
FraudBuster: Temporal Analysis and Detection
of Advanced Financial Frauds

Michele Carminati1, Alessandro Baggio1, Federico Maggi1,2
Umberto Spagnolini1, and Stefano Zanero1

1 DEIB, Politecnico di Milano, Italy
2 Trend Micro Inc.

{michele.carminati,federico.maggi,umberto.spagnolini,stefano.zanero}@polimi.it
alessandro1.baggio@mail.polimi.it

Abstract Modern financial frauds are frequently automated through
specialized malware that hijacks money transfers from the victim’s com-
puter. An insidious type of fraud consists in repeatedly stealing small
amounts of funds over time. A reliable detection of these fraud schemes
requires an accurate modeling of the user’s spending pattern over time.
In this paper, we propose FraudBuster , a framework that exploits the end
user’s recurrent vs. non-recurrent spending pattern to detect these so-
phisticated frauds. FraudBuster is based on a learning stage that builds,
for each user, temporal profiles and quantifies the deviation of each in-
coming transaction from the learned model. The final output is the ag-
gregated score that quantifies the risk of a user of being defrauded. In this
setting, FraudBuster detects frauds as transactions that are not simply
“anomalous”, but that would change the user’s spending profile.
We deployed FraudBuster in the real-world setting of a national bank-
ing group and measured the detection performance, showing that it can
outperform existing solutions.

1 Introduction

Financial frauds have been steadily increasing over the past few years, result-
ing in billions of dollar losses [1]. Malware seems to be evolving through the
collaboration between malware creators, growing by 16% since 2016. In 2016 fi-
nancial malware infected about 2,8 million personal devices, a 40% increase since
2015 [2]. Despite financial institutions rely on fraud-analysis systems, fraudsters
keep refining their techniques to remain unaccountable. Automated frauds are
typically implemented via specialized malware, sold in underground markets,
that can be easily customized to perform and/or hijack money transfers. An in-
sidious type of fraud consists in keeping a “low profile” by stealing small amounts
of funds in multiple rounds over time. Due to their stealthiness and recurring
nature, we call these attacks as salami-slicing frauds, referring to the well-known
fraudulent technique [3]. Moreover, Internet banking seems like the perfect venue
for this type of attacks, due to the increasing adoption of micro-payment systems,
with direct debit on the bank account. Detecting these sophisticated schemes re-
quires a robust modeling of the end user’s spending patterns to exclude false

positives due to legitimate, small-amount, recurrent transfers (e.g., subscrip-
tions). The detection task is challenging because frauds are dynamic and “blend
in” with legitimate transactions. Furthermore, the scarcity of publicly available,
real-world datasets makes research in this area a daunting task. Our state-of-the-
art analysis revealed that existing works presume the existence of periodicities
in users’ spending patterns, without verifying it on real data.

In this paper, we propose FraudBuster , a fraud-analysis system that aims
to detect salami-slicing frauds by exploiting a precise modeling of recurrent vs.
non-recurrent spending patterns. FraudBuster is based on a learning stage that
automatically estimates the end user’s temporal profiles by means of histori-
cal (and likely fraud-free) spending patterns and quantifies the deviation of the
current user’s spending profile from the learned model. In particular, we apply
signal processing techniques to extract temporal patterns “hidden” in the time
series obtained from the transaction history. We show that temporal patterns
exist, and thus a fraud-detection technique augmented by temporal-pattern clas-
sification is more effective than conventional detection approaches. First, Fraud-
Buster classify each user based on its spending pattern. Then if a user is labeled
as “periodic” (i.e., his or hers spending patter is characterized by periodicity),
FraudBuster aligns and averages the observed time series to create a reference
pattern model. In other words, we derive the most likely spending activity. Small
deviations from strict periodic pattern are accounted by the dynamic time warp-
ing (DTW) algorithm [4] that is adapted here to measure the similarity between
two temporal sequences up to a small deviation from the reference pattern. For
both users with and without periodic spending patterns, FraudBuster uses a
proper time-windowing analysis of transactions. For each incoming transaction,
FraudBuster measures the deviation (i.e., anomaly score) of the user’s spending
activity from the learned model. The final output is the aggregated score that
quantifies the risk of a user of being defrauded. By doing this, FraudBuster sup-
ports the analysts’ ex-post analysis (i.e., manual investigation of frauds), making
analysts focusing only on highly ranked users and on transactions that deviates
most from the user’s spending pattern.

We tested FraudBuster in the real-world context of a large national bank.
Leveraging the domain expert’s knowledge, we reproduced salami-slicing frauds
performed against banking users. FraudBuster achieves a detection rate remark-
ably above state-of-the-art approaches, detecting 60% more defrauded users. In
addition, we prove the effectiveness of the time-series analysis on the detection
performance and investigate the robustness of FraudBuster against mimicry at-
tacks and real-world salami-slicing frauds.

