings have been recognized for long. Yet, existing solutions for distributed reactive programming enforce
the same semantics as in single processes, introducing communication and synchronization costs that hamper scalability.
Establishing suitable abstractions for distributed reactive programming demands for a deeper investigation of the semantics of change
propagation. This paper takes a foundational approach and defines precise propagation semantics in terms of consistency guarantees
that constrain the order and isolation of value updates. We study the benefits and costs of these consistency guarantees both
theoretically and empirically, using case studies and synthetic benchmarks.
We show that different applications require different levels of consistency and that manually implementing the required level on a
middleware that provides a lower one annuls the abstraction improvements of reactive programming. This motivates a framework that
enables the developers to select the best trade-off between consistency and overhead for the problem at hand. To this end, we present
DREAM, a distributed reactive programming middleware with flexible consistency guarantees.

Index Terms—Distributed Reactive Programming, Consistency Guarantees, Reactive Programming Middleware, DREAM

1 INTRODUCTION

MANY modern software systems are reactive: they re-
spond to the occurrence of events of interest by

updating values and performing computations that may
in turn trigger new events. Examples range from graphi-
cal user interfaces, which react to the input of the users,
to embedded systems, which react to the signals coming
from the hardware, to monitoring and control applications,
which react to the changes in the external environment.
Designing, implementing, and maintaining reactive soft-
ware is arguably difficult. Reactive code is asynchronously
triggered by event occurrences, which makes it hard to trace
and understand the control flow of the entire system [1]
and opens room for subtle errors. In fact, in 2008 a half
of the bugs reported for Adobe’s desktop applications was
generated in code for event handling [1].

The reactive programming (RP) paradigm [2] has been pro-
posed to mitigate these issues and simplify the development
of reactive systems. RP aims to make the propagation of
events and the management of updates implicit by building
on three key concepts: time-changing values, tracking of
dependencies, and automated propagation of changes. To
explain the core principles of RP, let us consider the fol-
lowing pseudocode snippets that define a variable a and a
variable b that depends on a:

• Alessandro Margara is with the Dipartimento di Elettronica, Informazione
e Bioingegneria (DEIB) at Politecnico di Milano, Milan, Italy.
E-mail: alessandro.margara@polimi.it

• G. Salvaneschi is with the Department of Computer Science, Technische
Universität Darmstadt, Darmstadt, Germany.
E-mail: salvaneschi@cs.tu-darmstadt.de

a: int = 10
b: int = a + 2
print(b) // 12
a = 11
print(b) // 12

a: int = 10
b: int := a + 2
print(b) // 12
a = 11
print(b) // 13

In conventional imperative programming (left), any fu-
ture change to the value of a does not impact on the value
of b. In RP (right), the second line defines a constraint
(denoted by :=) rather than a statement, thus ensuring
that b gets constantly updated to reflect the latest value
of a. In particular, the runtime environment identifies the
dependency between a and b and propagates every change
from a to b, forcing the recomputation of the latter.

This solution presents several advantages over the Ob-
server design pattern adopted in traditional event-based ar-
chitectures [3]. In particular, developers do not need to pro-
gram the update logic. Instead, they declare the dependencies
between variables and entirely delegate the update process
to the runtime. This results in more compact and readable
code, and reduces the possibility of subtle errors [4], [5].
Most significantly, the runtime takes care of ensuring the
correctness of the propagation. For instance, it can enforce
certain order guarantees in the propagation of changes to
avoid the occurrence of glitches – temporary violations of
data flow invariants [6].

The need to extend the benefits of RP to the distributed
setting is well recognized [7], [2], [8], [9], [10] as many
reactive applications, such as Web applications, monitoring
systems, and mobile apps, IoT software, are distributed. Yet,
most existing RP frameworks do not support distribution
in the sense that they only propagate changes inside each
single process, while cross-process changes must be propa-

gated manually. As a result, the benefits of RP are exploited
only half way: software design of each process improves,
but dropping out of the principled propagation guaranteed
by RP at the process boundaries comes at the cost of
relinquishing consistency properties otherwise enforced by
RP [2].

Conversely, the few frameworks that support RP in a
distributed setting typically incur high costs for change
propagation since they rigidly try to impose the same se-
mantics as in single process RP. For instance, they typically
consider each propagation as an atomic operation, intro-
ducing high communication and synchronization costs that
limit scalability.

We argue that different applications demand for dif-
ferent semantics of propagation, with different trade-offs
between the consistency properties offered and the cost
to implement them. On the one hand, a framework that
provides a strong consistency might impose costs that are
prohibitive for certain applications. On the other hand, as
we show in this work, manually enforcing some desired
consistency properties on top of a framework that does not
offer them is a complex and error prone task that nullifies
the design advantages RP is adopted for.

In this paper, we define p recise s emantics a nd desired
properties for distributed reactive programming (DRP),
identifying a number of consistency guarantees for DRP that
constrain the order and the interleaving of value updates
in a reactive application. We study the benefits and costs of
the proposed consistency guarantees both theoretically and
empirically, using case studies as well as synthetic bench-
marks. Finally, we present DREAM (Distributed REActive
Middleware), a DRP framework that offers multiple lev-
els of consistency guarantees. When considering the same
propagation semantics, DREAM outperforms the efficiency
of state-of-the-art solutions.
In summary, this work makes the following contributions:
• We define multiple consistency guarantees for the prop-

agation of changes in DRP and describe how to imple-
ment them;

• We analytically inspect the benefits and the overhead to
ensure the proposed consistency guarantees;

• We propose novel algorithms for the propagation of
changes in a distributed setting that outperform the
state-of-the-art solutions in terms of efficiency;

• We show how the propagation algorithms can be ef-
ficiently implemented on top of a distributed publish-
subscribe middleware;

• We present the design and implementation of the
DREAM framework, which offers DRP with flexible
consistency guarantees for Java programs;

• We empirically evaluate the benefits and overhead of
the proposed consistency guarantees using both case
studies and synthetic workloads.

This work is based on our previous paper on the
design and implementation of DREAM [11]. DREAM has
been entirely reimplemented based on native Java code
and supports the newly defined consistency guarantees. In
addition, this paper (i) provides a new formal definition
for the consistency guarantees; (ii) introduces new levels of
consistency guarantees; (iii) discusses the implementation

strategies to enforce the proposed consistency guarantees
and their cost; (iv) presents various case studies that we
concretely implemented on top of DREAM; (v) presents
a wide evaluation campaign that empirically studies the
overhead of the proposed consistency guarantees in a real
distributed deployment on Amazon EC2 and in simulation;
(vi) compares the propagation algorithms implemented in
DREAM with Distributed REScala, a state-of-the-art propa-
gation algorithm for DRP with fixed and predefined consis-
tency guarantees [9].

The rest of the paper is organized as follows. Sec-
tion 2 discusses the motivations behind our work. Sec-
tion 3 presents a model for DRP and introduces various
consistency guarantees. Section 4 discusses their technical
realization and cost. Section 5 introduces the design and im-
plementation of DREAM. Section 6 evaluates DREAM with
benchmarks and Section 7 presents a qualitative evaluation
based on case studies. Section 8 discusses the assumptions
underneath our work and outlines possible solutions to
relax them. Section 9 surveys related work and Section 10
concludes.

2 BACKGROUND AND MOTIVATION

In this section, we introduce examples of distributed reac-
tive applications that can benefit from an implementation
based on RP, and we overview their requirements. In doing
so, we show how different applications demand for different
propagation semantics.

Navigation application
We first consider a navigation application as in Fig. 1.
Variable n1 stores the current position of a GPS sensor
and variable n2 is defined on a remote display that shows
the current position of the GPS on a map. Variable n2 is
defined through the constraint n2 := n1, meaning that
whenever the value of n1 changes, the value of n2 should
change accordingly. As explained in Section 1, the runtime
is responsible for the propagation of changes.

n1 = last_position
n2 := n1
display(n2) n1 n2

n1 = last_position display(n2)

n2 := n1

Fig. 1: Navigation application.

In this scenario, the developer expects that the order of
the updates to variable n2 matches the order of updates
to variable n1, such that the remote display always shows
positions that match the real trajectory of the GPS. If the
runtime does not enforce this property, n2 might receive
updates in any order and the position on the remote display
may not correspond to the trajectory of the GPS.
We address this requirement with FIFO consistency, as de-
fined in Section 3.4.1.

AI engine
Fig. 2 models the components of a game implemented with
RP. Variable n holds the current move of the player. The

value of n is propagated to an AI module, which computes
variable n1 – the reaction of the AI to the player move.
Finally, a display module combines the player move and
the AI reaction in variable n2 and displays them on screen.

n = player_move
n1 := AI_react(n)
n2 := (n, n1)
display(n2) n

n1

n = player_move

n2
n1 := AI_react(n)

n2 := (n, n1)
display(n2)

Fig. 2: AI engine.

In this application, the developer might desire that n2

reflects the new move from the player before the correspond-
ing reaction from the AI. Indeed, the reaction is caused by
the player’s move, and displaying the reaction first would
represent an undesired behavior.
We address this requirement with causal consistency, as
defined in Section 3.4.2.

Financial application
Fig. 3 presents a financial application, where variable s
reflects the latest values from the financial market, f1 and f2
compute forecasts using two different models, and a aver-
ages the contribution of the two models. If the average of the
two models is greater than 10, the application automatically
performs a sell operation.

s = marketIndex
f1 := model1(s)
f2 := model2(s)
a := (f1 + f2) / 2
if (a > 10) sell()

s
f2

s = marketIndex f1
a := (f1+f2) / 2

f1 := model1(s)

f2 := model2(s)

a

Fig. 3: Financial application.

Now assume that an update to s triggers a recomputa-
tion of f1 and f2: f1 was 4 and becomes 6, while f2 was 5
and becomes 4. If the new value of f1 is propagated and a is
recomputed taking into account the new value of f1 but the
old value of f2, then a becomes 6+5=11 and triggers a sell
operation. Even if a is later updated with the correct value of
f2, the sell operation cannot be undone. In this application,
this is an undesired behavior since the developer expects a
to reflect the latest changes in both models.
We address this requirement with single-source glitch free-
dom, as defined in Section 3.4.3.

Online game
Fig. 4 models an online game. Variables s1 and s2 are
the actions of two players. Variables n1 and n2 collect the
actions of the two players and display them from two
different perspectives.

Depending on how the propagation of changes in s1
and s2 interleave, n1 and n2 might process the changes
coming from s1 and s2 in different orders and the two

s1 = ...
s2 = ...
n1 := (s1, s2)
display(n1)
n2 := (s1, s2)
display(n2) s1

n1
n1 := (s1, s2)
display(n1)

s2

n2
n2 := (s1, s2)
display(n2)

Fig. 4: Online game.

displays might show inconsistent views of the game, which
is undesirable for this application.
We address this requirement with complete glitch freedom,
as defined in Section 3.4.4.

Load balancer
Fig. 5 shows the architecture of a replicated Web server with
a load balancer. Variables n1 and n2 hold the percentage of
requests the load balancer redirects to server1 and server2,
respectively. Variable s controls the balancing strategy hold-
ing the fraction of requests for server1. An actuator compo-
nent enforces the balancing policy by sampling variables n1

and n2.

s = ...
n1 := s
n2 := 1 − s

s

n1

n1 := s

n2

n2 := 1 - s

Fig. 5: Load balancer.

In case of an update of s from 0.5 to 0.6, the change is
propagated to n1 and n2, which become 0.6 and 0.4. The
developer desires that the actuator cannot read the new
value of n1, 0.6, and the old value of n2, 0.5, which do not
sum up to 100.
We address this requirement with atomic consistency, as
defined in Section 3.4.5.

Executive Summary
The previous examples highlight that there is no one size fits
all definition of correctness in DRP. RP frameworks need to
offer different degrees of consistency and developers should
be able to select the best trade-off between performance and
consistency for their application. This is especially true in
presence of distribution, where ensuring consistency may
introduce a significant overhead, for instance, to obtain a
global agreement on the order of updates.

To satisfy these needs, in the remainder of this paper
we precisely define different consistency guarantees and we
study the cost for ensuring them in a distributed environ-
ment.

3 MODEL AND CONSISTENCY GUARANTEES

This section introduces a model for DRP and the notation
that we use in the rest of the paper. Then, it precisely defines
the consistency guarantees that satisfy the requirements in
Section 2. Table 1 provides a summary of our notation.

G Reactive graph
n ∈ N Graph node, Var or Signal
e Graph edge
→ Dependency relation
∗−→ Transitive closure of→
S ⊆ N Sources in the graph
Ns ⊂ N Nodes affected by a change to a source s ∈ S
Fs ∈ Ns Sinks in the graph
Es Edges involved in a propagation from source s
p(s,n) Paths from s to any node n ∈ Ns

pc(s,n) Cardinality of paths p(s,n)

Ei Internal edges connecting nodes in the same process
Ee External edges connecting nodes in different processes
Ei

s Internal edges in Es

Ee
s External edges in Es

c Traffic cost for sending a message
clock Cost for locking or releasing a set of resources
l(i,j) Latency for propagating a message across edge (i, j)
lp Latency of a path p

TABLE 1: Notation used in the paper.

3.1 Basic Definitions

We assume the program logic to be distributed across multi-
ple processes, deployed on one or more hosts. We adopt two
fundamental RP abstractions: signals and vars. Each var and
signal is defined within a single process.

Vars are sources of changes that produce a stream of val-
ues over time and can be used to build reactive expressions.
For instance, in the financial application of Fig. 3, s is a
var used in the definition of f1 and f2. A signal is defined
via a reactive expression e and gets automatically updated:
whenever the value of one of the vars or signals that appear
in e changes, e is recomputed to determine the new value
of the signal. In the financial application scenario of Fig. 3,
signal f1 is defined by the reactive expression model1(s).
When s changes, the value of f1 gets automatically updated
by recoputing model1(s). Within an application running on
a process p, developers can read the current value of any
subset of the signals defined in p. They are not allowed to
directly change the value of a signal or the expression that
defines that signal. A fundamental feature for composability
is that signals can be used into reactive expressions to create
new signals. For example, in the financial application of
Fig. 3, signal a is defined from signal f1 and signal f2.

3.2 System Model

We model a reactive application using a directed acyclic
graph G = (N,E) called dependency graph, where a node
n ∈ N represents a var or a signal and an edge e =
(n1, n2) ∈ E indicates that the value of n2 depends on the
value of n1 according to the dependency relation→. We call
e = (n1, n2) an internal edge if n1 and n2 are defined in
the same process, external otherwise. We denote with ∗−→ the
transitive closure of→: n1

∗−→ n2 iff there is a (possibly zero-
length) path in the graph from n1 to n2. S ⊆ N is the set of
vars – also referred to as sources of changes in the rest.

