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Abstract This contribution presents a novel physically based approach to modeling the rain attenuation
affecting terrestrial links. The model is devised by investigating the path reduction factor (PF) on terrestrial
links, a typical element of rain attenuation prediction models introduced to take into due account the
spatial inhomogeneity of rainfall. To this aim, a large number of PF values are analyzed by simulating the
interaction of a hypothetical terrestrial link with a set of realistic synthetic rain fields. The dependence of PF
on different parameters such as the path length, the operational frequency, and the rain rate measured
at the transmitter is addressed, and the results are exploited to devise analytical expressions aiming to
provide an accurate yet simple approach to predicting rain attenuation on terrestrial links. Finally, the
prediction accuracy of the proposed method is discussed (and compared to the one of other two models)
by considering experimental data collected worldwide.

1. Introduction

In the near future, the global data volume exchange of telecommunication systems is expected to increase
dramatically, on one side, due to the gradual enrichment in high data rate broadcast andmultimedia services
offered to users and, on the other side, owing to the exponential increase in the number of devices
connected to the Internet [Dehos et al., 2014]. This calls for the enhancement of existing telecommunication
networks and/or for the deployment of new infrastructures. A viable way to tackle this problem, especially in
regions where laying wires and optical fibers are cumbersome or very expensive (e.g., remote areas), is to
install wireless links at high frequencies (millimeter waves), which offer the large bandwidth necessary to
support the required high data rates (e.g., in future 5G systems [Rappaport et al., 2013]).

As is well known, the impairments induced by the atmosphere on millimeter waves steeply increase with the
operational frequency, mainly because of hydrometeors, which cause strong absorption and scattering of the
impinging electromagnetic energy [Riva et al., 2014]. As a result, accurate models able to predict rain attenua-
tion affecting terrestrial links are of paramount importance for the design of reliable communication systems.
Several models have been proposed so far to that aim, mainly in documents submitted to the ITU-R
(International Telecommunication Union-Radiocommunication sector) to propose updates to recommenda-
tion P.530 [ITU-R, Recommendation P.530-16, 2015], all of which rely on the concept of path reduction factor,
PF. The key idea is that the rain attenuation A can be calculated as if the rain rate R measured at a given
position (typically, at the transmitter) were constant along the whole link, whose length, however, is turned
into an effective one (Leff) by means of PF. Indeed, the main difference among the models devised so far lies
in how the path reduction factor is defined. For example, the model proposed by the Australian
Administration in ITU-R Doc. 3M/27-E [2001] defines a PF which only depends on the local rain rate value
exceeded for 0.01% in a year (R0.01%), while the methodology presented by the UK Administration in ITU-R
Doc. 3M/28-E [2003] extends the dependence of PF also to path length L and receives as input the full
Complementary Cumulative Distribution Function (CCDF) of the rain rate (also known as P(R)), rather than just
R0.01%. This is also the case for the model proposed by Silva Mello and Pontes [2007], which, in addition, intro-
duces a further dependence of PF on one of the power law coefficients (α) typically used to convert rain rate R
into specific attenuation γR, i.e., γR = kRα [ITU-R Recommendation P.838-3, 2003]. Whatever the approach used
to defined the path reduction factor, most of the existing models, including the one currently adopted by
ITU-R [ITU-R, Recommendation P.530-16, 2015], have been optimized by exploited large set of measurements
(e.g., the most popular being the one made available by the Study Group 3 of ITU-R) with the aim of deriving
empirically the regression coefficients included in the expressions relating PF to the input parameters such as
frequency, path length, and rain rate. This approach typically guarantees a very good prediction
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performance, but it also implies two disadvantages. On one side, the higher is the number of regression coef-
ficients involved, the higher will be the empirical degree of the model, which, in turn, might pose doubts on
its reliability outside its applicability range, typically defined on the basis of the available measurements used
the optimize the model by regressing its empirical coefficients (e.g., frequency limited to 80 GHz). On the
other side, the push to increase the prediction performance by using a high number of regression coefficients
(e.g., 10 in the model proposed by the Chinese Administration [ITU-R Doc. 3M/25-E, 2008]) will also increase
the model’s bias if the reference measurements are affected by inaccuracies, as it might be typically the case.