The main contributions are:

– We conduct a case-study analysis on a real-world dataset to show the im-
portance of modeling recurrent vs. non-recurrent spending habits.

– We design FraudBuster , an efficient tool to detect salami-slicing frauds based
on an accurate modeling of the user’s temporal profile.

– We provide a comprehensive evaluation of FraudBuster and show that it
outperforms the state of the art.

2 Background and Motivation

Internet banking services are heavily targeted by cyber criminals. A compro-
mised banking account can be used to directly steal funds from the available
balance or can be sold on the underground market. The main tools exploited by
fraudsters are the so-called “banking Trojans” or “infostealers,” specific types of
malware that leverage Man-in-the-Browser (MitB) techniques to intercept and
modify web pages, as well as transaction content, at the level of the render-
ing engine of the browser, in a fully transparent way. Endpoint solutions offer
little protection because they are hard to deploy uniformly, due to the variety
of devices. Also, modern infostealers are often able to bypass the second factor
authentication, if present, by infecting the mobile device and stealing the OTPs.
Therefore, effective fraud-detection solutions to identify fraudulent transfers are
still a much-needed product. In the context under analysis, frauds can be con-
sidered as anomalies in banking transactions. State-of-the-art detection systems
rely on statistical and data-mining techniques to detect anomalous transactions
and support the analysts during manual investigation. We can broadly distin-
guish between three main cases of interest. First, a transfer can be anomalous
per se. For instance, a transfer of two or three orders of magnitude above the
maximum amount ever transferred by a given user is clearly anomalous. Sec-
ondly, a transaction can be anomalous within a certain context (e.g., day, week,
time of the year). Third, a series of non-anomalous transactions could be anoma-
lous only when observed all together. These are called collective anomalies and,
according to [5], are the most challenging to detect. Whenever a modern bank-
ing Trojan infects the victim’s machine, it can execute multiple transactions,
either piggybacking while the user is already performing online banking tasks
(i.e., transaction hijacking), or simply while the browser is open (e.g., via session
stealing). This allows the fraudster to keep a “low-profile” by transferring small
amounts of funds in multiple rounds over time, and thus evading even the most
advanced detection techniques. Nowadays collective anomalies are growing with
the aid of sophisticated malware kits [6]. We use the term salami-slicing frauds,
referring to the well-known fraudulent attack scheme [3], to indicate collective
frauds perpetrated over a given time span (e.g., day, week, month) with the goal
of automatically stealing substantial amount of funds from the victims.

2.1 Goals and Challenges

The goal of this work is to propose a practical answer to the aforementioned
problem, so as to support the banking analyst dealing with salami-slicing frauds.
Due to the strict dependency between these frauds and time, the problem can be
reduced to an anomaly detection on time series. However, it is difficult to distin-
guish between users with vs. without periodic spending patterns. In fact, time
series obtained from money transfers are characterized by stochastic attribute
values and shifts in time, which may conceal the true periodicity. Another chal-
lenging aspect is that frauds are dynamic, resembling legitimate transfers (e.g.,
when performed using the victim ’s computers as a proxy), rare, and hidden

in each user’s transactions. Hence, it is hard to detect frauds with real-world-
compliant precision and efficiency.

3 Related Works

Fraud and anomaly detection are a wide research topic for which we refer the
reader to [5,7,8]. In this section, we focus on fraud detection from a temporal
point of view, showing that the current landscape of fraud-detection solutions is
not sufficiently mature to detect stealthy attacks that, similarly to salami-slicing
frauds, are performed with the goal of evading detection techniques. In particu-
lar, we analyze the banking, intrusion detection, and credit card fraud detection
contexts that shares many common aspects and, hence, can be compared.
Internet banking. One of the most recent and effective fraud-detection system
for Internet banking is BankSealer [9]. It approaches the problem of detecting
frauds from a temporal point of view by tailoring a set of thresholds on time-
dependent attributes (e.g., number of transactions, the total amount, and maxi-
mum daily number of transactions per time windows). This technique models the
spending habits in a simple yet effective way: a transaction is anomalous, in a cer-
tain time interval, if exceeds the set of detecting thresholds. However, BankSealer
does not consider whether transactions exhibit a periodic and repeating pattern
in a reference period (e.g., monthly, weekly, daily). This is reflected in a low
detection rate when multiple low-amount frauds (like salami-slicing frauds) are
observed. The unsupervised approach presented in [1] applies contrast pattern
mining considering the dependence between events at different points in time
to detect not fraudulent transactions but anomalous activities in the interaction
between the bank’s customer and the web application.
Intrusion Detection. In [10] and [11], the authors apply the Discrete Fourier
Transform (DFT) on time series to identify anomalous frequencies. In particu-
lar, [11] compares the frequency representations by means of Mutual Informa-
tion [12] to detect anomalies. In the same direction, [13] proposes a novel distance
measure to compare two different DFT. However, these works rely on the as-
sumption, not valid in our context, that the normal spectrum, derived from the
network time series, is “flat”, while the spectrum produced by an attack shows
peak for specific frequencies.
Credit Card Fraud Detection. The authors of [14] propose time-based tech-
niques applying a modified version of the k-means clustering algorithm to group
transactions in each time window. The centroids of the resulting clusters (e.g.,
daily, weekly, and monthly cluster) are then used as baselines, and each new
transaction’s anomaly is quantified as the distance from such centroids. In [15],
the authors compare well-known supervised techniques such as support vector
machines, random forests and logistic regression applied on a real dataset. To
consider time dependent features, they derive attributes by aggregating trans-
actions, employing different time windows length. In [16], the authors aggregate
transactions based on time windows of fixed length to extract time-dependent

