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WEAKLY COMPLETE COMPLEX SURFACES

SAMUELE MONGODI1, ZBIGNIEW SLODKOWSKI2,
AND GIUSEPPE TOMASSINI3

Abstract. A weakly complete space is a complex space admit-
ting a (smooth) plurisubharmonic exhaustion function. In this pa-
per, we classify those weakly complete complex surfaces for which
such exhaustion function can be chosen real analytic: they can be
modifications of Stein spaces or proper over a non compact (possi-
bly singular) complex curve or foliated with real analytic Levi-flat
hypersurfaces which in turn are foliated by dense complex leaves
(these we call surfaces of Grauert type). In the last case, we also
show that such Levi-flat hypersurfaces are in fact level sets of a
global proper pluriharmonic function, up to passing to a holomor-
phic double cover of the space.

An example of Brunella shows that not every weakly complete
surface can be endowed with a real analytic plurisubharmonic ex-
haustion function.

Our method of proof is based on the careful analysis of the level
sets of the given exhaustion function and their intersections with
the minimal singular set, i.e the set where every plurisubharmonic
exhaustion function has a degenerate Levi form.
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1. Introduction

A weakly complete complex space is a connected complex space X en-
dowed with a smooth plurisubharmonic exhaustion function ϕ.
Weakly complete subdomains of Stein spaces are Stein; complex

spaces which are proper over (i.e. endowed with a proper surjec-
tive holomorphic map onto) a Stein space, e.g. modifications of Stein
spaces, are weakly complete.
More interesting examples of weakly complete complex spaces which

are not Stein are the pseudoconvex subdomains of a complex torus
constructed by Grauert (cfr. [17]).
Let us briefly compare these two classes of examples. In the former,

O(X) 6= C and, if there is a positive dimensional complex space con-
tained in a level set of ϕ, then it is a compact subspace of X . Such
compact subspaces are responsible for the degeneration of the Levi
form of ϕ (or of any other plurisubharmonic function). In the latter,
O(X) = C and there exists a smooth plurisubharmonic exhaustion
function ϕ whose regular level sets are Levi-flat hypersurfaces, foliated
by dense complex leaves (along which the Levi form of ϕ degenerates).
In such a situation X is said to be a surface of Grauert type.
A question naturally arises: are these two phenomena the only pos-

sible for a weakly complete space?
Even if this problem has never been explicitly addressed, we find

some partial results throughout the literature about the various forms
of the Levi problem. For instance, in [19], Ohsawa shows (Proposi-
tion 1.4) that a weakly complete surface (i.e. 2-dimensional complex
manifold) with a non-constant holomorphic function is holomorphically
convex, hence proper on a Stein space, by Remmert’s theorem. Later
on, Diederich and Ohsawa tackle a weak form of the Levi problem for
a domain with real analytic boundary (cfr. [8]). More recently, in [9]
Gilligan, Miebach and Oeljeklaus study the case of a pseudoconvex do-
main of any dimension, spread over a complex homogeneous manifold.
The general problem is already hard for complex surfaces thus, before

studying in complete detail the general weakly complete surface X , it
seems worthwile to analyse the special case of surfaces admitting a real
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analytic plurisubharmonic exhaustion function. In this vein Brunella
(cfr.[3]) constructed an example of weakly complete surface which does
not admit a real analytic plurisubharmonic exhaustion function. In
order to do so, he studied the possible geometries of some special
weakly complete surfaces, namely, those obtained as the complement
of a curve with topologically trivial normal bundle in a compact (al-
gebraic) surface not containing any (−2)-curve (i.e. smooth, rational,
with self-intersection −2). He showed that, in presence of a real ana-
lytic plurisubharmonic exhaustion function, these particular instances
of weakly complete surfaces are either Stein, proper over a Stein space,
or of Grauert type.
In this paper, we prove that this classification holds in general.

Namely, we obtain the following

Structure Theorem. Let X be a weakly complete complex surface,
with a real analytic plurisubharmonic exhaustion function α. Then one
of the following three cases occurs:

i) X is a modification of a Stein space of dimension 2,
ii) X is proper over a (possibly singular) open complex curve,
iii) X is a Grauert type surface.

Moreover, in case iii), either the critical set Crt(α) of α has dimension
≤ 2 and then

iii-a) the absolute minimum set Z of α is a compact complex curve
Z ⊂ X and there exists a proper pluriharmonic function χ :
X \Z → R such that every plurisubharmonic function on X \Z
is of the form λ ◦ χ,

or it is of has dimension 3 and then

iii-b) there exist a double holomorphic covering map π : X∗ → X and
a proper pluriharmonic function χ∗ : X∗ → R such that every
plurisubharmonic function on X∗ is of the form λ ◦ χ∗.

The first part of the Structure Theorem is the content of Theorem 4.4,
the second one of the theorems 5.1 and 6.1.

The method we adopted to tackle the problem consists of a careful
analysis of the structure of the level sets of α and their behaviour
with respect to the minimal singular set. This set was introduced in
[25] for any weakly complete complex space; let us recall its definition.
Given any plurisubharmonic exhaustion function ϕ in X , let Σ1

ϕ be the

minimal closed set such that ϕ is strictly plurisubharmonic on X \Σ1
ϕ,

and set Σ1 = Σ1(X) =
⋂
ϕ

Σ1
ϕ, i.e. x ∈ Σ1 if no plurisubharmonic

exhaustion function is strictly plurisubharmonic near x.
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A plurisubharmonic exhaustion function ϕ is called minimal if Σ1 =
Σ1

ϕ.
The following crucial properties were proved in [25] when X is a

complex manifold:

a) there exist minimal functions ϕ (cfr. [25, Lemma 3.1]);
b) if ϕ is minimal the nonempty level sets Σ1

c = {ϕ = c}∩Σ1 have
the local maximum property (cfr. [25, Theorem 3.6]);

c) if dim
C
X = 2 and c is a regular value of ϕ, then the (nonempty)

level sets Σ1
c are compact sets foliated by Riemann surfaces (cfr.

[25, Lemma 4.1]).

If we restrict ourselves to the real analytic category, while property a)
still holds, the proofs for b) and c) given in [25] do not apply anymore.
However, if X is a weakly complete complex surface, it is possible to
show that b) and c) hold for any plurisubharmonic exhaustion function
and not just for the minimal ones (see Theorem (3.2)).
Thus we are able to link Σ1 to the Levi-flatness of the levels of

α, obtaining the first half of the Structure Theorem, by studying the
complex foliation induced by the degeneracy of the Levi form.
Then, we proceed to construct, for Grauert type surfaces, a proper

pluriharmonic function.
The paper consists of six sections and an appendix.
In Section 2, we present some relevant examples of the more “exotic”

of the three cases, the Grauert type surfaces. Section 3 is devoted to
the study of the regular level sets of α which intersect Σ1. We show
that they are Levi-flat, provided that they do not contain any compact
complex curve, and that the Levi foliation has dense leaves.
The effects of the presence of compact curves is analyzed in Section

4, where, using in a crucial way a theorem of Nishino [18, III.5.B], we
prove the Theorem 4.4, i.e. the first part of the Structure Theorem,
giving the classification of weakly complete surfaces into cases i), ii)
and iii).
The proof of parts iii-a), iii-b) of the Structure Theorem is given in

Sections 5,6 where we are dealing with Grauert type surfaces. Our
goal is to construct a proper pluriharmonic function in the Struc-
ture Theorem. This is done analyzing the cases dimRCrt(α) ≤ 2 and
dimRCrt(α) = 3 separately (see Theorem (5.1) and Theorem 6.1).
The Appendix collects results of various nature which we believe

either known or easy to proof, but for which we were not able to find
appropriate references.

We would like to thank Tadeusz Mostowski for directing us to the
Sullivan’s paper.
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2. Examples

Example 2.1. Let a1, a2 ∈ C with the following properties

0 < |a1| ≤ |a2| < 1, ak1 6= al2

for all (k, l) ∈ N2 r {(0, 0)} and define τ by |a1| = |a2|
τ ; by hypothesis

τ /∈ Q.
Consider on C2 r {(0, 0)} the equivalence relation ∼: (z1, z2) ∼

(a1z1, a2z2). The quotient space C2 r {(0, 0)}/ ∼ is the Hopf mani-
fold H. Let π denote the projection C2 r {(0, 0)} → H. The complex
lines Cz1 = {z2 = 0}, Cz2 = {z1 = 0} project into complex compact
curves C1, C2 respectively. Consider X = H r C2. The function

Φ(z1, z2) =
|z2|

2τ

|z1|2

on C2r{(0, 0)} is ∼-invariant and so defines a function φ : X → R{≥0};
φ is proper and log φ is pluriharmonic on X r C1.The level sets of φ
contained in X rC1 are the projections of the sets |z1| = c|z2|

τ , c > 0,
and so foliated by the projections of the sets z1 = ceiθzτ2 which are
everywhere dense leaves, τ being irrational. Observe that C1 is the
minimum set of φ. In particular, X is a weakly complete surface of
Grauert type and falls into case iii-a.

Example 2.2. With the notation of the previous example, we consider
X1 = H \ (C1 ∪ C2) with plurisubharmonic exhaustion function α =
(logφ)2. X1 is a weakly complete surface, obviously of Grauert type.
Here, however, the plurisubharmonic function α1 has a 3-dimensional
minimum set, namely the quotient of the Levi-flat surface of (C∗)2

given by
H0 = {(z1, z2) ∈ (C∗)2 : |z2|

τ = |z1|} .

The pluriharmonic function on X1 is, obviously, log(φ), i.e. a befitting
choice of the square root of α1. Therefore, X falls into case iii-b.

Example 2.3. Another class of example is provided by total spaces
of some complex line bundles over compact Riemann surfaces (see also
[28]).
Let M be a compact Riemann surface of genus g > 0. It is well

known that every topologically trivial line bundle can be represented
by a flat unimodular cocycle, i.e. an element of H1(M,S1).
Consider a line bundle L→M with trivialization given by the open

covering {Uj}
n
j=1 and transition functions {ξij}i,j which represent a
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cocycle ξ ∈ H1(M,S1). We can define a function α : L → R by
defining it on each trivialization as αj : Uj × C, αj(x, w) = |w|2. As
|ξij| = 1, these functions glue into α : L → R, which is readily seen to
be plurisubharmonic and exhaustive.
Now, consider r > 0 and the section f1 ∈ Γ(U1, ξ) given by f(x) ≡ r

for all x ∈ U1; taking all possible analytic continuations of f1 as a
section of the bundle L, we construct , for every chain {Ujk}k∈N with
j0 = 1 and Ujk ∩Ujk+1

6= ∅, the sections fk ≡ ξjkjk−1
ξjk−1jk−2

· · · ξj1j0r ∈
Γ(Ujk , ξ) . Representing ξ as a multiplicative homomorphism ψξ :
π1(M) → S1, it is easy to see that the graphs of such sections glue
into a compact complex manifold if and only if ψ(π1(M)) is contained
in the roots of unity, i.e. if and only if L⊗n is (analytically) trivial for
some n.
If that is not the case, the graphs of such sections glue into an imbed-

ded, non closed, complex manifold, contained in the Levi-flat hyper-
surface α−1(r2) and dense in it. The other leaves of the Levi foliation
are obtained by the one constructed multiplying it by eiθ.
Finally, we have a pluriharmonic function χ : L \M → R given by

χ(p) = logα(p).
Therefore, if ξ is not unipotent, its total space gives an example

of Grauert type surface for the case iii-a. As with the Hopf surface
example, it is not hard to show that L \M is a Grauert type surface
and falls in case iii-b.