This contribution presents an alternative physically based approach to devise a new model aimed at predict-
ing rain attenuation affecting terrestrial links. The key idea is to avoid relying on measurements but to
investigate andmodel the path reduction factor by simulating the interaction of a hypothetical terrestrial link
with a set of realistic synthetic rain fields. The dependence of PF on the path length, the operational fre-
quency and the rain rate measured at the transmitter, is first addressed, and afterward the contribution
defines simplified yet accurate analytical expressions to predict rain attenuation on terrestrial links, requiring
as input the local P(R). The remainder of the paper is organized as follows: section 2 presents the develop-
ment of the proposed prediction model, going from the numerical calculation of rain attenuation to the defi-
nition of the analytical approach. The prediction accuracy of such a method is then discussed (and compared
to the one of other two models) in section 3 by considering experimental data collected worldwide, while
section 4 draws some conclusions.

2. A Physically Based Rain Attenuation Prediction Model
2.1. Rationale of the Model

The rain attenuation prediction model proposed in this contribution relies on taking into due account the
spatial variability of precipitation along terrestrial links, which is achieved by simulating the interaction
between electromagnetic waves and realistic synthetic rain maps. Given the complexity of this approach,
the results obtained from such simulations are afterward further exploited to derive analytical expressions
with the aim of providing an accurate yet simpler approach to predicting rain attenuation on terrestrial links.
This is achieved by resorting to concept of path reduction factor, whose dependence on the rain rate and the
path length is duly investigated and modeled. More details on the whole model derivation are provided in
the next sections.

2.2. Rain Map Synthesis: MultiEXCELL

The development of the proposed rain attenuation prediction method relies on MultiEXCELL, first presented
in Luini and Capsoni [2011a], a global rainfall model oriented to the analysis and prediction of the atmo-
spheric radio propagation impairments. MultiEXCELL allows to generate a set of synthetic rain fields (an
example of which is shown in Figure 1a), whose ensemble preserves the input local P(R) and reproduces
the rainfall spatial correlation.

Synthetic rain fields, whose spatial resolution is 1 km × 1 km and whose lateral dimension can range between
200 and 300 km, result from the arrangement of multiple synthetic exponential cells according to the natural
rain cells’ aggregative process observed in a real rain environment and by reproducing the statistical
distribution of the rain coverage area. To this aim, the model includes a methodology that estimates, on a
global basis, the distribution of the fractional area of a map affected by rain, starting from the ECMWF
(European Centre for Medium-Range Weather Forecast) ERA-40 database [Uppala et al., 2005]. As a result,
MultiEXCELL is suitable not only for small-scale applications, such as the estimation of the attenuation
impairing Earth-space microwave links, but also for scenarios, such as the one considered here, in which
the knowledge of the spatial distribution of rain on a medium/large scale is of key importance (the path of
a line-of-sight terrestrial link may be several kilometers long). A key advantage of MultiEXCELL is that a
relatively small set of synthetic rain fields (around 400/500 maps) is sufficient to reliably represent the local
rainfall process and, thus, to allow the efficient simulation of the interaction between a millimeter wave tele-
communication system and precipitation.

2.3. Rain Attenuation Prediction: The Numerical Model

MultiEXCELL has been successfully used to simulate the interaction of rain fields with millimeter
wave communication systems in different scenarios, including terrestrial links [Luini and Capsoni, 2010;
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Luini and Capsoni, 2011b; Luini and Capsoni, 2013; Capsoni et al., 2010]. Specifically, results reported in Luini
and Capsoni [2010] show a very good performance in predicting the CCDF of rain attenuation A affecting
terrestrial links, which is achieved by numerically integrating the specific attenuation γR along the link
as follows:

A ¼ ∫
L
γR lð Þ dl ¼ ∫

L
k R lð Þα dl (1)

In (1), L is the length of the link, k and α are rain-to-specific attenuation conversion coefficients extracted from
recommendation ITU-R P.838-3 [ITU-R Recommendation P.838-3, 2003], while R(l) is the rain rate at position l
along the path, associated to a pixel of the rain map (refer to Figure 1b). By moving the link in different posi-
tions, the rain map is turned into an attenuation map, as shown, for example, in Figure 2 (frequency
f = 30 GHz, path length L = 5 km, vertical wave polarization).

The attenuation CCDF, hereinafter
referred to as P(A), can be straightfor-
wardly calculated by cumulating the A
values coming from all the rain maps.
In this work, MultiEXCELL was applied
to synthesize 578 rain maps, with lateral
dimension of 230 km, for the reference
site of Milan, Italy (latitude = 45.4°N
and longitude = 9.5°E). The P(R) required
as input to the model was derived from
high-resolution rain rate values (1 min
integration time), in turn extracted from
a local tipping bucket rain gauge
(10 years of data). Figure 3a shows such
input statistics, while Figure 3b depicts
the CCDFs of the rain attenuation
estimated using (1) for a 5 km link oper-
ating at 20, 30, and 40 GHz (vertical
wave polarization): as expected, rain

Figure 1. (a) Example of the synthetic rain fields generated by the MultiEXCELL model [Luini and Capsoni, 2011a]. (b) Numerical calculation of the path attenuation
along a terrestrial link using MultiEXCELL.