features. Then, they compute the anomaly score of a transaction with a lo-
gistic score. In [17], the authors employ the Basic Local Alignment Search
Tool (BLAST) [18], a sequence alignment technique that identifies transactions
that do not follow the spending pattern of the customers.

3.1 Critics

Existing works face the temporal anomaly detection problem by aggregating
data instances in time windows and creating new time-dependent features, or by
comparing past time series with the current one by means of the DFT. The main
issue is that these methods assume that users exhibit periodic spending habits
without demonstrating it. Another issue of the presented works is that they
usually consider only few attributes for building user’s profile. As demonstrated
by our work, a deeper analysis of transaction’s feature can be more effective.
In addition, the authors in [1] show that classic time-based anomaly-detection
methods (e.g., DFT) fail when applied as is in the online banking context, which
is characterized by mixed scenarios, with users changing their habits over time.
Beside this, the presented approaches based on DFT are interesting, but they
usually assume an uncorrelated behavior for legitimate user (i.e., flat spectrum)
and a “spiked” spectrum for the attacks. As shown in § 4, this assumption does
not hold up in our context. A final critic is the high complexity of existing works.
They often require a temporal complexity that scales with mn, where n is the
length of the historical time series in which we want to search a subsequence
with length m. For a real-time analysis, it is impracticable since n is very high.
The clustering algorithm proposed in [14] is also infeasible since it considers all
the possible permutations in the time windows to solve the shift of transactions.

4 Case Study

4.1 Recurrent Spending Patterns Analysis

Since we found no work that verified the actual presence of periodicities in user’s
spending patterns we run a case study. We performed a temporal analysis of real
banking transactions, looking for recurrent spending patterns. This analysis is
an essential prerequisite for detecting salami-slicing frauds effectively. Our goal
is to distinguish between periodic and non-periodic spending patterns. We focus
on a “per user” temporal analysis, grouping bank customers and representing

Threshold
Max coefficient

2) Autocorrelation
Computation

1) Time Series
Extraction

3) Bartlett Filter
Application

4) Periodic Spending
Pattern Classification

Figure 1. Time-series analysis and periodic spending pattern classification.

their activity with the time series of the daily number of transactions. These time
series are characterized by isolated “spikes” (i.e., days in which the user performs
transactions), interleaved by long idle periods. Moreover, we notice a minority
of low peaks, which can be interpreted as noise, due to the intrinsic randomness
of users’ activity. As expected, time series present alignment problems between
“corresponding” peaks (i.e., events belonging to different time series but “near”
from the temporal point of view), due to the shifts in time of user’s transactions.
These make the analysis a challenging task.