3. Levels and defining functions

3.1. Some preliminary remarks. From now on we suppose that X
is a fixed complex surface that admits a real analytic plurisubharmonic
exhaustion function α.

Proposition 3.1. We can assume α to have the following properties

(1)

{
min
X

α = 0

∂α(p) = 0 if ∂∂̄α(p) = 0.

Proof. It is enough to replace α with (α−min
X

α)2. �

Let us fix some notations. Given a smooth function f : W → R on
a complex surface W let us denote Crt(f) the set of its critical points.
If f is real anlytic Crt(α) is a real analytic set.
As anticipated in Section 1, property b) of minimal functions extends

to arbitrary smooth plurisubharmonic exhaustion functions:
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Theorem 3.2. Let Σ1 be the minimal kernel of X and u : X → R an
arbitrary smooth plurisubharmonic exhaustion function. Then every
non-empty

Σ1
u(c) = {u = c} ∩ Σ1

has the local maximum property.

We first prove the following lemmas

Lemma 3.3. Let Z be a complex manifold, Y1 a closed subset with the
local maximum property and Y0 a closed subset of Y1. Assume that φ :
W → [−∞,+∞) is a plurisubharmonic function φ in (a neighbourhood
of) Y1 such that φ = c on Y0 and φ < c on Y1 \ Y0. Then Y0 has the
local maximum property.

Proof. Should the local maximum property for Y0 fail then, by [24,
Proposition 2.3] there are y ∈ Y0 a coordinate ball B = B(y; r) and a
strongly plurisubharmonic function u on B such that: u(y) = 0 and
u(z) < −ǫ|z − y|2, , if z ∈ B ∩ Y0 \ {y}. In particular, there exist
a neighbourhood V of bB and a positive number ǫ such that u(z) <
−ǫ|z−y0|

2 for z ∈ B∩Y1∩bB. Then for m≫ 0 the plurisubharmonic
function v := u + m(φ − c) satisfies v(y) = 0, v(z) < −ǫ|z − y|2 for
bB ∩ Y1. Therefore, since Y1 has the local maximum property, this
inequality must hold on B ∩ Y1, a contradiction for z = y. �

Lemma 3.4. If ψ : X → R is a smooth plurisubharmonic exhaustion
function, φ : X → R a minimal function and c, d real numbers such
that the set

Y0 =
{
x ∈ X : x ∈ Σ1, ψ(x) = c, φ(x) = d

}

is non-empty. Then Y0 has the local maximum property.

Proof. Assume that v : R2 → R is a smooth, strictly convex function
such that for some numbers K, L the functions vx, vy are positive on
the set {

(x, y) ∈ R2 : x ≥ K, y ≥ L
}

and that minψ > K, minφ > L. Let χ(z) = v
(
ψ(z), φ(z)

)
, z ∈ X .

Then χ is a minimal function. Indeed

ddcχ =

[
vxx vxy
vyx vyy

] [
dφ
dψ

]
∧

[
dcφ
dcψ

]
+ vxdd

cφ+ vydd
cψ

Then ddcχ is strictly positive definite at all points where ddcφ is and
so χ is minimal.
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If K, L are fixed numbers such that minψ > K, minφ > L we can
take v(x, y) = (x − L)2 + (y −K)2. Fix such a v and let χ = v(ψ, φ).
Then χ is minimal. Let now s = v(c, d). Then χ|Y0

= s. Consider

Y1 =
{
z ∈ X : z ∈ Σ1, χ(z) = s

}
.

By [25, Lemma 3.1] Y1 has the local maximum property. Take now a
linear function l : R2 → R which defines the tangent plane to v at the
point (c, d, s) ∈ R3. It has the properties

l(c, d) = s = v(c, d)
l(x, y) < v(x, y) for (x, y) 6= (c, d).

Let η(z) = l
(
ψ(z), φ(z)

)
, z ∈ X . Then η is a minimal function as well

and η|Y0
= s. However, if z ∈ Y1 \ Y0,

(
ψ(z), ψ(z)

)
6= (c, d) and then

η(z) = l
(
ψ(z), ψ(z)

)
< v

(
ψ(z), ψ(z)

)
= χ(z).

So, η is a plurisubharmonic function on Y1, max
Y1

η = s while

{
z ∈ Y1 : η(z) = s

}
= Y0.

Now Lemma 3.3 implies that Y0 is a local maximum set. �

Proof of Theorem 3.2. If φ is a minimal function then ψ := u+φ is also
minimal. Let c, d be real constants. By Lemma 3.4 the following set
{ψ = c+ d} ∩ {φ = d} has the local maximum property if non-empty;
since

{u = c} ∩ {φ = d} ∩ Σ1 =

{ψ = c + d} ∩ {φ = d} ∩ Σ1

it follows that {u = c}∩{φ = d}∩Σ1 has the local maximum property
if non-empty.
But for fixed c

{u = c} ∩ Σ1 =
⋃

d∈R

{u = c} ∩ {φ = d} ∩ Σ1

and so it has the local maximum property as union of sets with the
local maximum property (since it is closed). �

In the sequel, the function α is assumed to satisfy the condition (1).

3.2. Levi flat levels. Let W be a complex surface. In the sequel by
complex curve ofW we mean a purely 1-dimensional immersed complex
space C →֒ W . We observe that a complex curve lying on a smooth
hypersurface of W must be regular (cfr. [25, Proposition 4.2]). If Y is
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the zero set of a smooth function f : W → R or an analytic subset of
W we denote Yreg the regular part of Y , i.e.

Yreg = {z ∈ Y : df(z) 6= 0} .

If Σ1 6= ∅, according to [25, Lemma 4.1], some levels of the minimal
function φ contain complex curves. We can expect that the same is true
for the function α. The results of this subsection go in this direction.

Proposition 3.5. Let X be a complex surface with a real analytic
plurisubharmonic exhaustion function α : X → R and Y a connected
component of a level set {α = c} such that Y ∩ Σ1 6= ∅. Then, for
every point p ∈ Yreg∩Σ1 there exist an open neighbourhood U ⊂ X and
coordinates z, w on U such that U ∼= ∆z ×∆w and

U ∩ Y ∩ Σ1 ∼=
⋃

t∈T

{(z, ft(z)) | z ∈ ∆z}

where each ft : ∆z → ∆w is a holomorphic function.

Proof. The proof repeats verbatim from [25, Lemma 4.1] once we ob-
serve that, by Theorem 3.2, the set Σ1 ∩ Y has the local maximum
property. �

Theorem 3.6. Let X be a complex surface with a real analytic plurisub-
harmonic exhaustion function α : X → R and Y a connected compo-
nent of a level set {α = c} such that Y ∩ Σ1 6= ∅. Assume that Y
contains, at worst, isolated critical points of α and no compact complex
curve. Then

a) Yreg is a real analytic Levi flat hypersurface.

In general, if Y does not contain local minimum points of α and Y ⊂ Σ1

then

∂α ∧ ∂̄α ∧ ∂∂̄α = 0, ∂∂̄α ∧ ∂∂̄α = 0

on X and so

b) Σ1 = X, all non-critical level sets of α are compact Levi flat
hypersurfaces and the regular parts of the critical level sets have
complex foliation.

Proof. Since, by Theorem 3.2, Y ∩ Σ1 6= ∅ has the local maximum
property it cannot have isolated points hence Yreg ∩ Σ1 6= ∅. In view
of Proposition 3.5, every point p of Yreg ∩ Σ1 has a neighbourhood U
in which Y ∩ Σ1 can be expressed as a union of analytic discs:

U ∩ Y ∩ Σ1 ∼=
⋃

t∈T (p)

{(z, ft(z)) | z ∈ ∆z}
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where each ft : ∆z → ∆w is a holomorphic function. Let us first sup-
pose that there is a point p such that T (p) is infinite for a fundamental
system of neighborhoods of p, take U one of such neighborhoods and
let

U ∩ Y ∩ Σ1 ⊃
⋃

n∈N

{(z, fn(z)) | z ∈ ∆z}

with fn : ∆z → ∆w a countable family of holomorphic functions with
disjoint graphs. On every such graph we have that ∂∂̄α degenerates
and, being those graphs integral curves for the kernel of such Levi form,
we actually have that

∂∂̄α ∧ ∂α ∧ ∂̄α = 0

on each of those graphs. By analyticity, ∂∂̄α ∧ ∂α ∧ ∂̄α = 0 on the
whole of Yreg, thus giving a foliation of it in complex curves, hence Levi
flatness.
Suppose, at contrary, that for every point p ∈ Yreg ∩Σ1 there is only

a finite number of those analytic disks composing Yreg ∩Σ1 which pass
through p; then it is not hard to see that, starting from one of such
disks, by analytic continuation, we get a complex curve C embedded
in Yreg. The closure C of C in Y is a compact complex curve: this
is clear if C ⊂ Yreg otherwise we apply Remmert-Stein theorem (cfr.
[16, Chapter VII, Theorem 1]) the critical points in Y being isolated.
Since by hypothesis Y has no compact complex curve the only possible
case is the previous one. This shows part a).
Assume now that Y ⊂ Σ1 does not contain local minimum points

of α. Then, by Theorem 3.2 Y has the local maximum property and
so [25, Theorem 3.9] applies: there is an s < c such that, if K is the
connected component of the set {s ≤ α ≤ c} containing Y , then its
topological boundary bK is contained in {α = s}∪K and furthermore
o

K is nonempty, the forms

• (∂∂̄α) ∧ ∂α ∧ ∂̄α
• (∂∂̄α) ∧ ∂α
• (∂∂̄α) ∧ ∂̄α
• ∂∂̄α ∧ ∂∂̄α

vanish on K r Y . Now K r Y has nonempty interior in X , and so
∂∂̄α∧ ∂α ∧ ∂̄α = 0 in X , by real analyticity. This shows that Σ1 = X .
Levi flatness of the regular parts of levels follows from Proposition

3.5. �

Lemma 3.7. Let Y be a (non necessarily compact) real analytic Levi
flat hypersurface in a complex surface W . Assume that there is a real
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analytic plurisubharmonic function β : V → R on an open neighbour-
hood V of Y , such that {p ∈ V : β(p) = 0} = Y and ∂β(p) 6= 0 for all
p ∈ Y . Then there is an open neighbourhood U of Y , U ⊂ V , and a
pluriharmonic function χ : U → R such that Y = {p ∈ U : χ(p) = 0}
and ∂χ(p) 6= 0 for all p ∈ Y .