Figure 2. Sample rain attenuation maps obtained by applying (1) for all
possible positions of the link across the map: frequency f = 30 GHz, path
length L = 5 km, vertical wave polarization.
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attenuation quickly increases with frequency, which makes more and more cumbersome to guarantee high
availability for the link.

2.4. Rain Attenuation Prediction: The Analytical Formulation

The key objective of this work is to devise a rain attenuation statistics prediction model for terrestrial links
that combines the good performance of the approach described in section 2.3 (as shown in Luini and
Capsoni [2010]) with the simplicity of the analytical method relying on the concept of path reduction
factor, PF:

A ¼ k RTX
αLeff ¼ k RTX

αLPF (2)

As is clear from (2), the rain attenuation A can be calculated as if the rain rate RTX measured at the transmitter
were constant along the whole link, whose length is reduced to an effective one (Leff) by means of PF. In fact,
PF actually takes into account, in an equivalent way, the real spatial variability of the rain rate affecting the
whole link.

By inverting (2), a very large number of PF values were obtained from all the 578 rain maps generated by
MultiEXCELL with the aim of investigating the dependence of the path reduction factor on the path length
(1 km ≤ L ≤ 20 km), on the rain rate (1 mm/h ≤ RTX ≤ 200 mm/h) and the operational frequencies
(10 GHz ≤ f ≤ 50 GHz). As an example, Figure 4 shows the PF values as a function of RTX (darker areas
correspond to higher density of the scatterplot points) obtained for a 20 GHz link with L = 15 km (578
rain maps).

Figure 3. (a) P(R) fromMilan derived from the local tipping bucket rain gauge (10 year rain rate data with 1 min integration
time). (b) CCDFs of the rain attenuation on a terrestrial link (frequency f = 20, 30, and 40 GHz, path length L = 5 km, vertical
wave polarization) calculated from all the 578 MultiEXCELL rain maps (site: Milan, Italy).

Figure 4. Path reduction factor density scatterplot derived from 578 MultiEXCELL rain maps by inverting (2), as a function
of RTX (f = 20 GHz and L = 15 km).
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As is clear from Figure 4, PF as a function of the rain rate is characterized by a large spread, regardless of the
frequency f and the path length L. Moreover, it is worth pointing out that despite that PF is typically referred
to as path reduction factor, which seems to imply that it should always be lower than 1, actually, PF values
higher than 1 are quite common when RTX is low: this is often the case for which the transmitter is located
at the edge of a rain cell affecting the link, i.e., when the rain rate values along the whole link are mostly
higher than RTX.

With the aim of devising an analytical model, we have investigated the trend of the average PF (PFav) condi-
tioned to the rain rate, by selecting classes for R containing approximately the same number of samples. The
investigation of such a trend revealed that PFav tends to follow the exponential function in (3):

PFav ¼ a f ; Lð Þe�b f ;Lð Þ R þ c f ; Lð Þ (3)

where a, b, and c are regression coefficients function of the path length and frequency.

Figure 5a shows a sample trend of PFav as a function of the rain rate for a given path length L = 15 km and two
frequencies (30 and 50 GHz). Reported in the figure is also the regression curve (equation (3)), which fits the
data with satisfactory accuracy. As expected, PF decreases with the increase in R: in fact, higher rain rate
values are typically associated with convective precipitation, which is also characterized by limited spatial
horizontal extent, i.e., high spatial inhomogeneity [Capsoni et al., 2006]. Moreover, results indicate that PFav
slightly depends on frequency: this is indeed expected, as the path reduction factor originates from the need
to take into account the inhomogeneity of precipitation along the link. On the other hand, as shown in
Figure 5b, the dependence of PFav on L is more pronounced. Indeed, these results suggest that the role of
frequency in estimating rain attenuation by means of (2) can be limited to the coefficients k and α with no
significant degradation of the expected prediction accuracy.

Besides offering a good fitting accuracy, the expression in (3), when regressed on the PFav data obtained at
different path lengths, provides coefficients a, b, and cwhose trend with L turns out to be quite regular. This is
clarified in Figure 6, which, more specifically, reports the average value of a, b, and c for all the considered
frequencies: as mentioned above, the dependence of PFav on f can be neglected.