Time Series Analysis and Periodic Spending Pattern Classification.
We consider weekly, bi-weekly, three-weekly, and monthly periodic spending
patterns. The selection of “n-weekly” users comes from the need of finding the
smallest reasonable recurrent spending pattern (i.e., periodicity), excluding sub-
periodicities; i.e., we do not want to consider as monthly users, users which are
simply “weekly users” (a month is a multiple of a week and, hence, a weekly
user is also monthly users, but not vice-versa). We do not consider longer peri-
ods due to the limited timespan of the dataset under analysis. To spot recurrent
transactions we rely on the autocorrelation analysis [19,20]. The correlation of
a time series with itself at different mutual time-shifts measures their similar-
ity and a high autocorrelation value at given time lag τ implies a temporal
pattern with periodicity T = τ . To limit the problem of small shifts in user
activity, we smooth the autocorrelation values by applying a convolution with
a triangular-shaped Bartlett filter [21] that spreads each transaction spike over
its nearby days, implicitly giving a time-tolerance in pattern analysis. With re-
spect to other methods such as DFT or semblance analysis (see [20] for common
techniques used in the time series domain), we choose to use Bartlett filter and
Autocorrelation since, after an empirical evaluation, they best manage time se-
ries characterized by spikes and noise without generating too much ripple in
the frequency domain. In order to label a user as “periodic” or “non-periodic”,
we calculate all the autocorrelation coefficients for τ ={weekly, bi-weekly, three-
weekly, monthly}. Then, we test each user periodic behavior based on the largest
autocorrelation coefficient. To distinguish periodic from non-periodic users, we
set a threshold: if no autocorrelation coefficient overcomes this value, the user is
labeled as non-periodic. The threshold is defined from a percentage of the au-
tocorrelation value in the origin (i.e., for τ = 0), as this sets the reference value
for self-similarity analysis. We empirically choose the threshold as the value
that minimizes the miss-classification probability of periodic users, expressed in
terms of the Minimum Distance of Pair Assignment (MDPA) [22]. The lower the
MDPA value is, the closer relation between users exists and hence a common
periodicity in their spending activity. This happens for a threshold’s value equal
to 70%, which produces an abrupt change in the trend of the metric analysis.
Fig. 1 shows the applied methodology.

Results. We apply the aforementioned algorithm on the dataset under analysis.
For this test, we keep users with at least one transaction per month in order
to reduce the artifacts caused by occasional users. As shown in Tab. 1, most of
users (about 56%) do not exhibit any measurable temporal pattern. However, a

Table 1. Periodic spending pattern classification results.

Dataset Classified Periodic Spending Pattern (%)
Weekly Bi-Weekly Three-Weekly Monthly No Periodicity

April - July 2.7 4.0 5.2 32.0 56.1
April - August 2.5 3.2 4.0 32.8 57.5

non-negligible portion of users, about 32% exhibits a monthly periodic spend-
ing pattern. If we consider also “n-weekly” users, the total number of periodic
spending patterns reaches the 44%. Hence, the percentage of weekly, bi-weekly
and three-weekly groups is quite small. From a manual inspection, we noticed
that these groups are more subject to noise. This is also proved by the fact that
their number largely decrease when considering longer timespan. Since we cannot
prove with empirical evidence that these groups are statistically meaningful, we
consider only the monthly periodicity. Finally, we test the classification algorithm
on synthetic users, with different time span length. This analysis allows us to
verify the quality of our classification algorithm, since it provides a ground truth
and shows how the classification changes varying parameters and the timespan
length. We run several tests, each one on 1,000 synthetic users, varying the time
series length and the probability of a user to be active on monthly basis. For
each of these configuration, we analyze the percentage of monthly users classi-
fied. With a longer time span, the percentage of non-periodic users identified
as monthly users decreases, while the percentage of monthly users, identified as
periodic, increases. This because in short time series the presence of noise and
time shifts are much more relevant and leads to a wrong users’ classification.

5 Approach Overview

In this section, we describe FraudBuster , an analysis system that detects salami-
slicing frauds by exploiting recurrent vs. non-recurrent spending patterns.

Historical Transactions

Time Series Analysis
Autocorrelation with Bartlett Filter

Periodic Spending Pattern
Classification

Autocorrelation Coefficient Analysis

1) Recurrent Spending Pattern Analysis

Time-series-based Profile

Time Series

Time-windows-based Profile

Histograms Thresholds

2) Temporal Profiles Construction
Average Past Profile DTW Alignment and

Barycentric Averaging
Histogram Threshold

Averaging

Deviation from PastDynamic Time Warping
Distance

Asymmetric Weighted
Minkosky Distance

RUNTIME PHASE

 3) Temporal Profiles Scoring

Distance from
Average Past Profile

Dynamic Time Warping
Distance

Asymmetric Weighted
Minkosky Distance

Fraud Risk Score

TRAINING PHASE

Current Transactions

Periodic users Periodic and non periodic users

Current
Time-series-based Profile

Current
Time-windows-based

Values
Current Profiles

Figure 2. FraudBuster approach: time-windows-based profile (light gray) and time-
series-based profile (dark Gray) that are built for each user.