Proof. It is well known that a real analytic Levi flat hypersurface M
in a complex manifold admits a real analytic defining function which
is pluriharmonic in a neighborhood of M if and only its Levi foliation
is defined by a nonvanishing real analytic closed 1-form (e.g cfr. [2]).
In our situation since Y is real analytic the foliation of Y extends

holomorphically on a neighbourhood of Y (cfr. [21]): there is an atlas
for a neighbourhood of Y in X , consisting of distinguished coordinate
charts (Uj , zj , wj), p 7→ (zj(p), wj(p)), p ∈ Uj , (zj(p), wj(p)) ∈ Vj×Bj ⊂
C2, Vj, Bj connected, such that

Y ∩ Uj =
{
p ∈ Uj : Imwj(p) = 0

}
.

Denote further uj = Rewj, vj = Imwj. Then uj, vj : Uj → R are
pluriharmonic functions and Uj ∩ Y = {vj = 0}. By this setup and
the assumptions of the Lemma (∂β 6= 0 on Y ) there are real analytic
functions ρj : Uj → R such that: β = vjρj in Uj , ρj |Uj∩Y

> 0.

We draw now some consequences for ρj from the plurisubharmonicity
of β.
By calculations on β, ρj in the local coordinates zj, wj = uj + ivj , we

obtain that at points (z, u, 0) ∈ Uj ∩ Y the Levi form reduces to (we
drop the index j to simplify the notation)

∂∂̄β(z, u, 0) = −
i

2
ρz(z, u, 0)dz ∧ dw̄ +

+
i

2
ρz̄(z, u, 0)dw ∧ dz̄ +

+
i

2
(ρw − ρw̄)(z, u, 0)dw ∧ dw̄.

Since it is positive semidefinite in Uj and the term dz ∧ dz̄ is missing,
we must have

ρz(z, u, 0) = 0 = ρz̄(z, u, 0),

(z, u, 0) ∈ Uj ∩ Y and since Vj , j ∈ I are assumed connected ρj(z, u, 0)
is constant in z. We denote it by ρ∗j (u) = ρj(z, u, 0); ρj : Bj ∩ R → R

is a positive real analytic function.
Since we have

∂β = vρzdz +

(
−
i

2
ρ+ vρw

)
dw,
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we obtain eventually

η := i∂β|Uj∩Y =
1

2
ρ∗j (uj(p))duj(p),

for p ∈ Uj ∩ Y . η is a nonvanishing real analytic closed 1-form which
defines the Levi foliation of Y . This ends the proof of the lemma. �

We conclude this section by showing that, in absence of compact
complex curves, the regular level sets of α intersecting Σ1 are foliated
by dense complex curves.

Corollary 3.8. Let X be a complex surface with a real analytic plurisub-
harmonic exhaustion function α : X → R and Y a connected compo-
nent of the regular level set {α = c} such that Y ∩ Σ1 6= ∅. Assume
that Y does not contain compact complex curves. Then Y is Levi flat,
the leaves of the Levi foliation are dense in Y and Y j Σ1.

Proof. Y is Levi flat in view of Theorem 3.6 so, by Lemma 3.7, there
are a neighbourhood U of Y and a pluriharmonic function χ : U → R

such that {χ = 0} = Y and dχ 6= 0 on Y . The maximal complex
subspace of TpY , for p ∈ Y , is given by ker dχ ∩ ker dcχ; therefore, on
the manifold Y , the foliation induced by Levi flatness is given by the 1-
form dcχ. Such a form is closed, because ddcχ = 0 by pluriharmonicity,
so every leaf of the foliation has trivial holonomy; hence, by a result of
Sacksteder (cfr [4, Notes to Chapter V, (2), p. 109]), the foliation has
no exceptional minimal set then, as there are no compact (i.e. closed)
leaves, all leaves are dense in Y (we refer to [4], in particular to Chap-
ter III, for the relevant definitions and results related to exceptional
minimal sets of foliations).
This easily implies the last part of the statement: let ψ be any

plurisubharmonic function on X and let p0 ∈ Y be such that ψ(p0) =
max
Y

ψ; then ψ is constant on the leaf which passes through p0, but

then, by density, it is constant on Y . Therefore Y j Σ1. �

4. Propagation of compact complex curves

We observe the following fact. If χ : W → R is a nonconstant pluri-
harmonic function on a complex surface W such that the level set
S = {p ∈ W : χ(p) = 0} is nonempty, compact and connected. Then
Y := S ∩ Crt(χ) is a complex, compact analytic subset. Indeed, we
know that Y is a compact real analytic subset. Suppose that it is pos-
itive dimensional at some point x ∈ Y and let B an open ball centered
at x and τ : B → R a pluriharmonic conjugate of χ|B. Since χ|B∩Y = 0
and the points of Y are critical, the function τ is constant on each
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connected component Y0 of B ∩ Y and we may assume τ|Y0
= 0. If

F : B → C denotes the holomorphic function χ + iτ we then have
Y0 = {p ∈ B : ∂F (p) = 0}.

Lemma 4.1. Let χ : W → R be a pluriharmonic function on a complex
surface W with no critical points in W . Assume that W contains a
connected compact complex curve C. Then there exist a neighborhood
V of C and proper holomorphic function G : V → C such that C =
{G = 0}.

Proof. The restriction of χ to C has to be a constant value, say d.
Choose a good covering {Vj}

n
j=1 of C as in Lemma 7.2. Consider

χ
|Vj
, j fixed. Assuming r > 0 small enough so that Vj is contained

in a topological ball in W , we conclude that χ has a pluriharmonic
conjugate in this ball, and so in Vj, say τ

′
j : Vj → R. Since χ

|C
= c, a

constant, we conclude that its harmonic conjugate on C ∩ Vj is locally
constant. Since C ∩ Vj is connected τ ′j |C∩Vj

is constant. Subtracting

the latter constant from τ ′j we obtain a function τj : Vj → R such that

• τj is a pluriharmonic conjugate of χ|Vj
;

• τ|C∩Vj
≡ 0.

Consider now two intersecting neighborhoods Vj, Vk and define V0 :=
Vj ∩ Vk 6= ∅. Since V0 is connected, τj − τk = a constant in V0 and
so τj − τk ≡ 0 in V0, because τj |V0∩C

≡ 0 ≡ τk |V0∩C . (Note that

V0 ∩ C 6= ∅ if V0 6= ∅.) Thus τj(p) = τk(p), whenever p ∈ Vj ∩ Vk.
Consequently, the family {τj}

n
j=1 defines a single-valued pluriharmonic

function τ : V →R, where V =
n⋃

j=1

Vj , such that F (p) = χ(p) + iτ(p),

p ∈ V , is holomorphic.
Therefore, there exists F ∈ O(V ), a non constant holomorphic func-

tion, such that F|C = d. As d is a regular value of χ, C is non singular,
so is a connected component of {F = d}. It follows that there exists
a neighborhood V of C such that {F = d} ∩ V = C and consequently
we set G = F − d. �

Theorem 4.2. Let X be a weakly complete complex surface, W ⊂ X
a domain and χ : W → R be a pluriharmonic function. Suppose that a
regular level of χ contains a compact complex curve Then X is proper
over a (possibly singular) complex curve.

Proof. Without loss of generality, suppose C connected. In view of
Lemma 4.1 there is exist a neighborhood V of C and holomorphic
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function G : V → C such that C = {G = 0}. Then the family
F0 = {G = ζ, |ζ | < ǫ}, for some ǫ > 0, consists of compact complex
curves so, by [18, III.5.B], F0 extends to a family F globally defined on
X by a holomorphic map Φ : X → R, where R is an open Riemann
surface. In particular, X admits a non constant holomorphic function.
In view of [19], X is holomorphically convex hence proper over a Stein
space (cfr. [5]). �

We have the following fundamental corollary

Corollary 4.3. Let X be a complex surface, α a real analytic plurisub-
harmonic exhaustion function, Y a compact connected component of the
regular level set {α = c}. Assume that Y is Levi flat and contains a
non closed leaf. Then there exist a pluriharmonic function χ : V → R

on a connected neighbourhood of Y and ǫ0 > 0 such that

a) V ∩ {α = c} = Y, Y = {χ = 0}
b) the set

H = {p ∈ V : 0 < χ(p) < ǫ0} ,

is relatively compact in V , does not contain a critical point of
α or χ, and does not contain any compact complex curve;

c) if 0 < ǫ < ǫ0, the Levi flat hypersurface {χ = ǫ} is foliated by
dense complex leaves and α is constant on it;

d) ∂∂̄α ∧ ∂∂̄α = 0 and ∂α ∧ ∂̄α ∧ ∂∂̄α = 0 on the whole of X;
e) there is a real analytic function µ : H → R such that

∂∂̄α = µ∂α ∧ ∂̄α and dµ ∧ dα = 0 .

Proof. a) It follows from Lemma 3.7.
b) By hypothesis, α has no singular point on Y , therefore there exists

a neighborhood of it where no other singular points for α appear; on
the other hand, the set Crt(χ) of the critical point of χ has complex
analytic structure so χ is constant on its connected component. This
implies that also χ has no critical point on Y . Therefore, there exists
ǫ0 such that the set H does not contain critical points of either α or χ.
Let us consider the open set

N = {p ∈ V : −ǫ1 < χ(p) < ǫ0}

with ǫ1 so small that no critical point of α or χ is contained in N .
If N \ Y contains a compact complex curve C, then
by Theorem 4.2 X is union of compact complex curves. This is

absurd, as we supposed that Y contained a non-closed complex leaf.
Therefore, H j N \ Y does not contain any compact curve.
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c) Consider the Levi flat level Yǫ = {χ = ǫ}, for 0 < ǫ < ǫ0; by the
previous point, Yǫ does not contain complex curves, so by Corollary
3.8, the leaves of the Levi foliation are dense in Yǫ. Now, let p

∗ ∈ Yǫ be
such that max α|Yǫ

= α(p∗) and consider the leaf F of the Levi foliation
passing through p∗; the function α|F is a plurisubharmonic function
on F , which is a complex immersed curve, attaining maximum in an
interior point, hence it is constant on F . But, F being dense in Yǫ, α
has to be constant on Yǫ.
d) Since Yǫ is a connected component of {α = Aǫ}) and is Levi flat

we have on Yǫ

(2)

{
∂α ∧ ∂̄α ∧ ∂∂̄α = 0

∂∂̄α ∧ ∂∂̄α = 0

But since the connected Levi flat components of level set of α cover
N0, the equations (2) hold on N0, a set with non empty interior. In
view of real analytity of the forms (2) we conclude that the equations(2)
hold on the whole of X .
e) By part c), α is constant on every level set of χ in H , and so there

is a real-valued function ϕ : (0, ǫ0) → R such that α|H = ϕ ◦ χ0. Since
α and χ0 are both real analytic and ∂α, ∂χ0 do not vanish in H by
part b), it is clear that ϕ is real analytic and ϕ′(t) 6= 0 in (0, ǫ0). Now,
by direct computation

∂α ∧ ∂̄α = (ϕ′ ◦ χ0)
2∂χ0 ∧ ∂̄χ0,

in H ,

∂∂̄α = (ϕ′′ ◦ χ0)
2∂χ0 ∧ ∂̄χ0,

in H .
Thus we set µ = (ϕ/ϕ′)2 ◦ χ0, which is constant on the level sets of

χ in H and therefore on those of α|H as well. Then dµ ∧ dα = 0 in
H . �

We conclude this section with a description of the geometric structure
of weakly complete surfaces.