Our model assumes liveness: when the value of a source
s changes, the change (also called update) is propagated
to all the nodes n such that s → n and their value is
recomputed based on the new value of s. The update
process is recursive: an update ui on a node ni triggers an
update uj of the value of any node nj such that ni → nj .

We say that there is a causal relation between ui and uj ,
or that ui (directly) causes uj . Since the graph is acyclic,
the propagation of updates is guaranteed to terminate. We
further refer to the transitive closure of the causal relation
between updates by saying that an update ui directly or
indirectly causes update uj .

The dependency graph abstracts over the real architecture
where signals and vars are located on different processes –
in the same or in different hosts – and exchange updates
through a communication infrastructure.

During the execution, the program running on a process
p can read any subset of vars and signals that are located
within that process. We say that a read operation on a node
nj observes the effects of an update ui on a node ni, ni

∗−→
nj , if the read value is computed by taking into account the
update ui.

Our model assumes that the communication infrastruc-
ture is reliable, meaning that it delivers each message exactly
once. Processes can fail: if a process p fails, all the nodes
stored on p are removed from the dependency graph and
other processes are notified about the failure. More complex
mechanisms for fault tolerance in DRP are out of the scope
of this work and are object of current research [12], [13].
We discuss in Section 8 possible strategies to integrate fault
tolerance in our DRP design.

A naive propagation algorithm that follows the schema
above only guarantees that in absence of failures an update
from a source s is eventually propagated to all nodes that
directly or indirectly depend on s (due to the liveness as-
sumption in our model). Based on the application scenario,
stronger guarantees are desirable (Section 3.4).

3.3 Notation for the Cost Analysis

We consider two costs: (i) traffic, the number of messages
required to propagate a change and (ii) latency to receive an
update. In this section, we introduce the notation required
for cost analysis.

We call Ns ⊂ N the set of nodes that are directly or
indirectly affected by a change to a source s ∈ S:

Ns = {n ∈ N | s ∗−→ n}
We call Fs ∈ Ns the set of sinks for s, that is to say, the nodes
in Ns that do not have any outgoing edge:

Fs = {n ∈ Ns | ∀i ∈ N @(n, i) ∈ E}
We call Es the set of edges involved in a propagation from
source s:

Es = {(i, j) ∈ E | i ∈ Ns, j ∈ Ns}
We call p(s,n) the paths from s to any node n ∈ Ns, and
pc(s,n) = |p(s,n)| the number of such paths. We call Ei the
set of internal edges that connect nodes belonging to the
same process, and Ee the set of external edges that connect
nodes belonging to different processes. Ei

s = Es ∩ Ei is
the set of internal edges in Es and Ee

s = Es ∩ Ee is the
set of external edges in Es. Propagating a change across
an external edge involves sending a message through the
communication infrastructure. We denote c the traffic cost
to send such message. Change propagation across internal
edges has zero traffic cost – it uses only local invocations.

−

−

Since propagation may involve coordination among
processes to guarantee global order or mutual exclusion,
DREAM enforces a node locking discipline. We denote clock
the cost for locking or releasing a set of resources.

Finally, we call l(i,j) the latency for propagating a mes-
sage across the edge (i, j). The latency lp of a path p is the
sum of the delays of all the edges in p.

3.4 Consistency Guarantees

Using the notation presented above, we now introduce
different definitions o f c orrectness f or c hange propagation
in DRP, starting from the ones that offer weaker consistency
guarantees to the ones that offer stronger consistency guar-
antees, but higher performance overhead.

We assume that each update to a node n1 is eventually
propagated to all the nodes n2 such that n1 → n2 and
we define t he c onsistency g uarantees b ased o n t he values
that a process can observe when reading from one or more
nodes. Whenever possible, we relate the consistency levels
to classic ones in the field of data replication and database
transactions [14], [15]. Single-node RP systems typically
identify correctness with glitch freedom [1], [16], [17]. Our
levels include two forms of glitch freedom – single-source
and complete – as well as weaker and stronger levels.

3.4.1 FIFO Consistency
For any two nodes n1 and n2 such that n2 depends on n1,
n1

∗→ n2, and for any two updates u1 and u2 to n1 such
that u1 occurs before u2, a propagation algorithm is FIFO
consistent if a reader of n2 cannot see the effects of u2 before
the effects of u1.

Intuitively, FIFO consistency ensures that a signal reflects
the changes to a single variable in the order in which they
occur. Thus, FIFO consistency satisfies t he r equirement of
the navigation application presented in Fig. 1.

3.4.2 Causal Consistency
A propagation algorithm is causally consistent if it is FIFO
consistent and, for any two updates u1 and u2 such that u1
causes u2, a reader of a node n cannot observe the effects of
u2 on n before the effects of u1 on n (if any). Causal consis-
tency satisfies the requirements of the AI engine presented
in Fig. 2.

This consistency level is analogous to causal consistency
in replicated data stores, which guarantees that operations
that are causally related with each other take place in the
same order in all the replicas, and this order reflects the
causal dependency [14].

3.4.3 Single-source Glitch Freedom
Given two nodes n1 and n2 such that n2 depends on n1,
n1

∗→ n2, and given an update u to n1, a propagation
algorithm provides single-source glitch freedom if it is FIFO
consistent and further ensures that the value returned by a
read on a node n2 reflects all the effects on u on n 2 or none
of them. Intuitively, under single-source glitch freedom all
the effects caused by an update on a node become visible
at the same time. This means that a reader cannot observe
the effects of an update on a node in an order that violates

causality. As a consequence single-source glitch freedom
implies causal consistency.

Single-source glitch freedom satisfies the requirements
of the financial application presented in Fig. 3, ensuring
that any recomputation of a triggered by an update of s
considers both the new value of f1 and the new value of f2.

3.4.4 Complete Glitch Freedom
FIFO, causal, and single-source glitch freedom focus on the
effects of a single update on a single node. Complete glitch
freedom targets the interleaving of the effects of multiple
updates on multiple nodes.

Given two nodes n1 and n2 and two updates u1 and u2, a
propagation algorithm provides complete glitch freedom if
it provides single-source glitch freedom and further ensures
that any read that involves both n1 and n2 observes the
effects of u1 and u2 on n1 in the same order as the effects
of u1 and u2 on n2. Intuitively, complete glitch freedom
ensures that the results of two propagations are the same
as if the propagations took place in some sequential order,
without interleaving at any node. Thus, complete glitch free-
dom satisfies the requirements of the online game presented
in Fig. 4.

Complete glitch freedom shares some analogy with se-
quential consistency in replicated data stores and serializ-
able isolation of transactions [15]. Sequential consistency
ensures that the results of reading from any replica are the
same as if all the updates to the data store were executed
in some sequential order. Similarly, serializable isolation
ensures that the results of transactions are the same as if
they were executed in some sequential order.

3.4.5 Atomic Consistency
A propagation algorithm provides atomic consistency if it
provides complete glitch freedom and further ensures that,
for any update u to a node n and for any pair of nodes n1

and n2 such that n ∗−→ n1, n ∗−→ n2, a read operation that
involves both n1 and n2 observes the effects of u on both n1

and n2, or on none of them.
Intuitively, atomic consistency ensures that a read opera-

tion cannot observe only some of the effects of the change in a
source: either it observes all of them, or none of them. Thus,
it satisfies the requirements of the load balancer presented
in Fig. 5.

4 CONSISTENCY REALIZATION AND COST

This section discusses the implementation of the consistency
levels introduced in Section 3.4 and their cost. We adopt
the DRP model from Section 3.2: nodes in the dependency
graph are separate processes that propagate updates. Up-
dates are implemented as messages delivered through the
communication infrastructure. Nodes process each message
atomically and have a complete view of the graph topology.

A message m holds a value (m.val), an identifier of
the sender node (m.sender), an identifier of the var – the
source – that triggered m (m.source), and a timestamp
(m.ts). Timestamps are logical vector clocks [18], [19] used
to reorder messages based on consistency requirements.
Each timestamp stores a counter cn for each node n in the
dependency graph. When a node sends a new message, it

increments its own counter and attaches it to the message. It
also attaches a counter for all nodes it transitively depends
on. For each node n, the counter is the maximum among the
counters cn stored in the messages the node has received
and already successfully processed.

class Node {
self
currentVal
children[]
propagate(source, ts) {

for child in children
send(child, new msg{currentVal, self, source, ts})

}
}
class Var extends Node {

counter = 0
modify(val) {

waitModify()
currentVal = val
ts = [0, .., 0]
ts.self = counter
counter = counter + 1
propagate(self, ts)
}
}
class Signal extends Node {

val[]
lastTS[]
compute() { ... }
receive(m) { ... }
}
read(nodes) {

waitRead(nodes)
return nodes.values
}

Listing 1: Algorithm for the consistency guarantees.

Listing 1 shows the algorithm used by the nodes to
propagate changes. Each node – class Node – stores a unique
node identifier self, its current value currentVal, and
the identifiers children of all its children in the depen-
dency graph, that is, all the nodes that depend on it. In the
propagate() function, the node propagates its value to all
children sending a message with the current value, the node
identifier as sender, the original source of the change, and
the timestamp discussed above.

A Var extends a Node and implements a function
modify() to update its value. The function propagates the
current value using the identifier of the Var as the source
of message and a timestamp where all the counters are set
to zero except the counter of the Var, which is increased
at each propagation. Similarly, a Signal extends Node
and implements a receive() function to receive update
messages. We assume that each signal stores a value for
each of the nodes d it directly depends on, that we call
val[d]. With these values, function compute() recom-
putes the reactive expression of the signal currentVal.
Each signal stores in lastTS[d] the timestamp of the last
message sent by d that it has successfully processed. Finally,
external components can invoke the utility function read()
to retrieve the current value of the set of input nodes.

The concrete propagation algorithm depends on the
implementation of the receive(), waitModify(), and
waitRead() functions, which define the behavior upon
receiving a message, trying to modify the value of a Var,
and trying to read the value of one or more nodes. Table 2
shows such functions for different consistency levels.

4.1 FIFO and Causal Consistency
Under FIFO and causal consistency, nodes use the times-
tamps to enforce constraints on the order of evaluation of
messages in the receive() function.

In the case of FIFO consistency, the receive(m) func-
tion checks that all previous messages from the same sender
have been received, referring only to the sender timestamp
m.ts[m.sender] and comparing it with the timestamp
of the last processed message lastTS[m.sender]. This
guarantees that all the updates from a given node are pro-
cessed in the order in which they occurred, thus satisfying
the definition of FIFO consistency.

For causal consistency, the receive(m) function checks
that all the messages that causally precede m have been
received. Specifically, message m’ causally precedes m if it
caused the propagation of m, that is if there is a node s
such that s→ self, s ∗−→ m.sender, m’.sender = s, and
m’.ts[s] < m.ts[s]. Thus, the algorithm checks that for
all nodes s that satisfy the properties above lastTS[s] ≥
m.ts[s]. This ensures that updates are processed in causal
order, thus satisfying the definition of causal consistency.

As Table 2 shows, both in the case of FIFO and causal
consistency, if message m is received out of order, the
receive(m) function stores it into the store variable
for future evaluation. Otherwise, the function updates the
value and timestamp of the sender, val[m.sender] and
lastTS[m.sender], using the values contained in m,
m.val and m.ts[m.sender], recomputes its own value
currentVal, and propagates the new value to all the
dependent nodes. Since the processing of m might enable
the processing of previously received and stored messages,
the signal.receive() function is invoked recursively.

FIFO and causal consistency do not impose a total order
among the updates of different vars and do not enforce
atomicity of propagation. As a consequence, the functions
waitModify() and waitRead() immediately return.

The implementation of FIFO and causal consistency in
Table 2 makes no assumptions on the behavior of the com-
munication infrastructure. The protocol resembles classic
approaches to causal consistency based on vector clocks [20]
and applied in the context of distributed shared mem-
ory [21]. Alternative solutions can exploit properties of
the communication infrastructure. For FIFO consistency, a
connection between nodes implemented using direct TCP
channels ensures reliable FIFO communication. If the com-
munication infrastructure includes intermediate processors,
FIFO communication is preserved if the processors preserve
message order and use FIFO channels. Similarly, causal
consistency is guaranteed by the communication infrastruc-
ture if (i) the messages between any two processes are
delivered in FIFO order; (ii) there exists a single, acyclic path
(sequence of links) between any two processes [22].

Cost Analysis
With FIFO and causal consistency each node n outputs one
message on each of its outgoing edges in the dependency
graph for each input message received. As a consequence,
for each change to a source s, a node n receives an update
message from any of the paths from s to n – p(s,n). Recalling
that there are pc(s,n) paths from s to n, the overall number
of messages delivered for each update to s is:

 FIFO Causal Single Source GF / Complete GF / Atomic

signal.receive(m)

if lastTS[m.sender] != m.ts[m.sender] − 1 {
store = store ++ {m}
} else {

val[m.sender] = m.val
currentVal = compute()
lastTS[m.sender] = m.ts[m.sender]
propagate(m.sender, lastTS)
for msg ∈ store {

store = store −− msg
self.receive(msg)
}
}

if ∃ s, s→ self ∧ s ∗−→ m.sender
∧ lastTS[s] < m.ts[s] {

store = store ++ { m }
} else {

val[m.sender] = m.val
currentVal = compute()
lastTS[m.sender] = m.ts[m.sender]
propagate(m.sender, lastTS)
for msg ∈ store {

store = store −− msg
self.receive(msg)
}
}

// This algorithm assumes that
// FIFO consistency is guaranteed
if ∃ p, s, s ∗−→ p ∧ s ∗−→ m.sender ∧ p→ self ∧
6 ∃ m’ ∈ store,
m’.sender == p ∧ m’.ts[s] == m.ts[s] {

store = store ++ {m}
} else {
∀ p, s, s ∗−→ p ∧ s ∗−→ m.sender ∧ p→ self ∧
∀ m’ ∈ store,
m’.sender == p ∧ m’.ts[s] == m.ts[s] {

store = store −− m’
val[m’.sender] = m’.val
}
val[m.sender] = m.val
currentVal = compute()
propagate(m.sender, lastTS)
}

FIFO Causal Single
Source GF Complete GF Atomic

var.waitModify() return return return

writeLock({n | n ∈ conflict(var)})

where
shared(v1, v2) = { n | v1 ∗−→ n, v2 ∗−→ n }

conflict(v1, v2) =

{
∅ if |shared(v1, v2)| < 2
shared(v1, v2) otherwise

conflict(var) =
⋃

v∈vars

conflict(v, var)

writeLock({n | var ∗−→ n})

waitRead(nodes) return return return return readLock(nodes)

TABLE 2: Implementation of the receive(), waitModify(), and waitRead() functions for different consistency levels.

msgs =
∑

(i,j)∈Es

pc(s,i)

The traffic cost is the cost for traversing the external edges
Ee

s , which connect nodes in different processes:

cmsgs =
∑

(i,j)∈Ee
s

c · pc(s,i)

A node n ∈ Ns receives information about an update to
a source s from any of the paths p ∈ p(s,n). The latency l(s,n)
for receiving this information is the maximum latency over
all such paths:

l(s,n) = max
p∈p(s,n)

lp

The propagation terminates when it reaches all the sinks Fs.
The overall propagation latency l is:

l = max
f∈Fs

l(s,f)

In the rest of this section, we present the realization of
stronger consistency guarantees assuming that messages are
received in FIFO order.