5.1 Training Phase

The training phase takes as input the list of historical transaction and builds,
for each user, the profiles that model the spending pattern. As depicted in
Fig. 2, given the inputs, FraudBuster performs the training in two steps: re-
current spending pattern analysis and temporal profile construction. This phase
is repeated at the end of each time windows (e.g., monthly) to keep into consid-
eration shifts and updates of the user’s spending pattern.
Recurrent Spending Pattern Analysis. Transactions time series are ana-
lyzed to extract user’s recurrent spending pattern following the procedure de-
scribed in § 4. FraudBuster first applies the autocorrelation with the Bartlett
filter to extract the autocorrelation coefficient. Then, it distinguishes periodic
(i.e., monthly spending pattern) from non-periodic (i.e., non-monthly spending
pattern) users by means of a threshold: if no autocorrelation coefficient over-
comes this value, the user is labeled as non-periodic.
Temporal Profiles Construction. For each user, FraudBuster generates two
classes of temporal profiles: the time-series-based and the time-windows-based
profile. Each type of profile extracts different statistical features from the trans-
action’s attributes (see Tab. 2), according to the type of model built.

The time-series-based profile is designed for periodic users only and evalu-
ates the deviation of the current user’s time series leveraging on their recurrent
spending patterns observed in the past. In other words, it compares transactions
time series in different time-periods and, therefore, it cannot be applied to non-
periodic users since they don’t show “similar” patterns that can be compared.
Hence, it is built only on attributes that allows an accurate temporal analysis
and for which the time-windows-based profile is not sufficient to discriminate
anomalous transactions from legitimate ones: Number of Transactions, Amount,
and Total Amount attributes.

The time-windows-based profile is designed for both users with periodic spend-
ing pattern and users with non-periodic spending pattern. It evaluates the devia-
tion of the current user’s behavior from the trained one aggregating transactions
according to time windows of monthly length in a set of thresholds and his-
tograms. In particular, it considers all features presented in Table 2 and does
not compare “patterns” in data but only the aggregated attributes values in the
time-windows. For these reasons, it is complementary to the time-series-based
approach and is applied to both classes of users.

For both profiles, FraudBuster computes the average past profile and the devi-
ation of past profiles from the average one. FraudBuster builds the time-windows-
based profile by means of the average histograms for categorical attributes and
thresholds for numerical ones. The thresholds are built based on the mean and
the standard deviation of attribute values. The deviation from the average his-
togram is computed using the asymmetric weighted Minkowski distance [23].
For the time-series-based profile, FraudBuster uses the DTW Barycenter Aver-
aging (DBA) [24] method to compute the average time series and the dynamic
time warping (DTW) distance [4] for computing the deviation.

5.2 Runtime Phase

At runtime, FraudBuster evaluates nearly real-time each new transaction against
the trained profiles and ranks users according to the aggregated risk of being de-
frauded. In particular, it measures the deviation of the current spending behavior
with respect to the average profile built during the training phase.
Temporal Profile Scoring. For both profiles, it computes the current tempo-
ral profiles and its distance from the trained average one. For the time-windows-
based profile, FraudBuster incrementally builds the current threshold and his-
togram distribution, while for the time-series-based profile, FraudBuster incre-
mentally builds the current time series. Then, it computes the distance from the
average profile with the asymmetric weighted Minkowski distance for histograms,
the percentage gap for thresholds, and the dynamic time warping (DTW) dis-
tance for time series. Finally, the anomaly score is defined as the relative differ-
ence between the deviation computed during training and the current distance.
By doing this, it considers the variance of the user’s spending behavior. The
final output is represented by the ranked list of users ordered by the aggre-
gated risk score, which keeps into consideration the time-windows-based and the
time-series-based anomaly score of each transaction.

6 System Details

In this section, we describe how FraudBuster works, giving a detailed description
of the time-windows-based and the time-series-based profiles.

6.1 Time-windows-based Profile

For each numerical attribute, during the training phase, FraudBuster builds
a threshold on the average plus the standard deviation of attribute value. At
runtime, the system computes the anomaly score as the percentage gap between
the trained threshold and the current values of incoming transactions.

For each categorical attribute, during the training phase, FraudBuster com-
putes the average histogram distribution that counts the occurrences of each
attribute value over each time windows and the mean deviation of historical
user’s spending pattern (i.e., histogram) from the average one. The distance is
computed with the asymmetric weighted Minkowski distance [23], using a L-
1 norm that linearly considers deviations between histograms. For each bin of
the histogram we assign a weight based on the normalized frequency of the at-
tribute that gives more importance to previously unseen values. At runtime,
FraudBuster incrementally builds the current histogram distribution process-
ing incoming transactions and computes the current distance from the average
histogram built during the training phase.

The anomaly score is computed for each user, evaluating incoming transac-
tions, and is defined as the relative difference between the current distance and
the deviation computed during the training phase. Time-windows-based profile
training and runtime phases are shown in Alg. 1.

Algorithm 1: Time-windows-based profile training and runtime phases (for user U).