Theorem 4.4. Let X be a weakly complete complex surface and α :
X → R a real analytic plurisubharmonic exhaustion function. Then
three cases can occur:

1) X is a modification of a Stein space;
2) X is proper over a (possibly singular) complex curve;
3) the connected components of the regular levels of α are foliated

with dense complex curves, i.e. X is of Grauert type.
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Proof. Let us suppose that there exists a sequence of real numbers
{cn}n∈N ⊂ R tending to +∞ such that

{α = cn} ∩ Σ1 = ∅ ;

as Σ1 is a closed set and the levels of α are compact, for every n ∈ N

there exists δn > 0 such that for every c ∈ (cn − δn, cn + δn) the
intersection {α = c} ∩ Σ1 is empty.
Let ϕ be a minimal plurisubharmonic smooth exhaustion function

for X ; for every n there is ǫn > 0 small enough such that

{α+ ǫnϕ = cn} ⊂ {cn − δn < α < cn + δn}

and then

{α + ǫnϕ = cn} ∩ Σ1 = ∅ .

The function α + ǫnφ is minimal as well, hence Xn = {α + ǫnφ <
cn} is a relatively compact strictly pseudoconvex domain (which we
can suppose smoothly bounded up to some small perturbation of cn),
hence it is a modification of a Stein surface. Moreover, Xn is Runge
in Xn+1, therefore X itself is holomorphically convex and, possessing a
plurisubharmonic function which is strictly plurisubharmonic at some
point, it has to be a modification of a Stein space as well: this is the
case 1).
If such a sequence does not exist, then there is c0 ∈ R such that for

every c > c0 the intersection {α = c} ∩ Σ1 is not empty.
Suppose that there exists c1 > c0, regular value for α, such that

there is a connected componet Y of {α = c1} which does not contain
compact complex curves and such that Y ∩Σ1 6= ∅; we apply Theorem
3.6, obtaining that Y is Levi flat and by Corollary 4.3, part d), we get
that ∂α∧ ∂̄α∧∂∂̄α = 0 on the whole of X , hence every regular level of
α is Levi flat and by Lemma 3.7 every such level has a neighbourhood
where it is given as the zero of a pluriharmonic function Therefore,
no regular level can contain a compact complex curve, otherwise, by
Theorem 4.2, every level would, so all the regular levels are Levi flat
and containing no complact complex curves, hence by Corollary 4.3
part c), their connected components are foliated with dense complex
leaves. This is case 3)
If every regular level {α = c}, for c > c0, contains a compact complex

curve, then X contains uncountably many compact complex curves; by
[18, Proposition 9 and 7] there exist V a neighbourhood of one of these
curves and f : V → C a holomorphic function which induces on V a
foliation in compact curves. Applying Theorem 4.2 with V = W and
χ = Ref , after shrinking V , if needed, to avoid critical points for f ,
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we conclude that X is proper over a non-compact (possibly singular)
complex curve, which is case 2). �

It is easy to show that in case 1), Σ1 is a (at most) countable union of
compact complex curves (the exceptional divisor of the modification),
whereas in case 2) and 3) it is obvious that Σ1 = X . We note that
we can tell apart these two cases quite easily by looking at global
holomorphic functions: in case 3), O(X) = C, wherease in case 2)
there always exist global non-constant holomorphic functions.

Corollary 4.5. Let X be a weakly complete 2-dimensional normal com-
plex space and α : X → R a real analytic plurisubharmonic exhaustion
function. Then three cases can occur:

1) X is a modification of a Stein space;
2) X is proper over a (possibly singular) complex curve C;
3) X is of Grauert type.

Proof. Desingularize X (cfr. [14]) and apply Theorem 4.4 to the desin-
gularization. �

5. Existence of proper pluriharmonic functions - I

Trough Sections 5, 6 we assume that X is a Grauert type surface, i.e.
X satisfies conditions of case 3) of Theorem 4.4.
We want to prove the following

Theorem 5.1. Let X be a Grauert type surface with a real analytic
plurisubharmonic exhaustion function α. In particular Σ1 = X and

∂α ∧ ∂̄α ∧ ∂∂̄α = ∂∂̄α ∧ ∂∂̄α = 0.

If dimRCrt(α) ≤ 2, let Z be the absolute minimum set of α, then

1) Z is the union of finitely many complex curves;
2) there exists an increasing convex function λ such that χ = λ ◦

(α|X\Z) is pluriharmonic and proper.

From the existence of χ immediately follows that

Corollary 5.2. The function α does not have local minimum points
other then absolute minimum ones. The level sets of α, except absolute
minimum ones, have pure dimension 3.

In the remainder of this section we prove some auxiliary lemmas.

Lemma 5.3. . Let W be a complex surface, and β : W → R a real
analytic function, such that

∂β ∧ ∂̄β ∧ ∂∂̄β = 0, ∂∂̄β ∧ ∂∂̄β = 0
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in W . Then there are a real analytic function µ : W r Crt(β) → R,
such that

∂∂̄β = µ ∂β ∧ ∂̄β

in W r Crt(β).

Proof. Observe that we do not assume that β is plurisubharmonic.
The real-analiticity property of µ is obviuos, once we establish the
elementary fact that for every p such that ∂β(p) 6= 0 there is µ(p) ∈ R

satisfying

∂∂̄β(p) = µ(p)(∂β ∧ ∂̄β)(p).

We sketch the details. Point p is fixed. If z̃, w̃ are any complex local
coordinates near p, the complex Hessian of β can be diagonalized by a
linear change of coordinates z̃, w̃ into some z, w, so that

∂∂̄β(p) = a(dz ∧ dz̄)(p) + c(dw ∧ dw̄)(p),

with a, c are real. We have

0 = (∂∂̄β ∧ ∂∂̄β)(p) = ac(dz ∧ dz̄ ∧ dw ∧ dw̄)(p),

∂β(p) = (rdz + sdw)(p), r, s ∈ C, (r, s) 6= (0, 0),

0 = (∂∂̄β ∧ ∂∂̄β)(p) = (rr̄c+ ss̄a)(dz ∧ dz̄ ∧ dw ∧ dw̄)(p),

so ac = 0 and (rr̄c+ ss̄a) = 0.
If a = 0, b 6= 0 then rr̄c = 0, r = 0. Thus

dβ ∧ dβ̄)(p) = s2(dw ∧ dw̄)(p), s 6= 0,

and so:

(∂∂̄β)(p) = c(dw ∧ dw̄)(p) = µ(dβ ∧ dβ̄)(p)

with µ(p) = c/s2.
The case a 6= 0, c = 0 is completely analogous, with roles of z, w

being interchanged.
If a = c = 0, take µ(p) = 0. �

Lemma 5.4. Let W be a connected complex surface and β : W → R,
µ : W r Crt(β) → R two real analytic functions such that

1) dimRCrt(β) ≤ 2;
2) ∂∂̄β = µ∂β ∧ ∂̄β, on WrCrt(β);
3) dµ ∧ dβ = 0 on W r Crt(β);
4) β(W ) = β(W r Crt(β)).

Then there is a nonconstant pluriharmonic function χ :W → R and a
real analytic function θ : β(W ) → R such that

i) θ′(t) > 0 for t ∈ β(W );
ii) χ = θ ◦ β (and so dχ ∧ dβ = 0 in W );
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iii) any pluriharmonic function χ∗ : W → R such that dχ∗∧dβ = 0
on W , must be of the form χ∗ = cχ + c1, where c, c1 are real
constants.

Proof. The following is well known.
Assertion 1. If dµ ∧ dβ = 0 in W0 = W r Crt(β), then µ is constant

on each connected component of every level set of β.
Assertion 2. If Crt(β) has topological dimension ≤ 2, then there is

a real analytic function m : β(W0) → R such that µ(p) = m(β(p)),
p ∈ W0. If, in addition, β does not have local minimum or local
maximum points inW , then β(W ) = β(W0) and ∂∂̄β = (m◦β)∂β∧ ∂̄β
in W .
Observe first, that sinceW0 does not contain critical points, and since

it is connected due to the fact that dimR (Crt(β)) ≤ 2, β(W0) is an open
(perharps unbounded) interval, say β(W0) = (a, b) ⊆ (−∞,+∞). Fix
a point p0 ∈ W0. Consider the family of open intervals I ⊂ (a, b)
such that there is a real analytic function mI : I → R satisfying
mI ◦ β|WI

= µ|WI
, where WI is the connected open component of

the open set {p ∈ W0 : β(p) ∈ I} that contains p0. It is evident
that for fixed I function mI is unique, and so if I1 ⊂ I2 ⊂ (a, b) then
mI2 |I1

= mI1 . Hence, by Zorn Lemma, there is a maximal interval with
this property, assuming that there is any nonempty interval. Denote it
by I∗(a∗, b∗ and I∗(b∗, b∗) = ∅ where b∗ = β(p0) if no interval I exists.
We claim that (a∗, b∗) = (a, b). Suppose not and assume, without

loss of generality, that b∗ < b. (The case a∗ > a is analogous). (This
also covers the case when a∗ = b∗, I∗ = ∅.) Choose a point p∗ ∈ {β =
b∗} ∩WI ∩W0, in particular p∗ ∈ bW0

WI (the boundary of WI in W0).
In case I∗ = ∅, we choose p∗ = p0.
Since ∂β(p∗) 6= 0, we can select a local (real) coordinate system at

p∗, say (X1(p), X2(p), X3(p), X4(p)) on a neighbourhood N0 such that
X1(p) = β(p) and X1(p

∗) = X2(p
∗) = X3(p

∗) = X4(p
∗) = 0. We can

select an ε > 0 and a smaller neighbourhood N , p∗ ∈ N ⊂ N0, such
that

{(X1(p), X2(p), X3(p), X4(p)) : p ∈ N} = (b∗ − ǫ, b∗ + ǫ)× (−ǫ, ǫ)3.