4.2 Single-source Glitch Freedom
We implement single-source glitch freedom by updating the
value of a node n only once for each update to a node
n depends on. To do so, we temporarily buffer messages
within nodes until we are ready to apply the changes they
carry. As Table 2 shows, when a signal receives a message m
– function receive(m) –, it stores the message and checks
if it has received an update for the same change from all
nodes it depends on. The signal checks if there exist some

nodes s and p, such that s
∗−→ m.sender, s ∗−→ p. In

this case, it checks that a message m’ has been received
from p with the same timestamp of m for s: m.ts[s]
== m’.ts[s]. When all such messages are received, the
function signal.receive(m) updates the values of the
dependent nodes accordingly, recomputes the value of the
signal, currentVal, and propagates it to dependent nodes.

Similar to FIFO and causal consistency, single-source
glitch freedom does not constrain the order of accesses to
vars and signals. Thus, the functions waitModify() and
waitRead() shown in Table 2 immediately return.

Cost Analysis

In contrast to FIFO and causal consistency, single-source
glitch freedom requires that a node n processes all messages
originating from the same update of a source s in one step.
Hence, n always propagates a single message in response
to each update to a source s and the overall number of
messages delivered for each update to a source s is:

msgs = |Es|
The cost of this propagation is the cost for traversing the
external edges Ee

s :

cmsgs = c · |Ee
s |

The analysis shows that although single-source glitch free-
dom offering a higher level of consistency with respect to
FIFO and causal consistency, it exhibits potential savings
in terms of traffic, since each node changes only once in
response to a source change.

4.3 Complete Glitch Freedom

Complete glitch freedom requires coordinating potentially
conflicting propagations from different sources. The updates
from two sources v1 and v2 conflict if there are at least two
nodes n1 and n2 that depend on both v1 and v2 – v1 −∗→
n1, v1 −∗→ n2, v2 −∗→ n1, v2 −∗→ n2. We indicate the set of
nodes that depend on both v1 and v2 as conflict(v1,
v2). conflict(var) is the union of all conflicting nodes
that involve var and any other source.

Complete glitch freedom can be conceptually achieved
via distributed locking, associating exclusive locks to each
node. When the application changes the value of a var
var, the waitModify() function acquires exclusive lock
on all nodes in conflict(var). If it succeeds, the update
is performed and propagated. Else, the caller is blocked until
the lock is available.

Such mechanism assumes globally ordered evaluation
of lock acquisitions and releases, which can be implement
using a centralized coordinator node or total order message
broadcasting [23]. After lock acquisition, complete glitch
freedom implements the same propagation algorithm as
single-source glitch freedom. A lock is released when all
the nodes in conflict(var) have received and processed
the update. This is achieved by sending an unlock message
from each node in conflict(var).

Cost Analysis

A source s acquires a lock on conflicting n odes before
starting a propagation. Only groups of more than one node
conflicting with a different source s ′ need to be locked. We
define the group of nodes to lock for source s with respect
to source s′:

lock(s,s′) =

{
Ns ∩Ns′ if s 6= s′ ∧ |Ns ∩Ns′ | > 1

∅ otherwise

We define the set of all the nodes to lock for a source s:

locks =
⋃

s′∈(S\{s})

lock(s,s′)

A node in locks releases the lock after it processes an
update from s. To ensure total order of lock acquisitions
and releases, we model them as messages to a locking
component, consistently with the DREAM implementation
(Section 5). The messages required to propagate a change
from s to all the dependent nodes include: (i) the update
propagation messages, which are identical to the case of
single-source glitch freedom; (ii) one lock request message
from the source to the locking component; (iii) one lock
grant message from the locking component to the source, to
notify when the lock has been granted; (iv) one lock release
message for each locked node. Hence, the total number of
messages for complete glitch freedom is:

msgs = |Es| + 2 + |locks|
The total communication cost depends on the cost to trans-
fer messages through external links plus the cost clock of
communication with the locking component to transmit lock
requests, lock grants, and lock releases.

cmsgs = c · |Ee
s | + clock · (2 + |locks|)

The latency for propagating a change from a source s com-
prises the following components: (i) submitting a request
to the locking component; (ii) obtaining a lock grant from
the locking component, which includes waiting that locked
nodes are released; (iii) receiving a lock grant; (iv) propagat-
ing the update to all dependent nodes.

Assuming that the communication latency between a
node and the locking component is llock and the (average)
latency to obtain the grant for a lock is lgrant, then the
overall latency of propagation with complete glitch freedom
is:

l = 2 · llock + lgrant +max
f∈Fs

l(s,f)

Since it is difficult to analytically estimate the latency
lgrant to obtain a lock, we empirically study its effect for
different system configurations and workloads in Section 6.

Computing the locks for source v follows the next steps.
(i) Compute the set of nodes reachable from each source.
For each source, we can compute the set of reachable
nodes using breadth-first search (BFS), which complexity
is O(|N | + |E|), where N is the set of nodes and E the
set of vertices. Considering Ns sources, the total complexity
becomes O(|Ns|(|N | + |E|)). (ii) Compute the intersection
of the set of v with any other set and keep only the intersec-
tions with at least two elements. Assuming an implemen-
tation with hash sets, each intersection costs O(N) and the
overall operation costs O(N2). (iii) Merge all remaining sets.
Assuming that all sets contain all nodes, and that insertion
into the result set costs O(1), the overall operation costs
again O(N2). Computing the locks can be considered an ex-
pensive operation. In practice, however, we expect a limited
number of dependencies in real applications, hence a limited
number of edges and small intersection sets; moreover, the
sets for each source are computed only when the topology
changes and then reused for the delivery of each message.

4.4 Atomic Consistency
Complete glitch freedom ensures isolation of concurrent
propagations. On top, atomic consistency ensures that any
propagation is seen as an atomic operation by any com-
ponent that observes the values of multiple nodes in the
graph. As for complete glitch freedom, atomic consistency
can be achieved via locking. However, in the case of
atomic consistency, locking involves all nodes affected by
the change of a var var, not only conflicting ones. Thus,
the waitModify() function locks all nodes n such that
var

∗−→ n. A lock is released when all the nodes affected
by a change of var have received and processed the update.
This is achieved by sending an unlock message from each of
these nodes. Also, every access to the value of a set of nodes
needs to be protected, which is modeled with the request
of a read lock in the waitRead() function. In summary,
lock acquisition is necessary for the update process, as well
as for every signal access. As with complete glitch freedom,
total order of messages, achieved with a centralized entity
or with a distributed algorithm, ensures total order of lock
acquisitions and releases.

Cost Analysis
Atomic consistency requires locking all nodes in Nvar be-
fore starting and update propagation from s. Locks are

released when the propagation ends, i.e., all sinks Fs are
updated. The messages required to propagate a change from
s include: (i) the update propagation messages, identical
to the case of single-source and complete glitch freedom;
(ii) one lock request message from the source to the locking
component; (iii) one lock grant message from the locking
component to the source; (iv) one lock release message for
each sinks in Fs. The total number of messages in the case
of atomic consistency is:

msgs = |Es| + 2 + |Fs|
The total communication cost depends on the cost to trans-
fer messages through external links plus the cost clock of
communication with the locking component for lock re-
quests, grants, and releases:

msgs = c · |Ee
s | + clock · (2 + |Fs|)

The overall latency of propagation includes transmitting
the change to all dependent nodes, communicating with
the locking component, and obtaining a lock grant. As for
complete glitch freedom, the latency amounts to:

l = 2 · llock + lgrant +max
f∈Fs

l(s,f)

However, lgrant, i.e., the time to obtain a lock grant, can
be different – typically higher – than in complete glitch
freedom for two reasons. (i) The set of nodes to lock is larger:
for complete glitch freedom, it includes only nodes locks
shared with other sources; in the case of atomic consistency,
it includes all nodes Ns transitively dependent on s. (ii) To
obtain a lock grant, the source competes with other conflict-
ing sources, but also with program threads that acquire a
non-exclusive lock on nodes to read them.

Atomic consistency introduces a cost to access a node,
which involves five steps: 1) submit a read lock request to
the locking component; 2) obtain a lock grant; 3) receive
the lock grant from locking component; 4) read the value;
5) submit a lock release to the locking component. The
communication cost to read a variable includes sending a
lock request, receiving a grant, and sending a release.

cread = 3 · clock
Atomic consistency also introduces a latency when reading
a variable, which includes the latency to send a request, to
obtain a grant, and to receive such grant:

lread = 2 · llock + lgrant

5 DREAM
This section describes DREAM’s API and how DREAM im-
plements consistency. In a nutshell, DREAM provides DRP
with multiple levels of consistency guarantees by relying on
a distributed publish-subscribe infrastructure for efficient
propagation of changes. To the best of our knowledge,
DREAM represents the first work that bridges the gap
between the high-level programming entities studied in
the domain of reactive programming and the propagation
algorithm implemented in event-based middleware.

5.1 The DREAM API
To promote interoperability, DREAM is designed as a Java
library, with vars and signals being Java objects.

5.1.1 Local Dependencies
DREAM defines a generic class Var<T> to represent vars –
time-changing values of type T. Var objects are instantiated
with an initial value and an optional name. The name
identifies the Var in a distributed setting, and must be
unique within the process defining Var.

Var<String> a = new Var<>("aVar", "Dream");
Var<List<Integer>> b = new Var<>("bVar", new ArrayList<>());

Signal<String> c = new Signal<>("cSig",
() −> a.get() + "\t" + b.get().size(), a, b);

a.set("newVal");
b.modify(val −> val.add(10));

System.out.println(c.get());
c.addValueChangeListener(val −> System.out.println("c: " + val));

Listing 2: Definition of Vars and Signals

Listing 2 shows the definition of two vars, a and b, of
type String and List<Integer>, respectively. The initial
value of a is "Dream" and its local unique name is aVar.
The initial value of b is an empty ArrayList and its local
unique name is bVar.

In DREAM, the class Signal<T> defines signals.
Signal objects are instantiated with a Supplier<T> ob-
ject, which implements a get() method returning a T value.
The concrete implementation of get() represents the actual
definition of the signal and contains references to the time-
changing values (vars or signals) the signal depends on. The
Signal constructor receives the list of the objects the signal
depends on, and an optional name. As in the case of vars,
the name needs to be unique within the defining process.

Listing 2 shows the definition of a signal c of type
String. The signal has a name cSig, and depends on the
two vars a and b passed to the constructor. Whenever the
value of a or b changes, DREAM invokes the get() method
of the Supplier object passed as the second parameter of
the constructor using Java 8 lambdas. Within the definition
of the signal, one can refer to the value of the dependent
vars and signals by invoking their get() method. Vars can
be updated in two ways: using the set() method, which
overwrites the value of the encapsulated object, or using
the modify() method, which invokes a function on the
encapsulated object. Listing 2 shows both approaches: it
updates the var awith the new value newVal and it updates
var b adding 10 to the list of integers.

Finally, as shown in the last two lines of Listing 2, devel-
opers can access the value of signals by invoking the get()
method, which returns the current value, or by registering
a ValueChangeListener, which gets notified whenever
a new value is computed. The last line of Listing 2 shows
the definition of a ValueChangeListener that prints the
value of signal c upon changes.

5.1.2 Remote Dependencies
To support distributed scenarios, DREAM provides a
RemoteVar class that enables a Java program to refer to
a time-changing value defined in a separate process.

A RemoteVar behaves as a local proxy for a remote
object. For instance, Listing 3 exemplifies the definition of
a RemoteVar of type String that reflects the value of the

RemoteVar<String> remA = new Var<>("aProc", "aVar");
Signal<Integer> d = new Signal<>("d", () −> remA.get().size(), remA);

Listing 3: Definition of Remote Dependencies

B

B

B

B
B

B

c
c

c c
c

c

c

c cc

CommunicationManager

subscribe notifyadvertise/notify

L

RemoteVar

Signal

Var advertise/notify

register
notify notify

register

register / notify

c
c

Fig. 6: The architecture of DREAM.

var or signal named aVar and defined in the process aProc.
The process name and the var name uniquely identify a
time-changing value – var and signal names are unique
within a process and processes in a distributed application
must have a unique name defined in a configuration file.

RemoteVars can be used to define signals in the same
way as local Vars. DREAM is responsible for updating the
value of each RemoteVar with the value of the correspond-
ing remote var or signal it. For instance, in Listing 3, remA
defines the integer signal d as if remA was a local var.

DREAM offers a DreamClient.listVariables()
static utility method to access the list of all variables defined
within the distributed application.

5.2 Architecture and Algorithms

Fig. 6 shows the high level architecture of DREAM. DREAM
consists of two parts: a client library, adopted by each client
– denoted as c in Fig. 6 – and a distributed event-based
communication infrastructure, consisting of one or more
brokers – B circles in Fig. 6 – connected to form an acyclic
undirected overlay network. The client library is responsible
for propagating changes between local vars and signals, and
to send and receive notifications of changes from remote
clients, via the broker infrastructure. The broker infras-
tructure implements the communication channel between
clients. An optional lock manager – L in Fig. 6 – handles
lock acquisition and release for complete glitch freedom and
atomic consistency.

5.2.1 Client Library

The DREAM client library implements the Var, Signal and
RemoteVar classes – Section 5.1. Fig. 6 (top) shows how
instances of these classes interact with each other and with
the CommunicationManager component that acts as an
interface to the event-based communication infrastructure.

First, we consider the interaction among vars and signals
defined within the same process. When a Signal s is
created, its constructor takes in input a Supplier and the
list of time-changing variables s depends on – Section 5.1.
Time-changing variables are Var, RemoteVar, or Signal
objects.

We use the Observer pattern to update a signal when one
of the variables it depends on changes. In the constructor,
a Signal registers as a listener to the time-changing
variables it depends on. Each time-changing variable stores
a list of registered Signals and notifies them by invoking
the notify method whenever its value changes. Upon
receiving a notification of change, a signal recomputes its
value by invoking the get() method on the Supplier
object received during initialization.

Remote change propagation is implemented us-
ing a publish-subscribe paradigm, offered by the
CommunicationManager component. Remote interac-
tion works in three steps: (i) Var and Signal objects
advertise their existence enabling remote processes to
address them using their unique name and process identi-
fier. (ii) RemoteVars subscribe to remote time-changing
variables addressing them through their unique name and
process identifier. (iii) Vars and Signals publish notifica-
tions of their changes. The communication infrastructure
distributes them to all the subscribed RemoteVars, which
receive them through the CommunicationManager.