Input: Historical transactions of user U ; // Training Phase
1 for a in attributes A do
2 if a in numerical then
3 for w in historical time windows W do
4 past_profilew(a) =

∑
t∈w

a(t) ; // cumulative value of the attribute a

5 end
6 avg_profile(a) =

∑
w∈W

past_profilew(a)/W ; // average value

7 std_dev(a) =
√

(1/W)
∑

w∈W
(past_profilew(a)− avg_profile(a))2 ;

// deviation
8 threshold(a) = avg_profile(a) + std_dev(a)
9 end

10 if a in categorical then
11 for w in historical time windows W do
12 past_histw(a) = hist(a(t)|t ∈ w) ; // histogram of the attribute c
13 end
14 avg_hist(a) =

∑
w∈W

past_histw(a)/W ; // average past histogram

15 avg_dev(a) =
∑

w∈W
minkowski_dist(past_hist(a)w − avg_hist(a))/W

16 end
17 end

Result: time_win_profile(U) = ([threshold(a)], [avg_dev(a)]) for a in A
Input: Current transactions of user U ; // Runtime Phase

18 for a in attributes A do
19 if a is categorical then
20 curr_profile(a) =

∑
t∈curr_time_window a(t) ; // current cumulative value

21 time_win_score(a) = (curr_profile(a)− threshold(a))/threshold(a);
22 end
23 if a is numerical then
24 curr_hist(a) = hist(a(t)|t ∈ curr_t_win) ; // current histogram
25 curr_dist(a) = minkowski_dist(curr_hist(a)− avg_hist(a)); // distance
26 time_win_score(a) = (curr_dist(a)− avg_dev(a))/avg_dev(a);
27 end
28 end

Result: time_win_score(U) =
∑

a∈A
t_win_score(a), if t_win_score(a) > 0

6.2 Time-series-based Profile

During the training phase, for each user, FraudBuster builds the average time
series using the DTW Barycenter Averaging (DBA) [24] algorithm and the av-
erage deviation from the historical time series computing the DTW distance.
At runtime, FraudBuster incrementally builds a new time series based on in-
coming transactions and computes the current dynamic time warping (DTW)
distance from the average time series computed during the training phase. The
anomaly score is computed for each user evaluating incoming transactions and
is defined as the relative difference between the current distance and the average
one. Time-series-based profile training and runtime phases are shown in Alg. 2.
Time series Comparison and Alignment. In order to compute the distance
value among time series, it is necessary to align and compare them. To per-
form both comparison and alignment, we adopt the DTW algorithm [4] that
computes the optimal alignment (i.e., match) and measures the similarity (i.e.,
distance) between the two time series. The sequences are “warped” non-linearly
in the time dimension to determine a measure of their similarity. More formally,

Algorithm 2: Time-series-based profile training and runtime phases for user U .

Input: Historical transactions of user U ; // Training Phase
1 for x in temporal attributes X do
2 for period τ detected in the historical timespan T do
3 t_seriesτ (x) = {x(t)|t ∈ τ} ; // past time series
4 end
5 avg_time_series(x) = DBA(t_seriesτ (x)) ; // average time series(x)
6 avg_dev(x) =

∑
τ∈T

DTW (t_seriesτ (x), avg_time_series(x))/T ; // average

deviation
7 end
Result: time-series-based_profile(U) = [avg_dev(x) for x in X]
Input: Current transactions of user U ; // Runtime Phase

8 for x in temporal attributes X do
9 current_time_series

τ
′ (x) = {x(t)|t ∈ τ

′
} ; // current time series

10 curr_dist(x) = DTW (current_time_series
τ

′ (x), avg_time_series(x)) ;
// distance

11 time_series_score(x) = (curr_dist(x)− avg_dev(x))/avg_dev(x)
12 end

Result: time_series_score(U) =
∑

x∈X
time_series_score(x), if

time_series_score(x) > 0

the DTW algorithm finds an optimal alignment between two ordered sequences,
X = [x1, x2, ..., xn] of length N and Y = [y1, y2, ..., ym] of lengthM using a local
distance metric d(X,Y) between each pair of events x, y. As local distance we use
a L-1 norm and for each pair of elements we obtain the cost matrix C ∈ RN×M
defined as C(n,m) = d(xn, ym). The alignment is a sequence p = (p1, p2, ..., pL)
indexing over the pair (n,m) of C under the following constraints: 1) bound-
ary condition, p1 = (1, 1) and pL = (N,M), requires that the first and last
components of the aligned sequence should coincide; 2) monotonicity condition
(n1 ≤ n2 ≤ ... ≤ nL and m1 ≤ m2 ≤ ... ≤ mL) implies that the ordering must be
preserved; 3) step size condition describes the relation between the original se-
quences and the final alignment: pl+1−pl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1 : L−1].
As a consequence, the cost cp(X,Y) of an alignment p between X and Y with
respect a local distance measure d is cp(X,Y) =