As a result, based on all the findings illustrated in this section, the rain attenuation exceeded with probability
P in an average year can be calculated as

A P; Lð Þ ¼ k R Pð Þα L a Lð Þe�b Lð Þ R Pð Þ þ c Lð Þ
h i

(4)

Figure 5. (a) Trend of the average path reduction factor PFav as a function of the rain rate, for a fixed path length L = 20 km
and different frequencies (30 and 50 GHz); data retrieved from MultiEXCELL maps and regression curves (see equation (3)).
(b) Trend of the average path reduction factor PFav as a function of the rain rate, for a fixed path frequency f = 40 GHz and
different path lengths (15 and 20 km); data retrieved from MultiEXCELL maps and regression curves (see equation (3)).
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where R(P), extracted from the local
input rain rate CCDF, is the rain rate
exceeded with probability P, while,
according to the trends reported in
Figure 6, coefficients a, b, and c are
defined as

a ¼ �0:8743e�0:1111 L þ 0:9061

b ¼ �0:0931e�0:0183 L þ 0:1002

c ¼ �0:6613e�0:178 L þ 0:3965

(5)

with L expressed in kilometers.

3. Assessment of the Model’s
Prediction Accuracy

This section evaluates the prediction
accuracy for the analytical formulation
of the proposed model by comparing
the reference rain attenuation CCDFs
calculated using the numerical

approach described in section 2.3 with those obtained from (4) and (5). In both cases, the same input P(R)
depicted in Figure 3 was used. To this aim, the following error figure, ε(P), defined on the basis of recommen-
dation ITU-R P.311–15 [ITU-R Recommendation P.311-15, 2016], is used:

ε Pð Þ ¼
AM Pð Þ
10

� �0:2

ln
AE Pð Þ
AM Pð Þ

� �
AM Pð Þ < 10 dB

ln
AE Pð Þ
AM Pð Þ

� �
AM Pð Þ ≥10 dB

8>>><
>>>:

(6)

where AM(P) and AE(P) represent the path attenuations, both correspondent to probability level P, extracted
respectively from the reference and the estimated P(A).

Figure 7 depicts an example of rain
attenuation statistics prediction for
f = 40 GHz and L = 15 km: the
prediction accuracy is summarized by
the average (E) and root-mean-square
(RMS) value of ε(P) (for P ≥ 10�3%),
which is reported in the figure legend.

The agreement between the reference
and the predicted curves in Figure 7 is
very good, which is also valid for the
other values of f and L. This is clearly
shown in Figure 8a and Figure 8b, which
depict the average E and RMS as a func-
tion of the frequency and of the path
length, respectively: results indicate a
very limited positive bias, while the
RMS, only slightly dependent on the
frequency and the path length, is always
lower than 8%.

The results illustrated in Figures 7, 8a,
and 8b mainly point out that the use of

Figure 6. Trend of the regression coefficients a, b, and c of the expression
in (3) as a function of the path length.

Figure 7. Prediction of the rain attenuation statistics obtained by (4) for
f = 40 GHz and L = 15 km.
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an average path reduction factor (see equation (3)) is sufficient to predict the MultiEXCELL-derived rain
attenuation statistics with very satisfactory accuracy. However, such results are not enough to properly
validate the proposed prediction model: independent data are required.

For an additional assessment of the proposed method, we have taken advantage of the extensive data set of
measurements (DBSG3-DataBase of Study Group 3) assembled and made available by ITU-R. More specifi-
cally, the DBSG3 database for terrestrial links, the most complete of its kind, consists of 89 experiments set
up in 16 different countries worldwide: the path length ranges from 0.5 to 58 km, whereas the operational
frequency varies from 7 to 137 GHz. Besides including the main electrical and geometrical features of each
terrestrial link, the DBSG3 database also contains, for each experiment, the local P(R)—concurrent with the
reference P(A)—which is the most suitable input to the prediction models. On the other side, it is worth high-
lighting that the measurements included in the database should be treated with care, especially to the aim of
assessing the accuracy of prediction models: as a matter of fact, some key information is missing (e.g., the
indication on whether the attenuation data include all tropospheric effects, such as gaseous absorption, or
only the effects of rain), or, in other cases, the data accuracy is rather doubtful. Examples of the latter case
are given by experiments performed in the Chilbolton (UK) along short (L = 0.5 km) high-frequency (f ranging
from 37 to 137 GHz) terrestrial links: additional information in the data table states that for those experiments,
antennas were behind windows with hoods. Besides rain attenuation, this is expected to cause additional
fade, as clearly shown in Figure 9a, for one of the experiments mentioned above (f = 37 GHz): the input P
(R) included in the database indicates R = 54 mm/h for exceedance probability P = 0.001%, according to
which A = k(Ra)L ≈ 4.4 dB (k and α extracted from recommendation ITU-R P.838-3 [ITU-R Recommendation
P.838-3, 2003]). In fact, given the very short path length, the rain rate along the link is expected to be quite
constant, i.e., the PF approximately equals to 1. This is clearly not reflected in the ITU-R data, which, for the
same probability level, show A ≈ 12 dB: as expected due to the setup of the link, the data likely include addi-
tional contributions to attenuation that do not come from rain. Notwithstanding this, the Brazilian model
[Silva Mello and Pontes, 2007] and the ITU-R method [ITU-R, Recommendation P.530-16, 2015] show a pretty
good agreement to the data: this is mainly due to the fact that both models’ parameters were adjusted to
minimize the prediction error considering the whole set of measurements included in the DBSG3 database,
disregarding any possible inaccuracy in the data.