5.2.2 Event-Based Infrastructure

The event-based infrastructure is implemented using the
REDS event dispatching system [24], which builds an acyclic
overlay network of brokers connected with each other
through bidirectional TCP links.

Map<Node, List<Subscription>> subTable;

void processAdv(Advertisement adv, Node sender) {
sendToAllNodesExcept(sender, adv);
}
void processSub(Subscription sub, Node sender) {

subTable.add(sub, sender);
forwardTowardsNode(sub.process);
}
void processEvent(Event e, Node sender) {

for (Node n : subTable.keySet()) {
if (!n==sender) {

for (Subscription s : subTable.get(n)) {
if (s.process==e.process && s.name==e.name) {

sendToNode(n, e);
} } } } }

Listing 4: Packets forwarding algorithm in the brokers.

Each client connects to the event-based infrastructure by
establishing a TCP connection with a broker. When a client
advertises a var or signal v, its CommunicationManager
generates an advertisement packet adv containing the name
and process of v and forwards it to its connected broker.

When a broker b receives an advertisement adv, it broad-
casts adv to all clients and brokers connected to b, excluding
the one b is receiving adv from. In this way, advertisements
reach all the processes of the distributed system, both clients
and brokers. The processing of advertisements in brokers is
exemplified by the method processAdv() in Listing 4.

When a client in a process h1 creates a RemoteVar
that subscribes to a remote variable v on a process h2, the
CommunicationManager generates a subscription packet
sub that contains the name and process of the remote vari-
able and forwards it to its connected broker. Subscriptions
are forwarded from broker to broker following the path
that connects h1 to h2. Each broker maintains a subscription
table that maps each connected client or broker n with the
set of subscriptions the broker has received from n. Intu-
itively, these subscriptions indicate the set of variables node
n is interested in. Processing of subscriptions in brokers is
shown in method processSub() in Listing 4.

When a var or signal v in a client c changes, the
ConnectionManager of c generates an event notification
packet e containing the new value of v. Brokers distribute
the event e to all their connected clients and brokers that
expressed an interest in the changes of v through a sub-
scription, that is to say, to all the clients and brokers having
a subscription that refers to v in the subscription table. In
this way, an event e that notifies a c hange t o a v ariable v
is distributed from the producing process to all and only
the processes that contain a RemoteVar that refers to v. The
processing of events at brokers is exemplified by the method
processEvent() in Listing 4.

In DREAM, the communication infrastructure that de-
livers change notifications i s i ndependent f rom t he way
notifications a re p rocessed a t c lients. F or i nstance, the
communication infrastructure can be replaced with remote
method invocations from a time-changing variable to all
RemoteVars that depend on it. Yet, a distributed event-
based infrastructure supporting multicast one-to-many dis-
patching of event notifications reduces network t raffic and
better exploits data locality compared to multiple point-
to-point communications. For example, in a scenario in
which multiple processes located in North America declare
RemoteVars that refer to a var located in Europe. If the
event-based infrastructure includes one broker in Europe
and one broker in North America, every change to the var is
delivered only once from Europe to North America, where
the latter broker dispatches it to all the interested processes.

5.2.3 Ensuring Consistency Guarantees

This section discusses how DREAM implements the consis-
tency guarantees presented in Section 3.4.

FIFO and Causal Consistency

In DREAM, both client-to-broker communication and
broker-to-broker communication are implemented using
point-to-point TCP connections, which provide exactly once
delivery guarantee and FIFO order. To ensure that FIFO
order is preserved between any given pair of clients, pro-
cessing inside each intermediate broker must preserve mes-
sage ordering. Currently, DREAM ensures this property by

processing messages sequentially, in a single thread. Al-
ternative implementations that feature parallel processing
should take care of reordering messages before delivery.

An acyclic topology that preserves end-to-end FIFO or-
dering is sufficient to ensure that messages are delivered in
causal order [22]. Thus, the architecture of DREAM always
ensures both FIFO and causal consistency.

Single-source Glitch Freedom

DREAM implements single-source glitch freedom within
clients, which are responsible for detecting and avoiding
glitches based on the complete knowledge of the depen-
dency graph that they gain through advertisement packets.

The approach follows the abstract algorithm presented in
Section 4. DREAM annotates each event notification e with
unique identifiers of the source and with the change that
triggered e. When a signal receives an event notification
from a source s with change identifier id, it analyzes the
dependency graph to check whether it needs to receive
additional notifications for the same change. In this case, it
stores the event notification in a queue, and processes it only
when all the expected notifications for id are received. Note
that the analysis on the dependency graph is computed
only once, when the dependency graph is created. Hence
the overhead of this step does not impact communication
operations.

Complete Glitch Freedom

In the case of complete glitch freedom, DREAM enforces
ordering constraints using a centralized LockManager pro-
cess, as in the abstract algorithm of Section 4. When a source
s needs to propagate a change, it first analyzes the depen-
dency graph to compute the set of nodes N involved in the
propagation that can conflict with concurrent propagations
from other sources. Then, it contacts the LockManager
to request a lock on all nodes in N . The LockManager
stores lock requests in a queue, until all the requested nodes
become available. At this point, it assigns the lock on N to s
and notifies s with a lock grant packet. After a node n ∈ N
has successfully processed the change notification from s, it
contacts the LockManager to release the lock, thus making
the node available for other sources.

DREAM optimizes this process by recognizing when
the nodes to be locked only depend on sources defined
in a single process. In this case, the locking discipline is
implemented with local Java locks, to avoid the burden of
remote communication with the LockManager.

Atomic Consistency

DREAM implements atomic consistency using the same
locking approach as in complete glitch freedom. Since
atomic consistency needs to ensure total order among both
read and write accesses to time-changing values, the locking
algorithm presents two substantial differences with respect
to complete glitch freedom: (i) A source locks all the nodes
that directly or indirectly depend on it. (ii) Nodes are not
only locked in exclusive mode by propagation processes
that change their value, but also in non exclusive mode by
program threads that want to access their value.

Number of brokers 10
Number of clients 50
Distance between nodes (network hops) 1
Distance to lock manager (network hops) 2
Topology of the network Scale-free
Percentage of pure forwarders 30%
Distribution of clients Uniform
Link latency 1 ms–5 ms
Number of vars (sources) 10
Depth of dependency graphs 5
Number of signals per level (avg) 2
Number of dependencies per signal (avg) 2
Degree of nodes sharing 0.1
Degree of nodes locality 0.5
Frequency of var updates (avg) 0.5 change/s
Frequency of read access to signals (avg) 0.2 read/s
Duration of a read access 100 ms

TABLE 3: Parameters used in the default scenario.

6 PERFORMANCE EVALUATION

Our evaluation assesses the cost of ensuring different lev-
els of consistency guarantees. We evaluate DREAM in a
cloud Amazon EC2 deployment as well as in simulation
for parameter sensitivity. We also compare the propagation
algorithms implemented in DREAM with the state of the
art algorithm SID-UP, used in Distributed REScala [9]. To
the best of our knowledge, SID-UP is the most efficient
algorithm for change propagation: a recent comparison [9]
shows its advantage with respect to the algorithms adopted
in ELM [25], Scala.React [1], and Scala.Rx [26]. SID-UP pro-
vides complete glitch freedom by allowing a single propa-
gation to occur at any moment in time. Conversely, DREAM
support parallel propagation by selectively locking only the
nodes that may lead to conflicts.

The code of DREAM as well as all the datasets used in the
experiments presented in this section is publicly available.1

6.1 Experiment Setup
We compare the cost of propagation for different levels of
consistency, namely causal (causal), single-source glitch
freedom (single), complete glitch freedom (complete),
and atomic. We also consider SID-UP (sid up), which
offers complete glitch freedom. We do not consider FIFO
consistency since DREAM always ensures by design at least
causal consistency and since FIFO consistency does not
differ from causal consistency in terms of network traffic.

We measure network traffic and propagation latency. For
network traffic, we consider both client-broker communica-
tion and broker-broker communication and we measure the
average traffic flowing in the entire network per second. For
the propagation latency we compute the average difference
between the time when an event is produced, i.e., when the
value of a var object v changes, and the time when an event
is processed, i.e., when the notification of the change is used
to update the value of a signal s that depends, directly or
indirectly, on v.

To isolate the cause of the propagation cost, we define
a default scenario with the values in Table 3 and we vary
a single parameter in each experiment. We run the default
scenario both on a real cloud deployment on Amazon EC2

1Url provided for review, it will be updated to a dedicated address in the
final version. https://github.com/allprojects/dream-java

and on a simulated environment based on the Protopeer net-
work emulator [27]. We then use the simulated environment
to perform parameter sensitivity analysis.

Given the unavailability of empirical studies that charac-
terize large production-quality RP programs, our approach
is to start from values in Table 3 that are typical in medium-
scale systems [28] and perform a sensitivity analysis on
these values. Our default scenario consists of 10 brokers con-
nected in a randomly-generated scale-free overlay network
and serving 50 clients. We assume that 30% of the brokers
are pure forwarders – they have no directly connected client.
Clients are uniformly distributed among remaining brokers.

On Amazon EC2, we deploy each broker and the lock
manager on a separate t2.micro instance2, while all clients
run on a t2.2xlarge instance.3 With this approach, we can
precisely measure the propagation delay using the wall
clock time of the instance where the clients run. Brokers are
connected to each other and to clients via TCP connections.

In the simulated environment, we assume that the bro-
kers are directly connected to each other and to their clients
using a single network link. Link latency is uniformly
distributed between 1 ms and 5 ms. Clients can reach the
lock manager within two network hops, on average. We
assume that packet’s processing time is negligible with
respect to link latency4. We consider changes from ten vars
propagating across a dependency graph of depth five, with
an average of two nodes per level. On average, each signal
in a level depends on two nodes of the previous levels.
Given two vars v1 and v2, there is a 0.1 probability that at
least one signal depends on both v1 and v2. More formally,
there is a 0.1 probability that Nv1

⋂
Nv2
6= ∅.

On Amazon EC2, each var and signal is stored on a
separate client. In the simulated environment, to reproduce
different application loads, we introduce a locality parameter
– set to 0.5 in the default scenario – for the probability that
a node n in the propagation graph lays on the same client
as one of the nodes it depends on. On average, vars change
once every two seconds and the value of each signal is ac-
cessed once every five seconds. Access frequency is relevant
for the atomic protocol that requires the acquisition of a
read lock. Each read operation lasts for 100 ms and then the
read lock is released.

Our experiments consist of two phases: (i) clients define
and deploy vars and signals, (ii) the value of each var is re-
peatedly updated, causing a propagation in the dependency
graph. Each experiment lasts 1000 (simulated) seconds. We
measure the average value as well as the 90% confidence
interval of the overall network traffic and propagation la-
tency over ten repetitions using different random seeds in
each repetition to generate the network topology and the
dependency graphs.

Since the paper on SID-UP does not prescribe a specific
communication infrastructure between processes [9], we
adopt the same event dispatching infrastructure used for
DREAM, enabling a fair comparison between the protocols.

2Equipped with 1 core of an Intel Xeon family processor running at up to
3.3 GHz, 1 GB or RAM, 8 GB of disk on an SSD drive.

3Equipped with 8 cores of an Intel Xeon family processor running at up to
3.0 GHz, 32 GB or RAM, 8 GB of disk on an SSD drive.

4This assumption has also been validated in the Amazon EC2 deployment.
Several algorithms have been proposed for efficient event dispatching in bro-
kers [29], [30], [31].

10
-
1

10
0

10
1

10
2

10
3

Ev
.

Ad
v.

Su
bs
.

Re
q.

Gr
an
t

Re
l.

O
v
e
ra
ll
T
ra
ff
c
(K
B
/s
)

Causal
Single

Complete
Atomic

(a) Amazon EC2 deployment

10
-
1

10
0

10
1

10
2

10
3

Ev
.

Ad
v.

Su
bs
.

Re
q.

Gr
an
t

Re
l.

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Causal
Single

Complete
Atomic

Sid Up

(b) Simulation

Fig. 7: Default scenario: overall traffic.

6.2 Experimental Analysis and Results
First we present the results in the default scenario. Then, we
investigate the influence of the parameters in Table 3.

6.2.1 Default Scenario
Fig. 7 shows the average traffic in the default scenario for
various types of packets exchanged. Fig. 7a shows the re-
sults we observed on the Amazon EC2 deployment, Fig. 7b
shows the results we measured in the Protopeer network
emulator. In Protopeer, we also implemented the SID-UP
protocol for comparison. The differences between the traffic
in Amazon EC2 and in Protopeer are due to slightly differ-
ent topologies in the experiments. Despite these differences,
they both confirm the key findings below.

For the advertisement and subscription packets, all the
protocols exhibit the same traffic amount. These packets
are used in the first phase of each experiment to build the
dependency graph. Advertisements announce the definition
of a var or signal, and are broadcast to all the brokers and to
all the clients. Subscriptions define a dependency between
two nodes, and are distributed over the unicast path that
connects the subscribing node to the node it depends on.
Since in the experiments sid up adopts DREAM’s mech-
anism to distribute advertisements and subscriptions, we
observe the same amount of advertisement and subscription
packets.

The traffic of event packets – used to propagate change
notifications – is almost identical for all protocols that
guarantee glitch freedom – single, complete, atomic,
and sid up. The small differences are due to the protocol-
related information carried by event packets, which slightly
changes in size based on the protocol, as we further discuss
in the following. In contrast, the absence of glitch freedom

Amazon EC2 Deployment Simulation
Protocol Avg. latency Avg. latency 90% c.i.
causal 56.7 ms 18.6 ms 1.3 ms
single 55.1 ms 20.6 ms 1.5 ms
complete 65.1 ms 33.8 ms 2.0 ms
atomic 77.5 ms 40.4 ms 1.7 ms
sid up n.a. 41.1 ms 1.9 ms

TABLE 4: Default scenario: average propagation latency.

causes a larger number of events in causal, because events
are replicated when multiple paths converge in one node.

Lock request, lock grant, and lock release packets must
be exchanged to guarantee complete glitch freedom in the
complete, atomic, and sid up protocols. complete and
sid up adopt only exclusive locks, acquired before the
propagation of a change. atomic also exploits non exclusive
read locks to control the read accesses to the value of signals.
This explains the higher traffic of lock request and grant
packets in the atomic case. Such three protocols also differ
in locks release: complete releases the lock on a node n as
soon as n has been updated, sid up and atomic release
the lock only when the entire propagation terminates, i.e.,
when all nodes that directly or indirectly depend on the
source of change have been updated. Complete sends a
separate lock release packet for each locked node. Con-
versely, sid up and atomic send a lock release from each
node that has no outgoing edges. In the default scenario,
the number of nodes to lock surpasses, on average, the
number of nodes with no outgoing edges, motivating the
larger number of lock release packets in complete. The
difference of lock release packets between atomic and sid
up is again explained by the presence of additional read
locks in atomic.