∑L
l=1 c(xnl , yml). The optimal

distance DTW (X,Y) between X and Y is obtained by minimizing cp(X,Y).
In addition, we set additional constraints to avoid a wrong time series alignment
and comparison. The first problem is that time distant elements can be aligned.
To solve this, we introduce a global constraint (Sakoe-Chiba band region [4]),
which considers an alignment admissible if the mutual time-distance between
two values is bounded by a specific time value. The second problem is that each
entry of the time series can be aligned to more than one entry of the second
time series, making FraudBuster less resistant to fraudsters that try to simulate
user behavior. Hence, we introduce a further constraint in the alignment region
not allowing multiple alignment. Finally, the Boundary condition can introduce
artifacts that are avoided by adding zero elements at the begin and the end of
each sequence.
Time Series Averaging. As shown in Alg. 3 and Fig. 3, the average time
series is constructed by aligning the set of time series with the DTW algorithm

Algorithm 3: DTW Barycenter Averaging (DBA).

// i = { i-th historical time series }, k = { k-th time series’s component }
Input: Time series t_seriesi = {xi(ti,j)|t ∈ τ, 1 ≤ i ≤ N, 1 ≤ j ≤ K}

1 avg_t_series = {x(tavg,j)|tavg,j ∈ τ detected} ; // average time series definition
2 for j in K do
3 tavg,j =

∑N

i
barycenter_timej(t_seriesi) =

∑N

i
ti,j/N ; // Barycenter in time

4 x(tavg,j) =
∑N

i
barycenter_valuej(t_seriesi) =

∑N

i
xi(ti,j)/N ; // Barycenter

value
5 end
Result: avg_t_series =

∑N

i=1
barycentervalue,time(DTWalign(t_seriesi))

t1

T

time_series1

time_series2

time_seriesN

avg_time_series(t)

Dynamic Time Warping
Alignment and Comparison

Dynamic Time Warping
Barycenter Averaging
Time series averaging

Historical
Transactions
Time Series

time (days)

x1(t1,1)

xN(tN,1)

x1(t1,K)

xN(tN,K)
t2

.

.

.

tN

xa(ta,1) xa(ta,K)

x2(t2,1)

x2(t2,K)

Figure 3. Average time series computation: dynamic time warping (DTW) alignment
method (blue) and DTW Barycenter Averaging (DBA) (green).

and computing the barycenter of the attributes values. The algorithm starts
aligning two time-series and computing a first “temporary” average time series
by considering the barycenter between each of their component (i.e., in time
and of the value). Then, it iteratively works in two steps until convergence. In
the first step, it applies the DTW algorithm between each individual time series
and the “temporary” average time series to find the optimal alignment. In the
second step, it updates each element of the “temporary” average time series by
computing the “barycenter” in time and of the value of each time series.

6.3 Temporal Profile Scoring

The anomaly scores can be simplified as time_windows_score = (curr_val−dev_thr)
dev_thr

and time_series_score = avg_dist−avg_dev
avg_dev

, where curr_val is the feature’s value
for numerical variable or a distance’s value between histogram for categorical
variable, avg_dist is the distance between the average time series used as ref-
erence and the current one. To mitigate the problem of “divide by zero” that
would have led to very high anomaly score even for small shift in user’s behav-

ior we add an arbitrary small smoothing parameter. Hence, the final scores are
time_window_score = curr_val−dev_thr

dev_thr+s
and time_series_score = avg_dist−avg_dev

avg_dev+s
.

Final Score Aggregation. Finally, to combine the two temporal profiles out-
puts in a risk of fraud score, we compute a weighted sum of the time-series-
based and time-windows-based scores. In particular, to make the score less bi-
ased from features characterized by high mean and standard deviation we first
apply a z-score standardization: z_scoreu,f = scoreu,f−meanf

std_devf
, where meanf and

std_devf are the mean and standard deviation of scores of the attribute f . We
estimate FraudBuster parameters by choosing the values that maximizes detec-
tion performances. To avoid over-fitting, we conduct this parameter tuning on a
subset of the overall dataset (about 3,000 randomly sampled users with at least
one transaction per month, to have a more stable dataset).