In contrast with the results reported in Figure 9a, Figure 9b shows that for some experiments, the predictions
achieved by all the models are very similar: this is the case for the experiment conducted in Mendlesham
(UK), for which f = 22.1 GHz and L = 2.9 km. In addition, for some other experiments, the proposed model
outperforms the other ones: this is depicted, for instance, in Figure 9, for experimental data collected in
Piaseczno (PL), at f =11.5 GHz, along a link of L = 15.4 km.

Figure 8. (a) Trend of E and RMS as a function of the link operational frequency. (b) Trend of E and RMS as a function of the
path length.
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Table 1 provides a more comprehensive assessment of the models’ accuracy: reported in the table are the
mean E and RMS of the prediction error, considering all experiments, save for those mentioned above
conducted in Chilbolton. As expected, the overall performance of the proposed model is lower than the
one of the Brazilian and ITU-R models: indeed, the coefficients of the former were not optimized on the
basis on the ITU-R data set (as for the latter), but they were determined starting from a physically
based approach.

Though the scores listed in Table 1 are useful to gain a preliminary idea about the prediction models’
performance, nevertheless, they cannot be considered as a solid indicator of the models’ accuracy: indeed,

considering, for example, the discussion
in Figure 9a, a careful inspection of the
experimental data included in the
DBSG3 database for terrestrial links is
required before fully relying on such a
data set to develop, optimize, and/or
assess prediction models.

Figure 9. (a) Test of predictionmodels against data included in theDBSG3database: site = Chilbolton (UK), duration= 1 year,
f = 37 GHz, L = 0.5 km. (b) Test of prediction models against data included in the DBSG3 database: site = Mendlesham (UK),
duration = 3 years, f = 22.1 GHz, L = 2.9 km. (c) Test of prediction models against data included in the DBSG3 database:
site = Piaseczno (PL), duration = 5 year, f = 11.5 GHz, L = 15.4 km.

Table 1. Overall Performance of Prediction Models: Mean E and RMS of
the Prediction Error Against the ITU-R Data Set

Mean E Mean RMS

Proposed model 10.9% 27.1%
Brazilian model �2.1% 22.3%
ITU-R model �2% 21.1%
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4. Conclusion

This contribution presents a novel physically based approach to modeling the rain attenuation affecting
terrestrial links. The model is devised by simulating the interaction between terrestrial links and synthetic rain
maps, which are specifically exploited to investigate the path reduction factor, introduced to take into due
account, in an effective way, the spatial inhomogeneity of rainfall along the link. The values of PF show a large
spread regardless of the parameters of the link, but on the other hand, the trend of the average path reduc-
tion factor PFav with the rain rate turns out to be well modeled by a simple exponential function. Moreover,
the regression coefficients of such function are found to follow quite regular trends with the path length,
while the dependence on the operational frequency is found to be negligible. Starting from all these ele-
ments, an analytical expression is proposed for PF, which defines a simple yet accurate approach to predict-
ing rain attenuation on terrestrial links as a function of the customary geometrical and electrical parameters
(frequency, path length, and wave polarization) and of the local yearly rain rate statistics.

The accuracy of the proposed model was tested against the MultiEXCELL-derived rain attenuation statistics
and against the independent set of experimental data included in the DBSG3 database made available by
ITU-R: very satisfactory results were obtained in the first case, while in the second case the performance of
the proposed model is quite in line with the one associated to the Brazilian and ITU-R models, though these
models show better scores. Indeed, these latter findings are only useful to gain a preliminary idea about the
predictionmodels’ performance, but they cannot be considered as a solid indicator of themodels’ accuracy: a
careful inspection of the experimental data included in the DBSG3 database for terrestrial links is required
before fully relying on such a data set to develop, optimize, and/or assess prediction models. This is part of
the future work, which will also include improving the proposedmodel’s performance using as reference only
the most reliable experiments of the ITU-R database.
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