We also evaluated the size of individual packets. In our
default scenario, the average size of events is 0.55 kB in
the case of causal and single, and increases to about
0.7 kB in the case of complete, since events also carry the
identifier of the nodes that need to release the lock after
propagation. The cost of events is affected by the complexity
of the Java objects used in vars and signals and, in the case of
complete, by the number of nodes that need to release the
lock after propagation. Concerning locking, lock grant and
release packets have a fixed size of about 0.17 kB, and lock
requests have a fixed size of about 0.65 kB. Advertisements
and subscriptions are exchanged only when new vars and
signals are defined: the size of the former is about 0.73 kB
and the latter requires 0.56 kB in our default scenario, but it
can change with the number of dependencies encoded into
the subscription.

Table 4 considers the latency between the time when a
change occurs in a var and the time when the change is pro-
cessed in a dependent node. In the simulated environment,
we performed ten executions and we also report the 90%
confidence interval.

In the causal protocol, each node processes event noti-
fications as soon as they are received. causal and single
present the smallest latency among all the considered proto-
cols. The complete, sid up, and atomic protocols exhibit
a significantly larger latency because all of them need to re-
quest and obtain a lock before starting change propagation.

The complete and sid up protocols offer the same
consistency guarantees, yet complete produces a smaller

10
0

10
1

10
2

0 0.2 0.4 0.6 0.8 1

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Degree of locality

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
0

10
1

10
2

10
3

0 0.2 0.4 0.6 0.8 1

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Degree of locality

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 8: Degree of locality.

latency because sid up does not support concurrent prop-
agations, not even across different sets of nodes. For this
reason, a propagation starts only after all the previous ones
have terminated, increasing the overall latency. Conversely,
complete allows concurrent non-conflicting propagations,
reducing the waiting time before lock acquisition, and thus
also reducing the overall latency.

Finally, atomic exhibits larger latency than complete,
since acquiring exclusive locks for change propagation also
conflicts with the non exclusive locks to access signals value.

The larger network latency in the Amazon EC2 deploy-
ment leads to larger propagation times than in the simulated
environment. Nevertheless, the absolute difference between
protocols is comparable in the two scenarios.

6.2.2 Parameter Analysis

Additional experiments performed in the Protopeer net-
work emulator assess the impact of specific factors that
influence performance.

Locality

Fig. 8 shows the effect of changing nodes locality, i.e.,
the probability that a node is on the same process of the
nodes it depends on. Higher locality means that more event
notifications are delivered with local method invocation in-
stead of being dispatched through the brokers network. As
a consequence, upon increasing locality, both propagation
latency (Fig. 8a) and overall traffic (Fig. 8b) decrease.

Similar to the default scenario, the causal and single
protocols exhibit the smallest latency. Since their latency
only depends on the time required for events delivery, they
are highly affected by locality. In the extreme case locality=1,
the latency drops to 0 as events are always delivered via
local method calls. A similar consideration explains the
impact of locality on the overall traffic, which drops by more
than an order of magnitude when locality increases from 0
to 1.

As it does not support concurrent propagations, sid up
also benefits from higher locality. When locality increases,
the propagation latency for each change decreases, hence
waiting time for subsequent changes decreases as well. In
case of a locality=1, the latency of complete and atomic
drops to 0. This result is explained by an optimization
in DREAM: in absence of potential conflicts that involve
multiple processes, DREAM adopts local locking to avoid
expensive communication with the LockManager. sid up

10
1

10
2

10
3

10
4

10
5

10
6

0 20 40 60 80 100

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Number of sources (vars) in the graph

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
1

10
2

10
3

10
4

0 20 40 60 80 100

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Number of sources (vars) in the graph

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 9: Number of Vars.

10
0

10
1

10
2

1 2 3 4 5 6 7 8 9 10

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Depth of the dependency graph

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
-
1

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Depth of the dependency graph

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 10: Depth of the dependency graph.

does not support this optimization and, with high locality, it
exhibits the highest propagation latency and network traffic.

Number of vars
Fig. 9 shows the behavior of the protocols when increasing
the number of vars. A higher number of vars does not
impact on the latency of the protocols implemented in
DREAM (Fig. 9a). Conversely, this scenario shows a major
limitation of sid up: since its locking mechanism does not
allow concurrent propagations of changes from multiple
sources, the lock manager can become a bottleneck, with
more and more lock requests waiting for acceptance.

This issue also has an impact on the overall network
traffic. In the protocols implemented in DREAM, traffic
increases linearly with the number of vars. In sid up,
propagations need to wait for lock acquisition and fewer
events can access the network in a given time window.
Hence locking is a bottleneck for the throughput, which
does not increase with the number of vars.

Depth of the Dependency Graphs
Fig. 10 shows the influence of the depth of each dependency
graph on the latency and traffic. As expected, a larger graph
produces more traffic and leads to a higher propagation
latency. All protocols consistently exhibit the same behavior.

Number of Dependencies per Signal
Next we inspected the effect of the number of dependencies
per signal on propagation latency and on network traffic.
The propagation latency (Fig. 11a) increases for all the
protocols, since more events need to be delivered via the
broker network. A larger number of dependencies also
increases the overhead of single source glitch freedom: each

10
0

10
1

10
2

1 2 3 4 5 6 7 8 9

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Number of dependencies per signal

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Number of dependencies per signal

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 11: Number of dependencies per signal.

10
1

10
2

10
3

0 0.2 0.4 0.6 0.8 1

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Degree of nodes sharing

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
2

10
3

10
4

0 0.2 0.4 0.6 0.8 1

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Degree of nodes sharing

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 12: Degree of nodes sharing.

node waits for an event notification from all the nodes
it depends on before processing any input. As a conse-
quence, the average latency for single increases much
faster than the average latency for causal. Also, increasing
the propagation latency impacts on the waiting time for
lock acquisition. This is especially visible for sid up, which
does not allow concurrent propagations of changes: as the
number of dependencies increases, the latency of sid up
overcomes the latency of atomic. The overall network
traffic (Fig. 11b) increases for all protocols, since more edges
require more event propagations. This factor influences the
causal protocol the most because a higher number of edges
in the graph increases the probability of event duplication.

Degree of Nodes Sharing

Fig. 12 shows how the probability of sharing nodes among
the dependency graphs originating from multiple vars im-
pacts on the cost of the protocols. We control node sharing
by building a separate dependency graph for each var, and
connecting such graphs with varying probability (x axis,
Fig. 12). A connection is established adding two edges that
connect the first graph to the second graph.

Adding new edges impacts both on propagation latency
(Fig. 12a) and on the overall network traffic (Fig. 12b)
for all protocols, as discussed previously. Shared nodes
between sources influence the number of locks acquired in
the complete protocol: in the extreme case of share prob-
ability=1, complete exhibits almost the same latency as
sid up because fewer propagations can occur concurrently.
Similarly, with high probability of node sharing, traffic for
complete increases due to increasing lock request, grant,
and release packets, and becomes similar to the network
traffic of atomic.

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0.1 1 10

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Publication frequency (k events/s)

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
1

10
2

10
3

10
4

0.1 1 10

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Publication frequency (k events/s)

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 13: Frequency of updates.

10
1

10
2

10
3

10
4

10
5

0.1 1

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Signal access frequency (k reads/s)

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
2

10
3

10
4

0.1 1

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Signal access frequency (k reads/s)

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 14: Frequency of read accesses.

Frequency of Updates
Fig. 13 shows the impact of vars change frequency. This
parameter significantly influences the latency for protocols
that exploit node locking: complete, atomic, and sid up
(Fig. 13a). The behavior is similar to the case of increasing
the number of vars. With higher updates frequency, the
locking system becomes a bottleneck: events waiting for
lock grant accumulate, increasing the latency between the
occurrence of a change and its propagation to all dependent
nodes. Again, sid up does not allow concurrent propaga-
tions and suffers the most from high frequency updates.

As expected, the overall traffic increases with the fre-
quency of updates (Fig. 13b) for all the protocols. Interest-
ingly, sid up’s traffic flattens after 1000 events per second
because the protocol reaches its maximum throughput and
event propagation is limited by the locking system.

Frequency of Read Accesses
Fig. 14 shows the effect of changing the frequency of read
accesses to signals. As expected, this parameter influences
only the atomic protocol, which is the only one requiring a
lock acquisition to access a signal value.

Since the acquisition of read locks can conflict with the
acquisition of the exclusive locks that control the propa-
gation of changes, the latency of propagation for atomic
increases with the frequency of read accesses (Fig. 14a). The
overall traffic increases as well (Fig. 14b) since a higher
number of read accesses generates a higher traffic of read
lock request, grant, and release packets.

Number of Brokers
Fig. 15 shows the effect of exploiting a distributed infrastruc-
ture for change propagation. We consider a fixed network

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20

A
v
e
ra
g
e
L
a
te
n
c
y
(m
s
)

Number of brokers

Causal
Single

Complete
Atomic
Sid Up

(a) Latency

10
2

10
3

10
4

0 5 10 15 20

O
v
e
ra
ll
T
ra
ff
c
(k
B
/s
)

Number of brokers

Causal
Single

Complete
Atomic
Sid Up

(b) Traffic

Fig. 15: Number of brokers.

topology with 20 physical hosts (we disregard client hosts),
and we vary the number of brokers deployed on top of this
physical network from one to 20. The case of a single broker
is the centralized scenario: a single component processes
and dispatches all packets exchanged among clients. This
approach reduces the chances of exploiting locality and
forces the delivery of all packets – through multiple physical
hops – to the single broker. As a consequence, the lower the
number of nodes, the higher is the average propagation la-
tency (Fig. 15a) and the overall network traffic (Fig. 15b). In
the case of SID-UP, the increased latency creates a bottleneck
with less than five brokers. Notifications get accumulated,
waiting for dispatching, and limit the maximum throughput
(Fig. 15b) significantly increasing latency (Fig. 15a).

6.3 Summary of the Performance Evaluation
We summarize the results on the cost to ensure different
consistency guarantees with the protocols implemented in
DREAM as follows.

First, the causal protocol propagates changes with the
smallest latency, but it produces a larger traffic compared
to all other protocols, due to possible events duplication.
This means that single source glitch freedom is not only
semantically important [6], but also beneficial for traffic.

Second, introducing order constraints among propaga-
tions that originate in different vars comes at a significant
price for propagation latency and overall network traffic. It
requires distributed consensus on the order of certain mes-
sages, which is implemented in DREAM via a centralized
component, the Lock Manager. In our analysis, the over-
head of such locking mechanism is visible in the complete
and sid up protocols (complete glitch freedom), and in the
atomic protocol (atomic consistency).

Third, DREAM’s locking mechanisms for the complete
and atomic protocols are more efficient than sid up ’s:
sid up locks the entire graph before the propagation,
hence not supporting concurrent propagations from differ-
ent sources. Conversely, DREAM locks at node granularity:
a propagation involving a set of nodes is allowed to take
place if none of them is locked, enabling non-conflicting
concurrent propagations. In some cases, sid up’s traffic
can be smaller than the complete case. This depends on
the shape of the graph, since sid up releases a lock when
the propagation terminates, but complete delivers a lock
release for each locked node n, after its value has been
updated. Such approach, however, enables complete to re-
lease locked resources earlier, achieving higher concurrency.

Finally, atomic consistency introduces a high overhead
both in terms of propagation latency and in terms of
network traffic when the values of signals are accessed
frequently. Indeed, atomic consistency is the only level that
enforces order constraints on read operations.

7 QUALITATIVE EVALUATION

This section evaluates the effect of ensuring multiple levels
of consistency guarantees within a DRP middleware on
development effort and program design.

7.1 Research Questions

First, we assess the flexibility of DREAM in providing mul-
tiple levels of consistency, targeting the research question:
RQ1. What is the advantage of DREAM in terms of devel-
opment effort versus a middleware with a fixed consistency
level?
To this end, we evaluate the effort to manually ensure
adequate consistency guarantees if they are not offered by
the middleware, that is, the burden on the developer in case
she has to manually implement the logic to ensure the right
consistency level for the application at hand.
Second, we assess the advantage of DREAM in terms of
software design compared to a scenario where the consis-
tency guarantees are implemented manually, targeting the
research question:
RQ2. What is the impact of implementing the required con-
sistency guarantees manually on the design of a distributed
reactive application?
The purpose of this research question is also to provide
a qualitative evaluation about the design experience and
effort of developing reactive applications with different
levels of consistency guarantees. In the rest, we describe the
applications that we implemented to answer the research
questions above, and present the results of our evaluation.

7.2 Applications

We implemented each application both by relying on
DREAM and by manually achieving the desired level of
consistency on top of a middleware – a simplified version
of DREAM – that does not offer it.

Distributed Form
In the distributed form application, users access the fields
of a form on a remote server to fill them. Different users
can access different parts of the form. For example, a
secretary can enter the office hours and the management
can change the per-hour salary. Similar to a spreadsheet,
some fields depend on the values entered in other fields
and are automatically updated. For instance, the monthly
employees salary depends on the per-hour salary. Also, an
alert may become active when some values do not meet
the application constraints. For example, if the number of
working hours for an employee is too high.

Single-source glitch freedom is required to avoid spu-
rious recomputations in case a field depends on multiple
other fields, and those depend on a common value.

Management Application
This application consists of three components, C1, C2, C3.
C1 allows managers to enter working tasks. Each task
includes detailed information, such as a description of that
task and its subtasks. C2 assigns tasks to workers based
on schedule optimizations. C3 depends on C1 and C2 and
displays task information and assignments. In this setting,
causal consistency ensures that C3 always displays task
information when an assignment for the task is computed
at C2. It is instead acceptable for C3 to display a task and
its related information even when an assignment is not
available for that task.

Scrum Board
The scrum board is a distributed application for test-
driven development. Each client holds a list of task pairs
(development-task, testing-task). A server keeps track of all
the development tasks and all testing tasks in two separate
signals. User applications can run a query to read the
development tasks and the testing tasks. When queried,
the two signals should be consistent: for each development
task in one signal the corresponding testing task should be
available in the other signal and vice versa.

This behavior requires atomic consistency since each
change must propagate atomically to the two signals stored
in the server.

Chat Application
The chat application is based on a P2P architecture. A server
component is only used for bootstrapping and handles the
list of online users. The application supports chat rooms
with multicast communication: in a chat room each client
writes messages to a var and all other clients hold a signal
that depends on the var. Causal consistency ensures proper
visualization of the messages within a room. For instance,
consider a room with three clients, C1, C2, C3. C1 sends
a message M1: “Hi”. C2 reads M1 and replies with M2:
“Hi back”. Without causal consistency, C3 might receive M2
before M1 and read “Hi back” before “Hi”.