Since {β = t} ∩ N = {t} × (−ǫ, ǫ)3 is connected, and dµ ∧ dβ = 0,
we obtain by Assertion 1 that µ|{β=t}∩N is constant and so µ|{β=t}∩N =
mǫ(t). Since, in these coordinates mǫ(t) = µ(t, 0, 0, 0), we obtain mǫ is
analytic on (b∗ − ε, b∗ + ε) and mǫ ◦ β|N = µ|N .
In case I∗ = ∅ and a∗ = b∗, p∗ = p0 thus yelds a nonempty interval

I∗ = (b∗ − ǫ, b∗ + ǫ). Since mǫ ◦ β = µ on N , and µǫ ◦ β, µ are
analytic functions, the identity must hold on W(b∗−ǫ,b∗+ǫ) as well. In
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case a∗ < b∗ we obtain mI ∩ N = (b∗ − ǫ, b∗ + ǫ) × (−ǫ, ǫ)3 (using
the local coordinate system), and so mI(t) = µ(t, 0, 0, 0) = mǫ(t) for
t ∈ I∗∩(b∗−ǫ, b∗+ǫ) = (b∗−ǫ, b∗). ThusmI∗ andmǫ define consistently
a real analytic function, call it mI1 : I1 → R, where I1 = (a∗, b∗ + ǫ).
Since mI1 ◦ β|WI

= µ|WI
, and both mI1 and µ are defined and real

analytic in WI1, that contains WI , we obtain mI1 ◦ β = µ in WI1 .
We conclude that I∗ = (a, b). Since W(a,b) =W0, we have µ = m ◦ β

in W0, the first of the Assertion 2.
Furthermore, if β(W ) = β(W0), m ◦ β is defined and real analytic in

W , and since ∂∂̄β = (m ◦β)∂β ∧ ∂̄β in W0 as already shown, the same
identity must hold in W (just by continuity).
This completes the proof of Assertion 2.
By Assertion 2, any (pluriharmonic) function χ∗ : W → R such

that dχ∗ ∧ dβ = 0 in W must be of the form χ∗ = θ1 ◦ β, θ1 real
analytic on β(W ). We look now for a condition for θ1 so that θ1 ◦ β be
pluriharmonic.

0 = ∂∂̄(θ1 ◦ β) = (θ′′1 ◦ β)∂β ∧ ∂̄β + (θ′1 ◦ β)∂ ∧ ∂̄β =

= (θ′′1 ◦ β)∂β ∧ ∂̄β + (θ′1 ◦ β)∂ ∧ ∂̄β

i.e. [(θ′′1 ◦ β)(p) + (m ◦ β)(p)θ′1(β(p))] (∂β ∧ ∂̄β)(p) = 0.
Since (∂β)(p) 6= 0 for p ∈ W rCrt(β) =W0, we obtain the condition

for t = β(p),

(3) θ′′1(t) +m(t)θ′1(t) = 0 .

Since
{t = β(p), p ∈ W r Crt(β)} = β(W ) = (a, b)

we have to solve (3) on (a, b). Applying standard techniques we obtain,
fixing a point t0 ∈ (a, b)

θ1(t) = c

∫ t

t0

exp

(
−

∫ τ

t0

m(σ) dσ

)
+ c1.

Choosing as θ solution with c = 1 and c1 = 0 we have evidently θ′(t) > 0
on (a, b), χ = θ ◦β satisfies dχ∧ dβ = 0 and is pluriharmonic, and any
other pluriharmonic solution χ∗ satisfying dχ∗ ∧ dβ = 0, is equal to

χ∗ = θ1 ◦ β = (cθ + c1) ◦ β = cχ+ c1,

as required. �

Lemma 5.5. Let X be a complex surface, α a real analytic plurisub-
harmonic exhaustion function. Let U ⊂ X be a domain such that
dimR Crt(α) ∩ U ≤ 2. If α|U has an absolute minimum value A0, let
Z0 = {p ∈ U : α(p) = A0} (otherwise Z0 = ∅), then

i) α does not have local minimum points on U \ Z0;
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ii) there is a proper pluriharmonic function χ : U r Z0 → R such
that α = λ ◦ χ for some increasing convex function λ;

iii) if Z0 6= ∅

lim
U∋p→Z0

χ(p) = −∞.

Proof. Let W = U \ Z0 and W0 = U \ Crt(α). Of course dimR Z0 ≤ 2
and Z0is real analytic. Thus, U being connected and dimR U = 4, Z0

cannot separate U and Crt(α) cannot separate W , so W and and W0

are connected; it follows that

(4) α(W0) = α(W ) = (A0, A
∗) where A∗ ≤ +∞ .

(Indeed, the only possible values in α(W ) r α(W0) could be one of
the local minimum values but since α(W0) is a connected interval and
inf α(W0) = inf α(W ) = A0, we have equality.)
Let Y be a connected component of {α = c} intersecting Σ1. In

view of Theorem 3.6 Y is Levi flat so, by Lemma 3.7, it is the zero set
of a pluriharmonic function near Y so the fundamental Corollary 4.3
applies. Then, saving the same notations V ⊃ Y , χ : V → R, N ⊂ V ,
by part d)

∂∂̄α ∧ ∂∂̄α = 0, ∂α ∧ ∂̄α ∧ ∂∂̄α = 0

and hence, by Lemma 5.3 there is a real analytic function µ : W0 → R

such that

(5) ∂∂̄α = µ∂α ∧ ∂̄α .

By part e) of Corollary 4.3, dµ ∧ dα = 0 in N . But then by real
analyticity,

(6) dµ ∧ dα = 0 in X \ Crt(α) .

In view of (4), (5), (6), function α and sets W , W0 satsfy all the
conditions of Lemma 5.4 with β = α and so there exist real analytic
functions θ : (A0, A

∗) → R, such that θ′(t) > 0, for all t, χ = θ ◦ α :
W → R is pluriharmonic, i.e. χ = θ ◦ α : W → R.
Let now λ = θ−1 : χ(W ) → R. Of course, λ is real analytic, λ′(t) >

0 and α = λ ◦ χ in W . Since ∂∂̄α = (λ′′ ◦ χ0)∂χ ∧ ∂̄χ, and α is
plurisubharmonic, λ′′ ≥ 0, i.e. λ is convex.This shows ii).
Observe now that, since χ is pluriharmonic on W (by definition), χ

does not have any local minimum points in W , and since α = λ ◦ χ,
λ strictly increasing, also α cannot have any local minimum points in
W .
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The set χ(W ) is an open interval, say χ(W ) = (c0, c
∗), with c0 ≥

−∞, c∗ ≤ +∞. Since α(p) → 0 as p→ Z0, and χ = θ ◦ α, we obtain

(7) lim
p→Z0

χ(p) = c0 .

We prove now that c0 = −∞. Suppose , to the contrary, that c0 > −∞;
we will show that Z0 is empty. Consider any regular point p ∈ Z0 and
its neighbourhood V with complex coordinates z, w. Without loss of
generality, V ⊂ C2. Then p is either an isolated point, or Tp(Z0), the
tangent space, is a line or a plane in C2. Whatever of these three cases
may be, there is a complex line L through p transversal to Tp(Z0),
hence p is an isolated point of L∩Z0 ∩V . The pluriharmonic function
χ restricted to L ∩ Z0 ∩ V is a bounded harmonic function with as
its isolated singular point and so extends to a harmonic function χ̃ :
L∩{|(z, w)−p|2 < δ} → R,which must have value c0 at p, by (7), and so
a strict minimum there (as p is an isolated point of Z0 = {α = minα}).
This is a contradiction. Thus c0 = −∞, which proves iii). �

Proof of Theorem 5.1. The existence of χ follows from Lemma 5.5 ap-
plied to U = X . The absolute minimum set Z of α is a compact
complex pluripolar set in X defined by the plurisubharmonic function

ψ(p) =

{
χ(p) if x ∈ X r Z

−∞ if p ∈ Z.

(i.e. Z = {ψ = −∞}). Since, in addition, Z is compact and real
analytic from Lemma 7.7 (see Appendix), it follows that Z is the union
of finitely many compact complex curves. Theorem 5.1 is completely
proved. �

6. Existence of proper pluriharmonic functions - II

In this section, we prove the last part of the Structure Theorem, namely
the following

Theorem 6.1. Let X be a Grauert type surface and α : X → R a
real analytic plurisubharmonic exhaustion. Assume that dimRCrt(α) =
3.Then either there is a proper pluriharmonic function χ : X → R, or
there is a double holomorphic covering map π : X∗ → X and a proper
pluriharmonic function χ∗ : X∗ → R.

In order to present the proof of this result, we need a careful anal-
ysis of the critical level sets of α, to which is devoted the reminder of
this section. All the results before the proof of Theorem 6.1 assume
implicitly its hypotheses.
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6.1. Geometrical structure of the set of critical points of α. The
critical set Crt(α) is a real-analytic subset of X , and so, its regular part
is dense in it ([16]). The regular part is the union of (at most) countably
many pairwise disjoint locally closed real-analytic submanifols of X .
Denote by {M i}i∈I the collection of 3-dimensional components of

the regular part of Crt(α) and, for each i ∈ I, let Ai ∈ R be the value
of α on M i; we set

M̃ =
⋃

i∈I

M
i
.

Since we assume that dimRCrt(α) = 3, M̃ 6= ∅.

Proposition 6.2. Let U be a connected component of X \ M̃ , then

1) U is open
2) if M i ∩ bU 6= ∅, then M i j bU
3) α|bU is constant and equal to minU α.

Proof. We note that, α being proper, {M
i
}i∈I is a locally finite family

of compact sets, hence their union M̃ is a closed subset of X . Thus 1)
follows.
To prove 2), we remark that each M i is relatively open in Crt(α),

so M i ∩M
j
= ∅ whenever i 6= j; moreover, for each i ∈ I, there exists

an open set V i j X such that M̃ ∩ V i =M i and V i \M i has at most
2 connected components. Up to shrinking the open sets V i, we can
assume that V i ∩ V j = ∅ if i 6= j; therefore

V i ∩ M̃ =M i and V i \M i j X \ M̃ .

If, for some i, M i ∩ bU 6= ∅, then V i ∩ U 6= ∅; therefore there exists a
connected component V i

+ of V i \M i which is contained, by connected-

ness, in U . Since the boundary of V i
+ contains M i, M i j U .

We now show 3). Let
A = min

U
α .

Now, suppose that there exists a face M i of U such that Ai > A. By
Theorem 5.5, there exsits a real-analytic concave function θ : (A,A∗) →
R, with A∗ = supU α ∈ (A,+∞], such that χ := θ ◦ (α|U\Min(α)) is a
pluriharmonic function in U \Min(α).
By the previous part of this proof, at least one component V i

+ of
V i\M i intersects U ; let H be a connected component of V i

+\{α = Ai}.

If α|H < Ai, by Hopf Lemma [25, Lemma 3.8], bH ∩ M̃ = ∅, but this
cannot happen for all the connected components of V i

+ \ {α = Ai}, as
bV i

+ ∩M i 6= ∅. Therefore we have that α|H > Ai for some H , hence
A∗ > Ai.
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Let c = θ(Ai), then χ|V i
+
> c and χ|M i = c. By Lemma 7.6, there

exist a domain Ṽ ⊇ V i
+ ∪M i and a pluriharmonic function χ̃ : Ṽ → R

extending χ. We can assume, without loss of generality, that Ṽ is a
connected open subset of {x ∈ X α(x) > A}

Consider now the function α̃ = θ−1 ◦ χ̃ : Ṽ → R; such a function
is real-analytic and coincides with α on the non-empty open set V i

+,

therefore they are equal on Ṽ , by connectedness.
Since χ|V i

+
> c, dχ̃(x) 6= 0 for x ∈M i, but then

dα(x) = (θ−1)′(x)dχ̃(x) 6= 0 ,

as θ−1 is increasing.
This contraddicts the fact that M i j Crt(α). Therefore, Ai = A.