7.3 Design and Development Effort
We analyze the steps that are necessary to implement a
desired level of consistency on top of a middleware that
does not provide that consistency level.

For the distributed form, implementing single-source
glitch freedom includes (i) considering which changes de-
pend on the same input and (ii) temporarily accumulating
changes until all required values become available for the
recomputation.

A possible approach is to collect the values from different
paths from the same input form into queues, and use
them for the recomputation only when all queues contain
at least one value. Such solution requires: (i) Imperative
management of the queues. (ii) Knowledge of the topology
of the dependency graph: if the topology changes, the devel-
oper needs to re-consider the design of the glitch freedom
mechanism and possibly add new queues. (iii) Additional
information attached to the propagated values, to uniquely
identify the node that triggered the propagation and add the
value to the correct queue. (iv) If the middleware does not

guarantee FIFO consistency, values need also be re-ordered
in the queues.

If clients can concurrently access the shared form, com-
plete glitch freedom is needed. This guarantee can be imple-
mented by locking conflicting nodes (Section 3.4.4). If such
feature is not available in the middleware, the developer
needs to either: (i) lock only conflicting nodes manually,
(ii) implement an equivalent protocol to ensure total order
of propagations, or (iii) entirely avoid concurrent propaga-
tions. The first approach require again complete knowledge
of the dependency graph, and leads to a new design in case
of topology changes. The latter two choices might incur in
the same performance issues discussed for SID-UP.

In the management application, manual implementa-
tion of causal consistency presents difficulties similar to
single-source glitch freedom. C3 needs to store changes
from C2 until the corresponding information from C1 is
available. This requires knowledge of the dependency graph
and additional information associated to the propagated
values to uniquely order them and relate them to the node
that triggered the change. A more general solution that does
not require knowledge of the specific topology associates
vector clocks to each propagation of values to capture causal
relations among updates. Finally, since FIFO consistency
is a necessary condition for causal consistency, if the mid-
dleware does not ensure FIFO propagation of updates, the
developer also needs to manually and imperatively re-order
the values received in the queues before using them.

The scrum board application presents similar issues as
those described for the distributed form when it comes to
implement atomicity. Indeed, atomicity requires distributed
consensus on the order of messages to avoid that accesses to
multiple signals interleave with the propagation of changes
from some source.

From the chat application we learn that ensuring causal
consistency for the propagation of updates is not sufficient
to ensure causal consistency at the application level – that is,
between chat messages. Indeed, in the chat application we
use a separate var for each user to represent the list of mes-
sages published by that user. Then, each user displays the
entire chat conversation as a signal that composes messages
from all the users. Unfortunately, causal consistency in the
middleware only targets the propagation of changes from a
single var, and cannot capture the dependency between the
update of such var – publishing a message – and previous
updates of another signal – receiving a message.

There are two solutions to ensure causality of message
delivery: (i) Implement causality on top of the distributed
middleware, e.g., using vector clocks associated to messages
and showing a new message M in the UI only when all
the messages that causally precede M have been received.
(ii) Adopt atomic consistency in the middleware, to guaran-
tee that each propagation process is atomic, meaning that all
users see the same total order of messages within a room.

Finally, we attempt to provide an intuition of the size
of each solution as a measure of development effort. Ta-
ble 5 shows the size of the modules that constitute the
propagation logic of each application (we intentionally omit
the parts that are irrelevant for the analysis, e.g., the GUI)
comparing lines of code for the DREAM implementation
and the case in which the consistency guarantees are im-

DREAM Manual consistency
Distributed Form

Single-source glitch freedom 297 343
Complete glitch freedom 314 607

Management application
Causal consistency 392 519

Scrum Board
Atomic consistency 155 213

Chat application
FIFO consistency 516 798

TABLE 5: Size of the propagation logic in the case studies.

plemented manually. The latter requires significant effort
with an increase in the lines of code that implement the
propagation logic between 15% and 93%.

The considerations above answer research question RQ1
showing that DREAM significantly reduces design and de-
velopment effort compared to a middleware that offers
weak consistency.

7.4 Software Design

Based on our case studies, we now discuss the impact of
DREAM on software design.

Lower the Level of Abstraction

Signals abstract over single changes. For example, from
the value of a signal there is no way to say if it never
changed or if it is the result of switching to a different value
and switching back. In contrast, implementing consistency
guarantees at the application level always requires to reason
about changes and their order. In our case studies, this
involves: (i) Decorating the propagated values with meta-
information, such as the producer of the change. (ii) Tem-
porarily storing propagated values into queues to enforce
ordering relation: this is needed for FIFO, causal, and single-
source glitch freedom. In practice, signals are converted into
discrete events relinquishing the level of abstraction they
provide.

We conclude that a middleware that offers a lower level
of consistency than required by the application often forces
the application code to lower the level of abstraction and
reason about individual changes rather than time-changing
values and their dependencies, which cancels the main
benefit or RP.

Fragile Solutions

Implementing a consistency guarantee at the application
level forces the developer to reason about the individ-
ual changes and the order between them. The knowledge
of the topology of the dependency graph can sometimes
simplify the implementation or make it more efficient: for
instance, only some nodes are affected by single-source
glitch freedom, and complete glitch freedom applies only
when multiple concurrent propagations are allowed. Yet,
solutions based on these assumptions are very fragile. If
more components are added or the structure of the graph
changes, an ad-hoc solution may become unsound.

Lack of Composabilty and Modularity
Implementing ad-hoc solutions that rely on assumptions
on the dependency graph topology also results in a lack
of composability and modularity. The lack of composability
manifests because composing two reactive applications that
individually support a certain level of consistency might
not result in an application that ensures the same level of
consistency. This issue conflicts with one of the main goals
of reactive programming, which is intended to increase com-
posability [16]. Similarly, ad-hoc solutions also conflict with
modularity, since the developer of a component needs to
know the dependencies that exist in the whole application.

Unnecessary Use of State
Implementing causal consistency and glitch freedom when
not natively offered by the middleware requires storing
values before processing them, for instance into queues. This
approach complicates the application because it introduces
mutable state, hence leading to potential synchronization
issues and non-local updates, even when it is not needed
for the functional requirements of the application. Also,
abstraction over state is among the motivations for RP [6],
and reintroducing state because of consistency conflicts with
the adoption of RP in the first place.

The considerations above answer research question RQ2
showing that DREAM improves software design compared
to manually implementing consistency guarantees.

8 ASSUMPTIONS AND DISCUSSION

This section discusses aspects that are orthogonal to the
core contributions of this work and represent assumptions
to it. We discuss their implications and possible research
strategies to tackle these aspects in future research.

Fault-Tolerance
Our work does not consider failures of nodes or links.
Nevertheless, partial failures are a primary challenge in
distributed systems, especially when applications are exe-
cuted on clusters of commodity hardware, as common in
industrial practice today [32].

In the context of DREAM, we distinguish two types
of failures: failures of the nodes and links that form the
communication infrastructure – that is, the brokers of the
distributed event dispatching system and their connections
– and failures of the clients.

Techniques that ensure fault-tolerance and exactly-once
delivery of messages in distributed event-based infrastruc-
tures have been proposed in the early 2000s, for instance
in Hermes [33] and Gryphon [34]. These solutions build on
the concept of soft state, meaning that the internal state of
the brokers – the routing tables – is transient and needs
to be updated with periodic messages. In the presence of
failures, the state expires and triggers a reconfiguration of
the broker topology. These techniques incur low overhead
during the normal activity. They require that messages are
stored at the sources or intermediate brokers and replayed
upon failures. As a consequence, in the presence of failures,
the clients temporarily experience higher latency in message
propagations [34].

In the DRP model, clients store vars and signals and the
updates propagate through the dependency graph. Mod-
ern distributed stream processing systems, that rely on a
similar dataflow m odel, p ropose d ifferent fault-tolerance
mechanisms. For instance Flink adapts and optimizes the
classic distributed snapshot algorithm by Chandy and Lam-
port [35] to its dataflow model [36]. In this approach, special
system messages flow within the same channels as applica-
tion messages and mark the boundaries of global consistent
snapshots. In the case of failures, the last available snapshot
is restored and all subsequent messages are replayed. This
approach requires that the state is persisted on some durable
data store that survives the failure and that the sources can
replay their messages starting from the last snapshot. The
requirement to periodically store the state of a node may
incur some overhead with respect to what we measured in
Section 6.

An additional issue is related to the presence of side ef-
fects. While the fault-tolerance mechanisms discussed above
ensure that the state of the nodes in the dependency graph
is correctly restored, they do not take into account possible
side effects that the propagation of a change might have
triggered. As a consequence, the replay of messages in the
case of failures might trigger the side effect more than once
and lead to undesired program states.

Dynamic Changes

Currently, DREAM assumes that the dependency graph
is fixed a nd d oes n ot c hange o ver t ime. S ince t he pres-
ence of dynamic changes to the dependency graph signif-
icantly complicates enforcing glitch freedom – especially
in presence of concurrent propagation – some languages,
like ELM [25], support only a static graph. Existing lan-
guages that support glitch freedom (e.g., REScala [9] and
Flapjax [37]) forbid concurrent update propagations in the
reactive system. Combining concurrent propagation and
glitch freedom – let alone other consistency guarantees –
is an open research problem. In this work we support
concurrent propagation and leave studying the interaction
of concurrency and consistency levels to future research.

Protocols for Isolation

Complete glitch free and atomic consistency require some
form of isolation between updates that propagate concur-
rently. Although DREAM currently relies on a centralized
lock manager to order concurrent updates, other solutions
are possible.

Two types of protocols exist to ensure isolation. Lock-
based protocols, like the one adopted in DREAM, avoid
conflicts t hrough m utual e xclusions. A d istributed consen-
sus protocol would be a viable alternative to a centralized
lock manager [38]. However, it would require a group
communication between all the nodes, thus making them
more tightly coupled and complicating the configuration
and start-up phase. The second type of protocols are referred
to as optimistic protocols [39]. They do not prevent conflicts,
but detect them, and cancel and restart the computations
involved in the conflict. Optimistic protocols provide better
performance if the conflicts a re r are. H owever i n o ur case,
computations might trigger side effects: in the case of con-

flicts, restarting a computations might trigger the side effects
more than once, leading to incorrect program state.

Integrating Multiple Levels of Consistency
In this paper we do not consider the presence of different
levels of consistency within the same program. We assume
the level of consistency to be a configuration property of the
middleware that all DRP programs running on it inherit.
Supporting multiple levels of consistency within the same
program would require (i) to support multiple consistency
levels in the middleware and (ii) to prevent undesired
interactions between values at different levels in the same
program.

Supporting multiple levels of consistency in disjoint
dependency graphs would be a straightforward extension
to DREAM. Defining the semantics and the propagation
mechanisms in the case multiple levels of consistency can
co-exist in the same dependency graph is an open research
issue.

Preventing undesired interactions between values in the
same program has been explored by Holt et al. [40] who
introduce a typing discipline that statically detects and
prevents wrong combinations of values at different levels
of consistency. Similarly, DCCT is a data-oriented language
that mixes multiple consistency levels [41] where actions
– for example, queries – access a distributed storage, and
annotations define consistency of values. Developing a lan-
guage and system that supports multiple consistency levels
is ongoing work [42].

9 RELATED WORK

Reactive Programming
RP refers to language abstractions to model time-changing
values. It was originally proposed in the context of strictly
functional languages to support interactive animations [43]
in Haskell. Also, this line of work has been strongly influ-
enced by asynchronous dataflow languages like Lustre [44].
Recently, RP has gained increasing attention, and several
implementations have been developed for various program-
ming languages. We report only the most prominent exam-
ples; a complete overview is available in a survey [2].

In the context of functional languages, Fran [43], [45]
and Yampa [46] extend Haskell to express time-varying
values: behaviors, to model continuous values, and events, to
model discrete changes. Similar to DREAM vars and signals,
behaviors are composable and various Haskell operators
have been adapted to work with behaviors (more recently,
support for streams has been also added to Haskell5).
Analogous extensions have been proposed for Scheme (Fr-
Time [16]) and Scala (Scala.React [1] and REScala [17]). Simi-
lar to DREAM, Frappe [47] is a reactive programming library
for Java. It extends the JavaBeans component model [48]
introducing event sources (analogous to DREAM vars) and
behaviors (analogous to DREAM signals).

Salvaneschi and Mezini [49] discuss the integration of
reactive and object-oriented programming. As future work,
we plan to explore this integration in more detail within
DREAM, focusing on solutions for automated tracking of

5https://wiki.haskell.org/Library/Streams

dependencies between method invocations, inheritance, and
strategies to optimize the recomputation of values.

Elliott [45] proposes hybrid push/pull-based propaga-
tion. The former reevaluates a reactive expression as soon
as a change is detected, making the new updated value
always available, as in DREAM. The latter postpones the
evaluation until it is strictly required, potentially reducing
the computational effort. Investigating the benefits of pull-
based propagation in combination with consistency guaran-
tees is also a promising direction for future work.

Ramson and Hirschfeld recently proposed Active Ex-
pressions [50] as a fundamental primitive to implement
different flavours of RP. Other current RP research directions
include debugging [51], [52], [53] and application to new
domains such as IoT/edge computing and autonomous
vehicles [54], [55], [56].

RP was influenced b y o ther p aradigms b ased on
dataflow a nd s ynchronous p ropagation o f c hange. Syn-
chronous programming [57], [58] is one of the earliest ap-
proaches proposed for the development of reactive systems.
It is based on the synchronicity assumption, meaning that
reactions are instantaneous and atomic. This assumption
simplifies t he p rogram, w hich c an b e c ompiled i nto finite-
state automata. Dataflow p rogramming [59] represents en-
tire programs as directed graphs, where nodes represent
computations and arcs are dependencies between them.
ReactiveML [60] is an extension of a strict ML language with
synchronous parallelism to program reactive applications.

Languages for incremental computation [61], [62] allow
programs to efficiently re-execute after a small input change
and share with RP the problem of maintaining dependencies
and propagating updates over the dependency graph.

In contrast to the work presented in this paper, all these
solutions target only the local setting.

Consistency Guarantees
Glitch freedom has been introduced in FrTime [6] and
implemented in most of the approaches for local RP. This pa-
per further distinguishes single-source and complete glitch
freedom and compares the mechanisms to ensure them.
Furthermore, it relates glitch freedom to weaker consistency
guarantees, such as causal consistency, as well as orthogonal
concerns, such as atomicity of propagations.

The most widely adopted glitch free update propagation
algorithm [6], [63], [1], [37] separates the dependency graph
into layers. The source of changes belongs to layer 0 and all
the dependent nodes belong to one layer above their highest
layer incoming dependency. During the propagation, all
dependent nodes are first a dded t o a p riority q ueue, and
then dequeued in layer order to re-compute their value.
Concurrent propagations initiated from different sources
are not allowed. This approach guarantees complete glitch
freedom – the value of a node is re-computed only after all
the nodes it depends on (those that belong to a lower layer)
have been re-computed. Yet it is not suitable for distributed
settings, because it requires a coordination between the
nodes to manage the shared priority queue.

In most RP approaches the evaluation order of the de-
pendency graph is non deterministic. SignalJ [64], a reactive
extension of Java takes a different approach, defining a
precise evaluation oder specified by a formal semantics and

enabling a more precise interaction between imperative and
reactive code.

Scala.Rx [26] does not offer flexible consistency guaran-
tees but it enables the developers to define their own prop-
agation algorithm programmatically. By default, Scala.Rx
ensures glitch freedom by implementing the priority queue
mechanism discussed above, but it also offers a parallel
version that evaluates all the nodes in the same level
concurrently. The mechanisms to ensure single-source and
complete glitch freedom that we propose in this paper and
implement in DREAM offer a higher degree of parallelism,
since they enable nodes at different levels to be evaluated
concurrently.

Elm [25] is an FRP language to design GUIs. It ensures
glitch freedom while enabling for a higher degree of par-
allelism during the propagation. In particular, it relies on a
central coordinator that broadcasts a message to all sources
to start the update process. Each node waits for a message
from all the incoming edges before processing any of them.
While this approach enables multiple concurrent propaga-
tions from different sources, it forces all nodes, including
the ones that are not affected by any change, to propagate
messages to their dependent nodes. Also, the presence of
a central coordinator makes the approach unsuitable for
distributed settings.

Rx [65] is a library originally developed for .NET and
recently ported to various platforms, including Java and
Scala. Rx has received great attention after its adoption in
large-scale projects, including content distribution in the
Netflix streaming media provider. In contrast to most other
approaches to RP, Rx does not provide glitch freedom and
events are propagated as soon as they are processed in a
node of the dependency graph.

Distributed Reactive Programming Frameworks
The need for DRP with consistency guarantees has been
widely recognized in the literature [8], [2], [7], [9] as a way
to deal with the complexity of programming distributed
systems [66]. Nevertheless, only a few frameworks have
addressed the problem of implementing RP abstractions in
distributed settings.

In the context of Web programming, Flapjax [37] has
been proposed as a reactive programming library for
JavaScript. The design of Flapjax is mostly based on FrTime.
Flapjax addresses only client side code in the client-server
model. The server side of the application can potentially be
implemented in a reactive language, but the reactive system
on the client and on the server are not aware of each other.
As a result there is not guarantee of glitch freedom spanning
the whole application [9].

AmbientTalk/R [63] is a reactive extension to Ambi-
entTalk [67], an actor-based language for mobile applica-
tions. Similarly to Flapjax, AmbientTalk/R supports DRP
but does not ensure consistency guarantees or glitch avoid-
ance. Interestingly, this is a design choice: indeed, since
AmbientTalk/R targets mobile peer-to-peer networks where
the network topology changes frequently, the cost to ensure
consistency guarantees can become unfeasibly high.

Distributed REScala [9] was the first framework to en-
sure glitch freedom in distributed settings. Since the authors
of Distributed REScala compare the SID-UP algorithm used

in such framework with Elm, Scala.rx, and Scala.React, we
use SID-UP as a baseline to compare the algorithms we
implemented in DREAM. As shown in Section 6, the main
limitation of SID-UP consists in the impossibility to execute
concurrent propagation processes concurrently. Yet, SID-
UP supports dynamic updates in the dependency graph,
a problem that we plan to address as future work.

Reynders et al. [68] propose a programming model for
Web applications that combines DRP and multitier pro-
gramming, enabling (distributed) signals that belong to the
client and to the server to coexist inside the same compila-
tion unit.

Myter et al. [69] propose a DSL for distributed applica-
tions that combines DRP reactive abstractions and replica-
tion via CRDTs for shared distributed signals. The resulting
DRP framework supports applications that may temporarily
disconnect from the network ensuring eventual consistency
in the value propagation over the dependency graph.

Proença and Baquero [70] provide a formalization of
a DRP language for IoT that guarantees glitch freedom
as well as more relaxed notions like “glitch freedom with
an error margin” and supports decentralized, pipelined [9]
propagation across the dependency graph.

Event-based Systems
Event-based systems [71] define a m odel f or d ealing with
reactive applications that is complementary to the one de-
scribed in this paper. In reactive programming, events –
notifications of changes – are implicit and reactions – recom-
putation of reactive variables – are declaratively specified.
Conversely, in event-based systems events are explicitly
notified using call-back functions and the programmer can
imperatively specify custom reactions.

The problem of efficiently e vent d ispatching i n large
scale distributed systems has received significant attention
in the last decades and led to the development of various
infrastructures for event delivery [72], [73], [74].

DREAM builds on top of the REDS distributed dis-
patching system, which offers a publish-subscribe commu-
nication model [75] to forward events within an overlay
broker network. In this model, clients express interest in
events by subscribing to them and publish events that are
automatically distributed to all the interested subscribers.
The process of associating events to relevant subscriptions is
called matching and is performed based on a type associated
to each events or on the entire event content [75].

In addition to pure event matching and forwarding,
Complex Event Processing (CEP) systems [76], [77], [78] pro-
vide operators for event composition [79], [80]. In particular,
they enable the detection of patterns on the content and time
relations among events. This approach is complementary
to the composition of time-changing values offered in RP.
Our previous work provides a detailed comparison [8].
Consistency – specifically, event ordering – guarantees have
been studied both in the context of publish-subscribe sys-
tems [81] and CEP systems [82]. RP has been used to
design the API of adaptive CEP systems [83], which provide
ways to programmatically configure operator placement at
runtime [84]. Several libraries and language extensions have
been proposed to support events and event composition as
first c lass l anguage c onstructs. T he m ost n otable examples

are C# events, EventJava [85], Ptolemy [86], EScala [87], and
JEScala [88].

Stream Processing Systems

Stream Processing (SP) systems [89] provide processing ab-
stractions to deal with streaming data. The typical process-
ing model adopted in SP was first defined in the Stanford
STREAM system [90]. It comprises stream-to-relation prim-
itives (windows) to isolate relevant portions of a stream, re-
lational operators to operate on the content of each window,
and relation-to-stream operators to convert the result of
processing back into a data stream. For instance, a window
can isolate the last 100 elements in two incoming streams,
a join operator merges the two streams, and a relation-to-
stream operators streams only newly generated data.

Another approach is to specify the processing task as a
graph of operators [91]: each operator consumes the input
streams and produces one or more output streams for other
operators. Operators can be either standard or defined pro-
grammatically. This model shares some similarities with the
dependency graph in RP. However, to the best of our knowl-
edge, consistency guarantees involving glitch freedom and
atomicity have not been addressed in this field.

Concerning ordering guarantees, most SP systems as-
sume that the elements in a stream are always received in
order and comply with the expected semantics only if this
assumption holds. Also, in the case of multiple processing
steps, SP systems often require intermediate operators to
preserve the ordering when they emit new results [90], [91],
[92], [93]. In some cases, SP systems expose the management
of ordering guarantees to the developers, forcing them to
specify when the incoming data can be safely processed
because no more out-of-order information is expected [94].

More recently, several stream processing technologies
have been developed for cluster and Cloud environ-
ments [95], [96] – a field where scalability and fault tolerance
become the key goal. These systems combine task and data
parallelism by deploying different operators on different
processing cores or machines and by splitting the processing
of each stream across multiple operator instances. In this
context, Affetti et al. [97] recently studied the consistency
for accessing and updating the internal state of operators.

10 CONCLUSION

Despite the increasing popularity of RP, precise semantics
of update propagation in distributed settings has received
little attention. In this work, we define the semantics for the
propagation of changes in DRP introducing various levels
of consistency that constrain the order and the visibility of
updates. We propose techniques to ensure such consistency
guarantees and we analytically study their overhead in
terms of network traffic and propagation latency.

We design and implement DREAM, a DRP framework
that supports different consistency levels. Our evaluation
compares the empirical overhead of each level in DREAM
and shows that supporting multiple consistency levels is a
fundamental feature for a DRP framework: Manually im-
plementing a higher level of consistency breaks the design
benefits that make RP desirable in the first place.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their detailed anal-
ysis of the work and their useful suggestions during the
revision process. We also thank Prof. Gianpaolo Cugola for
his comments and insights. They significantly helped us to
improve the quality of the paper. This research has been
partially funded by the European Research Council (grant
No. 321217), by the German Research Foundation (DFG) as
part of project C2 within the Collaborative Research Center
1053 (MAKI), by DFG grant SA 2918/2-1, and by the AWS
Cloud Credits for Research program.

REFERENCES

[1] I. Maier and M. Odersky, “Deprecating the Observer Pattern with
Scala.react,” EPFL, Tech. Rep., 2012.

[2] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter, “A survey on reactive programming,” ACM Comput.
Surv., vol. 45, no. 4, pp. 52:1–52:34, 2013.

[3] R. Johnson, R. Helm, J. Vlissides, and E. Gamma, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] G. Salvaneschi, S. Amann, S. Proksch, and M. Mezini, “An em-
pirical study on program comprehension with reactive program-
ming,” in Proceedings of the International Symposium on Foundations
of Software Engineering, ser. FSE ’14. ACM, 2014, pp. 564–575.

[5] G. Salvaneschi, S. Proksch, S. Amann, S. Nadi, and M. Mezini,
“On the positive effect of reactive programming on software com-
prehension: An empirical study,” IEEE Trans. Softw. Eng., vol. 43,
no. 12, pp. 1125–1143, Dec. 2017.

[6] G. H. Cooper and S. Krishnamurthi, “Embedding dynamic
dataflow in a call-by-value language,” in Proceedings of the Euro-
pean Conference on Programming Languages and Systems, ser. ESOP
’06. Springer-Verlag, 2006, pp. 294–308.

[7] G. Salvaneschi, J. Drechsler, and M. Mezini, “Towards distributed
reactive programming,” in Proceedings of the International Confer-
ence, ser. COORDINATION ’13. Springer-Verlag, 2013, pp. 226–
235.

[8] A. Margara and G. Salvaneschi, “Ways to react: Comparing reac-
tive languages and complex event processing,” in In Proceedings
of the Workshop on Reactivity, Events and Modularity, ser. REM ’13,
2013.

[9] J. Drechsler, G. Salvaneschi, R. Mogk, and M. Mezini, “Distributed
REScala: An update algorithm for distributed reactive program-
ming,” in Proceedings of the International Conference on Object Ori-
ented Programming Systems Languages & Applications, ser. OOPSLA
’14. ACM, 2014, pp. 361–376.

[10] E. Bregu, N. Casamassima, D. Cantoni, L. Mottola, and K. White-
house, “Reactive control of autonomous drones,” in Proceedings of
the 14th Annual International Conference on Mobile Systems, Applica-
tions, and Services, ser. MobiSys ’16. New York, NY, USA: ACM,
2016, pp. 207–219.

[11] A. Margara and G. Salvaneschi, “We have a DREAM: Distributed
reactive programming with consistency guarantees,” in Proceed-
ings of the International Conference on Distributed Event-Based Sys-
tems, ser. DEBS ’14. ACM, 2014, pp. 142–153.

[12] F. Myter, C. Scholliers, and W. De Meuter, “Handling partial
failures in distributed reactive programming,” in Proceedings of the
4th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems, ser. REBLS 2017. New York, NY,
USA: ACM, 2017, pp. 1–7.

[13] R. Mogk, L. Baumgärtner, G. Salvaneschi, B. Freisleben, and
M. Mira, “Fault-tolerant Reactive Programming,” in 32nd Euro-
pean Conference on Object-Oriented Programming (ECOOP 2017),
ser. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2018, pp. 18:1–18:26.

[14] P. Viotti and M. Vukolić, “Consistency in non-transactional dis-
tributed storage systems,” ACM Computing Surveys, vol. 49, no. 1,
pp. 19:1–19:34, 2016.

[15] M. Kleppmann, Designing Data-Intensive Applications. O’Reilly,
2017.

[16] K. Burchett, G. H. Cooper, and S. Krishnamurthi, “Lowering:
A static optimization technique for transparent functional reac-
tivity,” in Proceedings of the Symposium on Partial Evaluation and
Semantics-based Program Manipulation, ser. PEPM ’07. ACM, 2007,
pp. 71–80.

[17] G. Salvaneschi, G. Hintz, and M. Mezini, “REScala: Bridging
between object-oriented and functional style in reactive applica-
tions,” in Proceedings of the International Conference on Modularity,
ser. MODULARITY ’14. ACM, 2014, pp. 25–36.

[18] F. Mattern, “Virtual time and global states of distributed systems,”
in Parallel and Distributed Algorithms, 1989, pp. 215–226.

[19] C. Fidge, “Logical time in distributed computing systems,” Com-
puter, vol. 24, no. 8, pp. 28–33, 1991.

[20] M. Raynal, “About logical clocks for distributed systems,” SIGOPS
Operating System Review, vol. 26, no. 1, pp. 41–48, 1992.

[21] D. Mosberger, “Memory consistency models,” SIGOPS Operating
System Review, vol. 27, no. 1, pp. 18–26, 1993.

[22] X. Jia, “A total ordering multicast protocol using propagation
trees,” IEEE Transactions on Parallel and Distributed Systems, vol. 6,
no. 6, pp. 617–627, 1995.

[23] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 372–421, 2004.

[24] G. Cugola and G. P. Picco, “Reds: A reconfigurable dispatching
system,” in Proceedings of the International Workshop on Software
Engineering and Middleware, ser. SEM ’06. ACM, 2006, pp. 9–16.

[25] E. Czaplicki and S. Chong, “Asynchronous functional reactive pro-
gramming for GUIs,” in Proceedings of the Conference on Program-
ming Language Design and Implementation, ser. PLDI ’13. ACM,
2013, pp. 411–422.

[26] “Scala.rx.” https://github.com/lihaoyi/scala.rx.
[27] W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer, “Protopeer:

From simulation to live deployment in one step,” in Proceedings of
the International Conference on Peer-to-Peer Computing, ser. P2P ’08.
IEEE, 2008, pp. 191–192.

[28] P. R. Pietzuch, “Hermes: A scalable event-based middleware,”
University of Cambridge, Computer Laboratory, Tech. Rep.
UCAM-CL-TR-590, Jun. 2004. [Online]. Available: http://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-590.pdf

[29] A. Margara and G. Cugola, “High performance content-based
matching using GPUs,” in Proceedings of the International Conference
on Distributed Event-based System, ser. DEBS ’11. ACM, 2011, pp.
183–194.