�

We call any connected component U of X \ M̃ a cell, and any M i a
face. IfM i ⊂ U , we callM i a face of U . To every face M i we associate
an open neighbourhood V i, as described in the proof of Proposition
6.2.
We note that, for every cell U , Ū ∩ M̃ 6= ∅, otherwise U = U , i.e.

U = X by connectedness.
If M i is a face of U and V i \M i j U , we call M i an internal face of

U and set
W i = U ∪M i .

Such W i is again an open set, as W i = U ∪ V i, and it is uniquely
determined by M i, as V i \M i can be contained in a unique cell.
On the other hand, if V i \M i = V i

+ ∪V i
− and V i

+ j U , V i
− j U ′ with

U 6= U ′, we say that M i is a connecting face between U and U ′ and we
set

W i = U ∪M i ∪ U ′ .

Again, W i = U ∪ V i ∪ U ′, so it is an open set and it is uniquely
determined by M i.

Theorem 6.3. M̃ = {x ∈ X : α(x) = minX α}

Proof. By part 3) of Proposition 6.2, α is constant on bU for every cell
U .
Let Ā be the smallest element of the set {Ai}i∈I . By properness,

there is a finite number of faces contained in {α = Ā}; let us change
the indexing so that these faces are M1, . . . ,MN .
We set

W =
⋃

i∈I

W i = X \
⋃

i∈I

(
M

i
\M i

)
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and we remark that, being the family of compact sets {M
i
\M i}i∈I

locally finite, W is open in X and, as dim(M
i
\M i) ≤ 2 (as a semi-

analytic set), W is also connected.
We can also write

W =
⋃

i∈I

M i ∪ (X \ M̃) .

Now, define H jW as

H := W 1 ∪ . . . ∪WN .

It is clear that H is open in W ; moreover,

H = (M1 ∪ . . . ∪MN ) ∪H0

where H0 is a union of finitely many cells U , all such that α|bU = Ā.
Obviously, the relative boundary of such a cell U in W is contained

inM1∪. . .∪MN and the closure of H0 inW is H . Therefore, H is both
closed and open in W and, since W is connected, H = W . Therefore,
α|M i = Ā for every i ∈ I; by continuity we have that α is constant on

M̃ .
Now, let U be a cell. Suppose {α = A} intersects U , and let Y

be a connected component of {α = A} such that Y ∩ U 6= ∅. Since
Y ⊂ Crt(α) and dimR(Y \

⋃
iM

i) ≤ 2, we have dimR Y ∩ U ≤ 2.
Applying Lemma 5.5 to the domain U , we obtain the existence of a
pluriharmonic function χ : U \ Y → R, of the form χ = λ ◦ (α|U\Y ),
with λ an increasing convex function, such that

lim
x→U∩Y

χ(x) = −∞ .

In particular

(8) lim
t→A

+
λ(t) = −∞ .

LetM be a face adiacent to U and q ∈M a point. Choose a connected
open neighborhood H of q such that H \M has two connected com-
ponents, at least one of them, denoted by H+, contained in U . Define
now function χ1 : H → [−∞,+∞) by

χ1(x) =

{
χ(x) x ∈ H+

−∞ x ∈ H \H+ .

Then

lim
H∋x→M∩H

χ1(x) = lim
H∋x→M∩H

λ ◦ α(x) = lim
t→A

+
λ(t) = −∞ ,

by (8). Thus χ1 is plurisubharmonic in H and equal to −∞ in H \H+,
a set with non-empty interior, which is a contradiction.
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Therefore {α = A} ∩ U = ∅. �

We immediately obtain the following

Corollary 6.4. There are only finitely many faces and finitely many
cells.

Proof. The faces are the 3-dimensional components of the regular part
of α−1(Ā), which are finitely many, as α is proper. Moreover, every face
may belong to at most two cells, so also the cells are finitely many. �

6.2. Construction of pluriharmonic functions on W . Without

loss of generality, we suppose that the value of α on M̃ is 0. Let U be
a cell. Due to the standing assumptions, ∂α ∧ ∂̄α∧ ∂∂̄α = 0 in U , and
so, by Lemma 5.3 there is a real analytic function µ1 : U \Crt(α) → R

such that ∂∂̄α = µ1∂α∧ ∂̄α in U \Crt(α). Clearly, part e) of Corollary
4.3 applies in the present situation so: dµ1 ∧ dα = 0 in U \ Crt(α).

Proposition 6.5. Let M i be a face of the cell U and consider, for
a point p ∈ M i, a neighbourhood Vp containing p such that Vp \M

i

has exactly two connected components, denoted by V +
p and V −

p . Then
there exist an integer k, a pluriharmonic function χ̃ : Vp → R and a
real-analytic, strictly increasing function λ : χ̃(Vp) → R such that

α(x) = (λ ◦ χ̃(x))2k

for every x ∈ Vp.

Proof. Set Mp = Vp ∩M . By Proposition 7.3, there exists k ∈ N such
that α is flat of order 2k − 1 on Mp \ Tp where Tp is a real analytic
subset of Mp, dimTp ≤ 2. By Proposition 7.4, the function

β(x) =





0 if x ∈Mp \ Tp
α(x)1/2k if x ∈ V +

p

−α(x)1/2k if x ∈ V −
p

is a real analytic function on Vp \Tp, without critical points onMp \Tp;
on Vp \ Mp, the critical points of β are the same as those of α, so
dim(Crt(β)) ≤ 2.
Let Wp = Vp \ Tp; since β = ±α1/2k outside Mp, direct computation

shows that ∂β ∧ ∂̄β ∧ ∂∂̄β = 0 and ∂∂̄β ∧ ∂∂̄β = 0 on V +
p ∪ V −

p and
hence, by analyticity, on Wp. By Lemma 5.3, there is a real analytic
function µp :Wp \ Crt(β) → R such that ∂∂̄β = µp∂β ∧ ∂̄β.
We have, by direct computation,

µp =
1− 2k

β
+ 2kβ2k−1µ1
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and since dµ1∧dα = 0 in U , dµp∧dβ = 0 in U∩Vp hence inWp\Crt(β)
by analyticity.
We are now in the position to apply Lemma 5.4: there exists a

real analytic function θ : β(Wp) → R, strictly increasing on the open
interval β(Wp) and such that χ := θ ◦ β is pluriharmonic on Wp, with
dχ ∧ dβ = 0 in Wp and so dχ ∧ dα = 0 on Wp.
As 0 ∈ β(Wp) and limx→Tp

β(x) = 0, we extend χ by continuity to
χ̃ : Vp → R, which is pluriharmonic on Wp = Vp \ Tp. By Lemma 7.5,
χ̃ is indeed pluriharmonic on Vp.
We obtain the thesis by setting λ = θ−1. �

We thus constructed a pluriharmonic function on Vp; up to now, such
a function is not uniquely determined by our construction. In fact, we
have two “degrees of freedom”, the choice of V +

p and V −
p and the choice

of the function θ.
The latter issue is solved by Lemma 5.4, iii), where it is proved that,

once we choose such a function θ, any other possible function is of the
form aθ + b; therefore, we can fix a particular θ0 by requiring that
θ0(0) = 0 and θ′0(0) = 1 (as 0 ∈ β(Wp)). The pluriharmonic function χ̃
constructed on Vp with this normalized function θ0 is denoted by χp.
The following result is immediate.

Corollary 6.6. Let M i be a face of the cell U and consider, for a point
p ∈M i, a neighbourhood Vp containing p such that Vp \M

i has exactly
two connected components, denoted by V +

p and V −
p . Then there exists a

unique pluriharmonic function χp : Vp → R, positive in V +
p , such that

lim
V +
p ∋x→M i

(χp(x))
2k

α(x)
= 1

where 2k − 1 is the order of flatness of α along M i ∩ Vp.

On the other hand, the sign issue cannot be satisfactorily solved,
particularly if we take into account that some face could be internal.
Therefore, for every point p ∈ M i, we associate a pair of germs of
pluriharmonic functions {(χp, Vp), (−χp, Vp)}, since an exchange be-
tween V +

p and V −
p will only produce a change in the sign of β and

hence of χp.
This is indeed a well defined germ on every point ofM i: by Corollary

6.6, if we take another neighbourhood V ′
p of p, different from Vp, but

still such that V ′
p \M

i has two connected components, the pair of germs
we obtain in the end of the construction will be the same, i.e. we will
have {(χ′

p, V
′
p), (−χ

′
p, Vp)} with χp = ±χ′

p on Vp ∩ V
′
p .
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Proposition 6.7. The function α has the same order of flatness along
all the faces, including internal ones.

Proof. Let M i be a connecting face between the cells U+ and U−. For
any p ∈ M i, we can take Vp = W i, because dimR(W

i ∩ Crt(β)) ≤ 2
and β(W i) = β(W i \ Crt(β)) (as β does not have absolute maximum
or minimum points in W i); therefore, we can apply Lemma 5.4 to the
domain W i and the function β.
By Corollary 6.6, we have a pluriharmonic function χi := χp, canon-

ical up to sign, such that there exists a strictly increasing function
λ := θ−1 so that

(9) α(x) = (λ ◦ χi)2k(x)

for x ∈ W i. We also ask that χi > 0 on U+ and χi < 0 on U−.
We note that, as α|bW i = 0, also χ|bW i = 0. Now, letM j j bW i be a

face; as χi > 0 on U+ and χi < 0 on U−, by Hopf Lemma [25, Lemma
3.8], we have that dχi(x) 6= 0 for x ∈ M j . From Equation (9), it
follows that the the order of flatness of α on M j is 2k − 1, for every
M j adiacent to either U+ or U−.
Now, the set

H ′ = H \ {internal faces}

is open and connected, because every internal face is contained in the
closure of a unique cell. Obviously every open set W i is connected and

H ′ =
⋃

M i connecting

W i ,

so, for every two cells U1 and U2 there exists a chain W i1, . . . ,W im,
with W ih ∩W ih+1 6= ∅ for h = 1, . . . , m−1, connecting them inside H ′.
The order of flatness of α on the faces in bW i1 (internal or connecting)
will be the same as the order of flatness of α on the faces of bW i2

(internal or connecting), because there are connecting faces belonging
to both, and so on, proving our thesis. �

Corollary 6.8. Let U be a cell and M i a connecting face between the
cells U and U ′. For any face M j of U and any p ∈ M j, let Vp be
a neighbourhood of p such that Vp \M

j has exactly two components.
Then the pairs {(χi,W i), (−χi,W i)} and {(χp, Vp), (−χp, Vp)} induce
the same germs in every q ∈ Vp ∩W

i.

Proof. This is a simple consequence of Corollary 6.6, once we know,
from Proposition 6.7, that the order of flatness of α is the same along
every face. �
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Up to this point, we have given an open cover of W , constituted by
the open setsW i corresponding to connecting faces and by the open sets
Vp, for p ∈ M j , as M j ranges among internal faces; on each of these
open sets, we have constructed an unordered pair of pluriharmonic
functions, which differ just for the sign, i.e. of the form ±χ.
On the intersection of two such open sets, the pairs coincide, i.e.

their restrictions to the intersection give the same pair of pluriharmonic
functions; therefore, we may also describe what we have obtained so far
as a subsheaf X of the sheaf of pluriharmonic functions on W , whose
stalk at any point of W is made exactly of two germs, which differ just
for the sign.

6.3. Extension to critical components of lower dimension. We
define the set

S := X \W =
⋃

i∈I

(M
i
\M i) ,

consisting of the singular points of M̃ .

Remark 6.1. S is of real dimension 2 or lower. Given p ∈ S and
a neighbourhood V of it, if χ ∈ Γ(V ∩W,X), then there is a unique
continuous extension of χ to χ̃ : V → R, obtained by setting χ̃|S∩V ≡ 0.
By Lemma 7.5, χ̃ is then pluriharmonic on V .

Moreover, if Γ(V ∩W,X) 6= ∅, then it necessarily has two elements, of
opposite sign, both extending to pluriharmonic functions on V . There-
fore, in order to extend our subsheaf X to the whole of X , we only need
to show that for any point p ∈ S there is a neighbourhood V such that
Γ(W ∩ V,X) 6= ∅.
The existence of sections depends prima facie on the topological

properties of V \ S and of the combinatorial properties of the open
cover of it given by the sets W i and Vp defined above, where we have
sections. The combinatorics of such cover is ultimately determined by

the topology of V \M̃ , which we propose to examine in the next pages.
To this aim, we employ the theory of stratified spaces, devoleped by

Whitney, Mather, Thom and others in the 60s and 70s (see [15] for the
original paper, [20,27] for more detailed explanations); in what follows,
we will just recall the main concepts and the results we need, avoiding
many technical, although important, details that the interested reader
can find in [27]. Precise references will be given in the next pages, as
we state the relevant definitions and theorems.

Definition 6.9 (Definition 1.1 in [27]). Let Z be a closed subset of
a real analytic manifold X . A real analytic stratification of Z is a
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filtration by closed subsets Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z1 ⊃ Z0 such that
each difference Zi \ Zi−1 is a real analytic submanifold of X and is of
dimension i, or empty. Each connected component of Zi \Zi−1 is called
a stratum. Thus Z is a disjoint union of strata.

Many patologies can be found among stratified spaces. To avoid
them, at least to some extent, additional conditions are usually required
to hold, namely the frontier condition andWhitney’s conditions (a) and
(b).
The frontier condition asks that, whenever S and T are two strata

such that S ∩ T 6= ∅, we have S j T (cfr [27, Definition 1.2]). Whit-
ney’s conditions are more involved and impose some restrictions on the
behaviour of tangent spaces when going from one stratum to another
adiacent to it. For the precise statements see [27, Definition 2.1].

Definition 6.10. A locally finite (i.e whose strata are a locally finite
family) stratification satisfying the frontier condition and Whitney’s
conditions (a) and (b) is called a Whitney stratification.

In 1965, Whitney proved the following (see [27, Theorem 2.1] and
the references given therein).

Theorem 6.11. Every real analytic variety admits a Whitney stratifi-
cation whose strata are real analytic manifolds

In particular, as a Whitney stratification is locally finite, a compact
analytic variety admits a Whitney stratification with a finite number of
strata. Whitney’s theorem allows us to apply to real analytic varieties
the following local topological triviality result for stratified spaces (see
[27, Theorem 3.2]).

Theorem 6.12 (Thom-Mather Tubular Neighbourhood Theorem).
Let

Z = Zd ⊃ Zd−1 ⊃ · · · ⊃ Z1 ⊃ Z0

be a Whitney stratified subset of a real analytic manifold X. Then for
every stratum Y and each point y0 ∈ Y there is a “tubular” neighbor-
hood G of y0 in X, a stratified set (a “link”) L ⊂ Sk−1 (a (k − 1)-
dimensional sphere) and a homeomorphism (of stratified spaces)

h :
(
G,G ∩ Z,G ∩ Y

)
−→

(
G ∩ Y

)
×

(
Bk, c(L), Ok

)

where k = codimRY in X, Bk is the open k-ball, c(L) is the cone on
the link L with vertex Ok, the center of Bk. L is stratified,

L = Ld−k−1 ⊃ Ld−k−2 ⊃ · · · ⊃ L1 ⊃ L0,
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induces a stratification of the cone

c(L) = c(L)d−k−1 ⊃ c(L)d−k−2 ⊃ · · · ⊃ c(L)1 ⊃ c(L)0 ⊃ {Ok}

(with h(y0) = Ok).

We also assume, without loss of generality, that G ∩ Y = G ∩ Zd−k,
so that, in particular, G intersects only one stratum of Zd−k.

We apply this theory to the analytic set M̃ ; we have a stratification

M̃ = Z3 ⊃ Z2 ⊃ Z1 ⊃ Z0

where S j Z2. As M̃ is compact, the number of strata is finite.

Proposition 6.13. Let Y j Z2 \Z1 be a 2-dimensional stratum which
is contained in S. For every point p ∈ Y there exists a neighbourhood
Vp such that

Γ(Vp ∩W,X) 6= ∅ .

Proof. We apply Theorem 6.12 to p ∈ Y ; we note that, in this case,
d = 3, k = 2, so L will be a (compact) link in S1, i.e. a finite number
m of points.
The cone over L in B2 is the union of m radii T1, . . . , Tm, connecting

the points of L to the origin and dividing B2 in m connected open
sectors S1, . . . , Sm, indexed so that Ti, Ti+1 ⊂ Si, with Tm+1 = T1.
Let G be the neighbourhood given by Theorem 6.12 and h the home-

omorphism of stratified spaces; we assume that G ∩ Y = G0 is a topo-
logical disc.
The sets Nj := h−1(G0 × Tj), for j = 1, . . . , m, are open connected

subsets of Z3 \ Z2, i.e. of the faces in M̃ ; likewise, Ej := h−1(G0 × Sj)

are open connected subsets of X \ Z3 = X \ M̃ , i.e. of the cells.
We define, for j = 1, . . . , m,

Vj = Ej ∪Nj+1 ∪ Ej+1 ,

where Nm+1 = N1 and Em+1 = E1; we apply Corollary 6.6 to each Vj,
with V +

j = Ej, obtaining a (unique) pluriharmonic function χj .
Obviously, by the uniqueness of χj, we have that

χj |Ej+1
= −χj+1|Ej+1

,

for each j = 1, . . . , m.
Therefore, if m is even, χ1 and (−1)m−1χm = −χm have the same

sign on E1, hence coincide. So we can glue together the functions
(−1)j−1χj , for j = 1, . . . , m into a pluriharmonic function

χ :

m⋃

j=1

Vj → R
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which is obviously a section of X on
m⋃

j=1

Vj = W ∩G .

Setting Vp = G proves the thesis.
In order to end the proof we have to show that m is even. This

fact is a consequence of the following Sullivan’s Theorem on the local
Euler characteristic of an analytic variety (cfr. [26, Corollary 2]): a real
analytic space is locally homeomorphic to the cone over a polyedron
with even Euler characteristic.
Indeed, represent the neighborhood G∩Z of y0 in Z as an open cone

over some polyhedron K and compute χ(K), the Euler characteristic
of K. G ∩ Z = G0 × c(L0), where G0 is topologically a disk. It is
clear that G ∩ Z is topologically an open cone with vertex at (y0, 0)
over its relative boundary in Z, denoted K. We consider G0 as a
single (open) triangle (ABC) = ∆. Then G0 × c(L0) is the union of m
prisms ∆× (O,Pi) ≃ ∆ × (0, 1) and of a single simplex ∆{O}, which
is the common boundary of all prisms (and so belongs to the open set
G0×c(L0)). Compute now the Euler characteristic χ(K) = c0−c1+c2,
where ci is the number of i-dimensional simplexes in K.

c0 = 3m+ 3

(vertices (A, Pi), (B,Pi), (C, Pi), i = 0, 1, . . . , m−1, and (A,O), (B,O),
(C,O)).
We divide each of the 3 side squares of the m-prisms into two sim-

plexes in whatever way so

c1 = 3m (from the tops of prisms)

+ 2 · 3 ·m (from the non horizontal side square)

+ 3 (from the common base)

= 9m+ 3.

Finally

c2 = m (triangles from the tops of prisms)

+ 3 · 2 ·m (non horizontal, from the side squares)

+ 0 (none from the base)

= 7m

so
χ(K) = 3m+ 3− (9m+ 3) + 7m = m.

The proof of Proposition 6.13 is now complete. �
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Proposition 6.14. The sheaf X extends to the whole X.

Proof. By Proposition 6.13 and Remark 6.1, we can extend the sheaf
X to X \ Z1.
Suppose now that p ∈ Z1 \ Z0 and denote by τ the 1-dimensional

stratum with p ∈ τ . By Theorem 6.12, we have a neighbourhood G
and a homeomorphism h such that h(G \ τ) = (G ∩ τ)× (B3 \ {O3}).
Therefore, G ∩ (X \ Z1) = G \ τ is simply connected, which is enough
to say that

Γ(G ∩ (X \ Z1),X) 6= ∅ .

Therefore, by Remark 6.1, we can extend X on X \ Z0. Let p ∈ Z0

and consider a topological ball B around p. Obviously, B\{p} is simply
connected, hence we can repeat the previous argument and show that

Γ(G ∩ (X \ Z0),X) 6= ∅ .

Therefore, we obtain an extension of X to the whole X . �

We are now in the position to prove Theorem 6.1.

Proof of Theorem 6.1. Let the extension of X to X , given by Propo-
sition 6.14, be denoted again by X. Let X∗ be the total space of
X, together with the projection π : X∗ → X , which sends the germ
(h)x ∈ Xx to x, for every x ∈ X .
We give X∗ the natural complex structure, so that π is a 2-to-1

locally trivial holomorphic covering map, open and proper. We define
the function

χ∗ : X∗ → R

by χ∗((h)x) = h(x), for (h)x ∈ Xx. It is easy to check that χ∗ is a
proper pluriharmonic function on X∗.
It may happen that X∗ is disconnected, then each of the two con-

nected components is biholomorphic to X and χ∗ descends to a proper
pluriharmonic function χ : X → R. �

Remark 6.2. Together with Theorem 5.1, the previous result proves
the second part of the Structure Theorem; from the existence of a
global pluriharmonic function defining the foliation, we deduce that
such a foliation is indeed holomorphic. Hence, both case ii and case iii
of the Structure Theorem are examples of holomorphic foliations; from
such observation, we can proceed as Brunella did in [3], noticing that
there are examples of weakly complete surfaces which do not admit
holomorphic foliations, but for which Σ1 = X , and concluding that
such surfaces do not admit real analytic plurisubharmonic exhaustion
functions.
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7. Appendix.