[30] ——, “High-performance publish-subscribe matching using paral-
lel hardware,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 1, pp. 126–135, 2014.

[31] M. Sadoghi, H. Singh, and H.-A. Jacobsen, “Towards highly
parallel event processing through reconfigurable hardware,” in
Proceedings of the International Workshop on Data Management on
New Hardware, ser. DaMoN ’11. ACM, 2011, pp. 27–32.

[32] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[33] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-based
middleware architecture,” in Proceedings of the International Confer-
ence on Distributed Computing Systems, ser. ICDCSW ’02. IEEE,
2002, pp. 611–618.

[34] S. Bhola, R. E. Strom, S. Bagchi, Y. Zhao, and J. S. Auerbach,
“Exactly-once delivery in a content-based publish-subscribe sys-
tem,” in Proceedings of the International Conference on Dependable
Systems and Networks, ser. DSN ’02. IEEE, 2002, pp. 7–16.

[35] K. M. Chandy and L. Lamport, “Distributed snapshots: Deter-
mining global states of distributed systems,” ACM Transactions on
Computer Systems, vol. 3, no. 1, pp. 63–75, 1985.

[36] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas,
“Lightweight asynchronous snapshots for distributed dataflows,”
CoRR, vol. abs/1506.08603, 2015.

[37] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, and S. Krishnamurthi, “Flapjax: A programming
language for Ajax applications,” in Proceedings of the Conference
on Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’09. ACM, 2009, pp. 1–20.

[38] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[39] H. T. Kung and J. T. Robinson, “On optimistic methods for concur-
rency control,” ACM Transactions on Database Systems, vol. 6, no. 2,
pp. 213–226, 1981.

[40] B. Holt, J. Bornholt, I. Zhang, D. Ports, M. Oskin, and L. Ceze,
“Disciplined Inconsistency with Consistency Types,” in Proceed-
ings of the Symposium on Cloud Computing, ser. SoCC ’16. ACM,
2016, pp. 279–293.

[41] N. Zaza and N. Nystrom, “Data-centric Consistency Policies: A
Programming Model for Distributed Applications with Tunable
Consistency,” in Workshop on Programming Models and Languages
for Distributed Computing, ser. PMLDC ’16. ACM, 2016, pp. 3:1–
3:4.

[42] A. Margara and G. Salvaneschi, “Consistency types for safe and
efficient distributed programming,” in Proceedings of the Workshop
on Formal Techniques for Java-like Programs, ser. FTFJP ’17. ACM,
2017, pp. 8:1–8:2.

[43] C. Elliott and P. Hudak, “Functional reactive animation,” in Pro-
ceedings of the International Conference on Functional Programming,
ser. ICFP ’97. ACM, 1997, pp. 263–273.

[44] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language lustre,” Proceedings of
the IEEE, vol. 79, no. 9, pp. 1305–1320, Sep 1991.

[45] C. M. Elliott, “Push-pull functional reactive programming,” in
Proceedings of the Symposium on Haskell, ser. Haskell ’09. ACM,
2009, pp. 25–36.

[46] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson, “Arrows,
robots, and functional reactive programming,” in Advanced Func-
tional Programming, ser. AFP ’03. Springer, 2003.

[47] A. Courtney, “Frappé: Functional reactive programming in Java,”
in Proceedings of the International Symposium on Practical Aspects of
Declarative Languages, ser. PADL ’01. Springer-Verlag, 2001, pp.
29–44.

[48] D. Blevins, “Overview of the enterprise Javabeans component
model,” Component-based Software Engineering, pp. 589–606, 2001.

[49] G. Salvaneschi and M. Mezini, “Reactive behavior in object-
oriented applications: An analysis and a research roadmap,” in
Proceedings of the International Conference on Aspect-oriented Software
Development, ser. AOSD ’13. ACM, 2013, pp. 37–48.

[50] S. Ramson and R. Hirschfeld, “Active expressions: Basic building
blocks for reactive programming,” CoRR, vol. abs/1703.10859,
2017.

[51] G. Salvaneschi and M. Mezini, “Debugging for reactive program-
ming,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16. New York, NY, USA: ACM, 2016, pp.
796–807.

[52] I. Perez and H. Nilsson, “Testing and debugging functional reac-
tive programming,” Proc. ACM Program. Lang., vol. 1, no. ICFP, pp.
2:1–2:27, Aug. 2017.

[53] H. Banken, E. Meijer, and G. Gousios, “Debugging data-flows in
reactive programs,” in Proceedings of the 39th International Confer-
ence on Software Engineering, ser. ICSE ’18. New York, NY, USA:
ACM, 2018.

[54] K. Sawada and T. Watanabe, “Emfrp: A functional reactive pro-
gramming language for small-scale embedded systems,” in Com-
panion Proceedings of the 15th International Conference on Modularity,
ser. MODULARITY Companion 2016. New York, NY, USA: ACM,
2016, pp. 36–44.

[55] B. Finkbeiner, F. Klein, R. Piskac, and M. Santolucito, “Vehicle
platooning simulations with functional reactive programming,”
in Proceedings of the 1st International Workshop on Safe Control of
Connected and Autonomous Vehicles, ser. SCAV’17. New York, NY,
USA: ACM, 2017, pp. 43–47.

[56] B. Calus, B. Reynders, D. Devriese, J. Noorman, and F. Piessens,
“FRP IoT Modules as a Scala DSL,” in Proceedings of the 4th
ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems, ser. REBLS 2017. New York, NY, USA:
ACM, 2017, pp. 15–20.

[57] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guer-
nic, and R. De Simone, “The synchronous languages 12 years
later,” Procs. of the IEEE, vol. 91, no. 1, pp. 64–83, 2003.

[58] F. Sant’Anna, R. Ierusalimschy, and N. Rodriguez, “Structured
synchronous reactive programming with céu,” in Proceedings of
the 14th International Conference on Modularity, ser. MODULARITY
2015. New York, NY, USA: ACM, 2015, pp. 29–40.

[59] P. G. Whiting and R. S. Pascoe, “A history of data-flow languages,”
Annals of the History of Computing, vol. 16, no. 4, pp. 38–59, 1994.

[60] L. Mandel, C. Pasteur, and M. Pouzet, “ReactiveML, ten years
later,” in Proceedings of 17th ACM SIGPLAN International Sym-
posium on Principles and Practice of Declarative Programming
(PPDP’15), Siena, Italy, Jul. 2015.

[61] M. A. Hammer, K. Y. Phang, M. Hicks, and J. S. Foster, “Adap-
ton: Composable, demand-driven incremental computation,” in
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’14. New York, NY,
USA: ACM, 2014, pp. 156–166.

[62] D. C. Harkes, D. M. Groenewegen, and E. Visser, “IceDust: Incre-
mental and Eventual Computation of Derived Values in Persistent
Object Graphs,” in 30th European Conference on Object-Oriented
Programming (ECOOP 2016), ser. Leibniz International Proceedings
in Informatics (LIPIcs), S. Krishnamurthi and B. S. Lerner, Eds.,
vol. 56. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016, pp. 11:1–11:26.

[63] A. L. Carreton, S. Mostinckx, T. Van Cutsem, and W. De Meuter,
“Loosely-coupled distributed reactive programming in mobile ad
hoc networks,” in Proceedings of the International Conference on
Objects, Models, Components, Patterns, ser. TOOLS’10. Springer-
Verlag, 2010, pp. 41–60.

[64] T. Kamina and T. Aotani, “Harmonizing signals and events with a
lightweight extension to java,” The Art, Science, and Engineering of
Programming, vol. 2, 2018.

[65] E. Meijer, “Your mouse is a database,” Queue, vol. 10, no. 3, pp.
20:20–20:33, 2012.

[66] I. Kuraj and A. Solar-Lezama, “Leveraging Sequential Compu-
tation for Programming Efficient and Reliable Distributed Sys-
tems,” in 2nd Summit on Advances in Programming Languages
(SNAPL 2017), ser. Leibniz International Proceedings in Informat-
ics (LIPIcs), B. S. Lerner, R. Bodı́k, and S. Krishnamurthi, Eds.,
vol. 71. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2017, pp. 7:1–7:15.

[67] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and
W. De Meuter, “Ambient-oriented programming in Ambienttalk,”
in Proceedings of the European Conference on Object-Oriented Program-
ming, ser. ECOOP’06. Springer-Verlag, 2006, pp. 230–254.

[68] B. Reynders, D. Devriese, and F. Piessens, “Multi-tier functional
reactive programming for the web,” in Proceedings of the 2014
ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software, ser. Onward! 2014. New
York, NY, USA: ACM, 2014, pp. 55–68.

[69] F. Myter, T. Coppieters, C. Scholliers, and W. De Meuter, “I now
pronounce you reactive and consistent: Handling distributed and
replicated state in reactive programming,” in Proceedings of the 3rd
International Workshop on Reactive and Event-Based Languages and
Systems, ser. REBLS 2016. New York, NY, USA: ACM, 2016, pp.
1–8.

[70] J. Proença and C. Baquero, “Quality-aware reactive programming
for the internet of things,” in Fundamentals of Software Engineering
- 7th International Conference, FSEN 2017, Tehran, Iran, April 26-
28, 2017, Revised Selected Papers, ser. Lecture Notes in Computer
Science, M. Dastani and M. Sirjani, Eds., vol. 10522. Springer,
2017, pp. 180–195.

[71] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Springer, 2006.

[72] P. R. Pietzuch and J. Bacon, “Hermes: A distributed event-based
middleware architecture,” in Proceedings of the International Confer-
ence on Distributed Computing Systems, ser. ICDCSW ’02. IEEE,
2002, pp. 611–618.

[73] E. Fidler, H. A. Jacobsen, G. Li, and S. Mankovski, “The padres
distributed publish/subscribe system,” in Proceedings of the Inter-
national Conference on Feature Interactions in Telecommunications and
Software Systems, ser. FIW ’05, 2005, pp. 12–30.

[74] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann,
“A peer-to-peer approach to content-based publish/subscribe,” in
Proceedings of the International Workshop on Distributed Event-based
Systems, ser. DEBS ’03. ACM, 2003, pp. 1–8.

[75] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35,
no. 2, pp. 114–131, 2003.

[76] G. Cugola and A. Margara, “Processing flows of information:
From data stream to complex event processing,” ACM Comput.
Surv., vol. 44, no. 3, pp. 15:1–15:62, 2012.

[77] D. C. Luckham, The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-Wesley,
2001.

[78] O. Etzion and P. Niblett, Event Processing in Action. Manning
Publications Co., 2010.

[79] P. R. Pietzuch, B. Shand, and J. Bacon, “A framework for event
composition in distributed systems,” in Proceedings of the Interna-

tional Conference on Middleware, ser. Middleware ’03. Springer-
Verlag, 2003, pp. 62–82.

[80] G. Cugola and A. Margara, “Tesla: A formally defined event spec-
ification language,” in Proceedings of the International Conference on
Distributed Event-Based Systems, ser. DEBS ’10. ACM, 2010, pp.
50–61.

[81] K. Zhang, V. Muthusamy, and H.-A. Jacobsen, “Total order in
content-based publish/subscribe systems,” in Proceedings of the In-
ternational Conference on Distributed Computing Systems, ser. ICDCS
’12. IEEE, 2012, pp. 335–344.

[82] R. Barga, J. Goldstein, M. Ali, and M. Hong, “Consistent streaming
through time: A vision for event stream processing,” in Biennial
Conference on Innovative Data Systems Research, ser. CIDR ’07, 2007,
pp. 363–374.

[83] P. Weisenburger, M. Luthra, B. Koldehofe, and G. Salvaneschi,
“Quality-aware runtime adaptation in complex event processing,”
in Proceedings of the 12th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, ser. SEAMS ’17.
Piscataway, NJ, USA: IEEE Press, 2017, pp. 140–151.

[84] M. Luthra, B. Koldehofe, P. Weisenburger, G. Salvaneschi, and
R. Arif, “TCEP: adapting to dynamic user environment by en-
abling transitions between operator placement mechanisms,” in
Proceedings of the 12th ACM International Conference on Distributed
and Event-based Systems, ser. DEBS ’18. New York, NY, USA: ACM,
2018, pp. 378–381.

[85] P. Eugster and K. R. Jayaram, “EventJava: An extension of Java
for event correlation,” in Proceedings of the European Conference on
Object-Oriented Programming, ser. ECOOP ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 570–594.

[86] H. Rajan and G. T. Leavens, “Ptolemy: A language with quantified,
typed events,” in Proceedings of the European Conference on Object-
Oriented Programming, ser. ECOOP ’08. Springer-Verlag, 2008, pp.
155–179.

[87] V. Gasiunas, L. Satabin, M. Mezini, A. Núñez, and J. Noyé,
“EScala: Modular event-driven object interactions in scala,” in
Proceedings of the International Conference on Aspect-oriented Software
Development, ser. AOSD ’11. ACM, 2011, pp. 227–240.

[88] J. M. Van Ham, G. Salvaneschi, M. Mezini, and J. Noyé, “Jescala:
Modular coordination with declarative events and joins,” in Pro-
ceedings of the International Conference on Modularity, ser. MODU-
LARITY ’14. ACM, 2014, pp. 205–216.

[89] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Symposium
on Principles of Database Systems, ser. PODS ’02. ACM, 2002, pp.
1–16.

[90] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nishizawa,
J. Rosenstein, and J. Widom, “Stream: The stanford stream data
manager (demonstration description),” in Proceedings of the Inter-
national Conference on Management of Data, ser. SIGMOD ’03. ACM,
2003, pp. 665–665.

[91] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: A new
model and architecture for data stream management,” The VLDB
Journal, vol. 12, no. 2, pp. 120–139, 2003.

[92] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk, “Gigas-
cope: A stream database for network applications,” in Proceedings
of the International Conference on Management of Data, ser. SIGMOD
’03. ACM, 2003, pp. 647–651.

[93] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and highly-
available stream processing over wide area networks,” in Proceed-
ings of the International Conference on Data Engineering, ser. ICDE
’08. IEEE Computer Society, 2008, pp. 804–813.

[94] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punc-
tuation semantics in continuous data streams,” IEEE Transactions
on Knowledge and Data Engineering, vol. 15, no. 3, pp. 555–568, 2003.

[95] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proceedings of the Conference on Networked Systems
Design and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 2–2.

[96] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a
single engine,” IEEE Data Engineering Bullettin, vol. 38, no. 4, pp.
28–38, 2015.

[97] L. Affetti, A. Margara, and G. Cugola, “Flowdb: Integrating stream
processing and consistent state management,” in Proceedings of the

International Conference on Distributed and Event-based Systems, ser.
DEBS ’17. ACM, 2017, pp. 134–145.

https://www.researchgate.net/publication/324961848