As a consequence of the Hopf Lemma in a weak form (cfr. [25, Lemma
3.8]) we have the following

Proposition 7.1. Let W be a complex surface and β : W → R a real
analytic plurisubharmonic function. Then every 3-dimensional con-
nected component of Crt(β)r Sing(Crt(β)) consists of local minimum

points of β and so it is contained in M̃ . Crt(β)r M̃ is a real analytic

subset of W and dimR Crt(β)r M̃ ≤ 2.

The following “good covering lemma” is probably well known, so we
just give a brief idea of the proof.

Lemma 7.2. Let W be a 2-dimensional complex manifold and C a
smooth compact complex curve in W . Let U be a neighborhood of C.
Then there is a finite covering {Vj}

m
j of C by open subsets of W , such

that

i) C ⊂
m⋃
j=1

Vj ⊂ U ;

ii) every Vj is simply connected;
ijj) Vj ∩ C is connected for j = 1, 2, . . . , m;
iv) whenever Vj ∩ Bk 6= ∅, then Vj ∩ Vk ∩ C 6= ∅ and both sets

Vj ∩ Vk and Vj ∩ Vk ∩ C are connected, 1 ≤ j, k ≤ m.

Proof. Being smooth, C possesses a tubular neighbourhood inW which
is homeomorphic to the product C × ∆, where ∆ is the unit disc. It
is now enough to cover C with finitely many connected, simply con-
nected open sets {Ωj}

n
j=1 such that their pairwise intersections are ei-

ther empty or connected, e.g. convex balls for some Riemannian metric
on C; the desired covering will be the preimage in the tubular neigh-
bourhood of the products {Ωj ×∆}nj=1. �

7.1. Flatness. LetM be a C∞-smooth hypersurface in a differentiable
manifold W and β a C∞-smooth function defined in a neighbourhood
of M . We recall that β is said flat of order N along M in X , if

i) β|M = C (constant);

ii) ∂kβ
∂νk

(p) = 0, for 1 ≤ k ≤ N and ∂N+1β
∂νN+1 (p) 6= 0, for every p ∈ M

(∂/∂ν normal derivative).

The normal derivative in question can be taken with respect to any
Riemannian metric on M , and the property does not depend on the
choice. If x1, . . . , xn are local coordinates on a neighbourhood V of p0
in W chosen in such a way that xn|V ∩M = 0, then β is flat of order
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N if and only if β|V ∩M is constant, ∂kβ
∂xk

n
(p) = 0, for 1 ≤ k ≤ N and

∂N+1β

∂xN+1
n

(p) 6= 0, p ∈ V ∩M .

Proposition 7.3. . Let M be a real analytic hypersurface in a real
analytic manifold W ,and α a real analytic function defined in a neigh-
bourhood of M such that α has local minimum at each point of M .
Then there is an integer k ≥ 1 and a real analytic subset T ⊂ M , such
that α is flat of order 2k − 1 along M r T .

Proof. (Sketch). The fact being essentially local, we can assume with-
out loss of generality that: W is a neighbourhood of zero in Rn,
M = W ∩ {xn = 0}, α ≥ c in W and, since α has local minimum
at each point of M , that α|M = c, c ∈ R. Developping α in power
series with respect to xn we obtain:

α(x′, xn) = c+

+∞∑

k=1

αk(x
′)xkn,

where αs(x
′), real analytic function of x′ = (x1, x2, . . . , xk, . . . , xn−1).

Let N be the smallest k such that αk(x
′) is not identically 0. Denote

T = {(x′, 0) ∈ M : αk(x
′) = 0}.

Then T is a nowhere dense real-analytic subset of M . Observe that
since α − c ≥ 0 in W , N cannot be odd and so N = 2k, k ≥ 1. It
follows that α is flat of order 2k − 1 along M . �

Proposition 7.4. . Let W be a connected real analytic manifold and
M a closed real analytic hypersurface. Let β : W → [0,+∞) be a non
negative real analytic function on W , identically 0 on M and positive
on W r M , flat of order (2k − 1) with k ≥ 1, on M r T , where T
is a real analytic subset of M , nowhere dense in M . Assume that M
separates W into two connected open sets W+ and W−. Let

γ(x) =





0 if x ∈ M r T

β(x)1/2k if x ∈ W+

−β(x)1/2k if x ∈ W−.

Then γ : W r T → R is a real-analytic function without critical points
on M r T . Clearly β = γ2k on W r T .

Proof. Since the function β is well defined everywhere in W rT and is,
obviously, analytic on W rM (note the assumption β > 0 on W rM),
it is enough to verify its properties at points ofM . Since they are local,
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assume, without loss of generality, the setting and notation of the proof
of last proposition. That is p ∈M r T , M ⊂ {xn = 0} ⊂ Rn,

β(x′, xn) =

+∞∑

s=2k

xsnαs(x
′) = x2kn ρ(x

′, xn),

for a (x′, xn) ∈ V , a small neighbourhood, where

ρ(x′, xn) =
+∞∑

l=0

xlnα2k+l(x
′).

It is clear that ρ is analytic and ρ > 0 in V (V intersects M), and
that (β|V )(x) = xnρ(x)

1/2k. Since ρ(x) > 0, ρ(x)1/2k is real analytic. In

addition, ∂β/∂xn(x
′, 0) = ρ(x′, 0)1/2k > 0. �

7.2. Local maximum sets.

Lemma 7.5. (Removable singularities). Let W be a complex surface
and A a real analytic subset of dimension ≤ 2. Let χ : W → R be a
continuous function such that χ|W\A is pluriharmonic.
Then χ is pluriharmonic on W.

Proof. The problem is local so we can assume thatW is an open subset
of C2. We recall that in view of [13] if E ⊂ W is a closed subset
of 2-Hausdorff measure 0 every plurisubharmonic function on W \ E
extends to W by a (unique) plurisubharmonic function. It follows
that a continuous function on W which is pluriharmonic on W \ E is
pluriharmonic. This fact reduces the proof of Lemma 7.5 to the case
when A is non-singular of pure dimension 2: indeed, the singular set S
of A is a semianalytic subset 2-Hausdorff measure 0 ([10, Remark 3.1,
p. 27]).
Thus we assume that A is a 2-dimensional connected real analytic

submanifold of W .
Let C be the subset of the complex points of A: C is a real analytic

subset so either C = A or it is of dimension ≤ 1. In the first case A is
a complex curve hence a pluripolar set so, by [7, Theorem (5.24)] and
what is preceding we obtain that χ is pluriharmonic. In the second one,
away from a proper, closed real analytic subset N , A is a totally real
surface, hence in an open neighbourhood V of p ∈ A\N there exist local
holomorphic coordinates z = x+ iy, w = u+ iv such that A∩V = {y =
v = 0}. In the latter, away from a proper, closed real analytic subset
N , A is a totally real surface so in an open neighbourhood V ⊂ W of
p ∈ A \N exist local holomorphic coordinates z = x + iy, w = u + iv
such that z(p) = w(p) = 0, A∩ V = {y = v = 0}. Let ρ = y2 + v2 + v.
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If V is sufficiently small the hypersurface {ρ = 0} is smooth, contains
A ∩ V and the domain V ∩ {ρ > 0} is simply connected with strongly
Levi concave boundary. Then χ|V ∩{ρ>0} as real part of a holomorphic
function extends through A ∩ V . Thus χ is pluriharmonic on V \ N
whence is pluriharmonic in V since N has 2-Hausdorff measure 0 �

Lemma 7.6. (Reflection principle for pluriharmonic functions). Let
W be domain in a complex surface X and M ⊂W \W a real analytic
submanifold of X of dimension 3. Let χ : W → R be a non constant
pluriharmonic function. Assume that

lim
x→M

x∈W

χ(x) = c ∈ R.

Then

a) there exist an open set W̃ containing W ∪M and a plurihar-

monic function χ̃ : W̃ → R extending χ.
b) If, in addition, χ(x) > c for x ∈ W , then dχ̃(x) 6= 0 for x ∈M.

Proof. Let us prove that M is Levi flat. Fix an open neighborhood
U ⋐ X of a point a ∈ M and any local defining function ϕ for M
at a (i.e. U ∩ W = {p ∈ U : ϕ(p) < 0}). Let La and assume, by
a contradiction, that the Levi form of ϕ at a is not vanishing when
restricted to the complex tangent line to M at a i.e. M ∩ U is either
strongly pseudoconvex or strongly pseudoconcave at a as boundary of
W ∩ U . In the first case, near a, W ∩ U is filled by a family {Dǫ}ǫ of
analytic discs attached toM . Since χ|Dǫ

is harmonic inDǫ and constant
on the boundary, it is constant near a and consequently on whole of
W , χ being analytic: contradiction. The proof in the pseudoncave case
is similar in view of the fact that then χ locally extends through M by
a pluriharmonic function. This proves that M is Levi flat.
Since M is real analytic and Levi flat, it is locally biholomorphic to

a real hyperplane so we may assume tha X is the open ball B = {|z|2+
|w|2 < 1}, z = x + iy, w = u + iv, W = {(z, w) ∈ B : v > 0}. This
reduces the proof of the lemma to the classical “reflection principle”
for harmonic functions. In view of [1, Theorem 4.12], χ extends to a
harmonic function χ̃ : B → R, which is real analytic and pluriharmonic
on W , therefore pluriharmonic on W . Ths shows part a).
Part b) is an application of Hopf Lemma [25, Lemma 3.8]. �

Lemma 7.7. Let X be a complex surface and Z a compact real analytic
set of dimension ≤ 2. Suppose that Z has the local maximum property.
Then Z is the union of finitely many compact complex curves.
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Proof. The proof is based on the following classical result of Hartogs
[12]. Let U , V be domains in C2 and Y ⊂ U×V be a closed set, finitely
sheeted over U , in the sense that

i) Y ∩ bV = ∅

ii) Y ∩ ({z} × C) is finite, for every z ∈ U .

Assume that Y is pseudoconcave in U × V . Then Y is a complex
analytic variety in U × V .
By Hartogs result, it is enough to show that every point p ∈ Z

has a neighborhood W = U × V , which, (with respect to some local
holomorphic coordinate system at p) satisfies i) and ii), X \ Z being
pseudoconvex (see [23, Theorem 2]).
If p is any point in a 2-dimensional connected component of the

regular set of Z, and L is a complex line through p, transversal to the
2-dimensional (real) tangent plane Tp(Z), then a small neighborhood
of p in Z will do.
Consider now another point p ∈ Z, and a complex line L through

it, in a small coordinate neighborhood W of p. In view of the above,
W ∩Z is the union of several open complex submanifolds and (a priori)
several real analytic arcs (the latter is actually impossible). Each of
them (submanifolds or arcs) either intersects L at a discrete countable
set, or is fully contained in L. The latter is possible only for finitely
many L, and so there is L through p and a neighborhood W0 of p such
that for every complex line L∗ parallel to L and intersectingW0, the set
Z∩W0 is finite. It is to show that a smaller neighborhoodW1 satisfying
i) and ii) can be selected, so that W1∩Z is a complex variety. We omit
further details. �
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