7 Experimental Evaluation

The goal of this experimental evaluation is to measure the effectiveness of Fraud-
Buster in detecting salami-slicing frauds, i) comparing the results with the tem-
poral profile of [9], ii) proving the effectiveness of temporal pattern exploitation
in the detection of these frauds, iii) assessing the robustness of FraudBuster
against mimicry-attacks, and iv) evaluating the capability to detect real-world
salami-slicing frauds. It is important to highlight that for all these experiments
we focus on the detection of salami-slicing frauds only, since the goal of this
work is to provide a mitigation to this insidious menace.

7.1 Dataset Description

The cooperation with an Italian banking group gave us the opportunity to test
our system on the real-world unlabeled dataset analyzed in [9]. The dataset,
summarized in Tab. 2, contains the fully anonymized record of the transactions
performed through the Internet banking services of one of the largest Italian
banking groups (i.e., bank transfers, phone recharges and prepaid debit cards)
and spans five months, from April to August 2013. As confirmed by our collabo-
rators, it contains no known frauds (i.e., the dataset was preprocessed removing
anomalous instances). This dataset allowed us to evaluate the detection power of
FraudBuster against fraudulent scenarios, to prove the effectiveness of temporal
pattern exploitation, and to compare the results with the temporal profile of [9].

Table 2. Number of transactions, number of users, and selected features of the dataset.

Dataset Transactions Users Selected Features
Bank Transfer 379,242 47,909 # of Transaction, Total Amount, # of New IBAN ,

IBAN, IBAN_CC, ASN_CC, Amount(Discretized)
Phone Recharge 50,708 15,683 # of Transaction, Total Amount, # of New Phone Num-

ber, Phone Number, ASN_CC, Amount(Discretized)
Prepaid Debit Card 34,583 8,424 # of Transaction , Total Amount, # of New CardID,

CardID, ASN_CC, Amount(Discretized)

We immediately noticed that the transactions are characterized by a “weekly”
pattern of five days (working days) with a high value of records, followed by
two days (weekend) of lower activity. We also noticed that August has a lower
volume of transactions, likely due to the typical Italian summer holiday period.
Dataset Features. Beyond the obvious features (e.g., amount and timestamp),
the dataset contains the following attributes: UserID that is a unique ID asso-
ciated to the “author” of the transaction; IBAN and IBAN_CC of the trans-
action recipient and its country code (CC); CardID, a unique ID associated to
each prepaid debit card; ASN_CC, the Autonomous System Number (ASN)
and its CC from which the user was connected when issuing the transaction. We
purposely ignore IP due to its high variance (e.g., dynamic IP address, use of
proxy). Personally-Identifiable Information (PII) (e.g., UserID, IBAN) is hashed.

7.2 Evaluation Approach and Metrics

The evaluation of FraudBuster is particularly challenging due to the lack of
a ground truth. Hence, leveraging on the domain expert’s knowledge and on
the analysis of some real salami-slicing frauds attack schemes, we reproduced
synthetically-generated frauds that replicate real attacks performed against on-
line banking users. Following the threat model described in § 2, we assume that
the goal of the attacker is to perform frauds while remaining undetected. There-
fore, frauds are characterized by low and medium daily amounts, are executed
during working hours either from the victim’s device that is used as a proxy or
from unknown devices (i.e., foreign ASN_CC). For the bank transfer context,
we test both the case of national and foreign IBAN_CC. In Tab. 3 we list all
our threat scenarios. We put effort to produce synthetic transactions that re-
semble the real ones to be as realistic as possible and to avoid the overfitting
of our approach to “trivial” fraudulent transactions. For this reason, features’
distributions are extracted on the basis of an in-depth dataset analysis to make
them “indistinguishable” from genuine transactions. The representativeness of
these scenarios was later confirmed by the real-world frauds analyzed in Exp. 4.

We split the dataset following the holdout method and using three months for
building the profiles and the last month (plus synthetic injected transactions) for
the detection performance analysis. Even if FraudBuster works near real-time,
we decide to evaluate the detection at the end of the month to fairly compare
the performance metrics over the same period. As explained in § 6, FraudBuster
computes, for each incoming transaction, the anomaly score on the basis of the
learned model and assigns an aggregated risk score to each user. Finally, it ranks
the pair < user, score > in descending order, to support the analysts’ ex-post
analysis (i.e., manual investigation of fraudulent transactions), by making them
investigate only on the top N users of the ranking and on transactions that
deviates most from the user’s spending pattern. For the first four experiments,
after training, we randomly select N users and inject (blindly to FraudBuster)
the synthetically-generated salami-slicing frauds into their transactions belong-
ing to the testing data. Then, we use FraudBuster to analyze the testing data

Table 3. Fraud scenarios. The label “Equally” means “frauds are executed toward dif-
ferent accounts with repetitions”, “Max one” means “maximum one fraud per account”,
“All to one” means “all frauds are executed toward one account”.

Fraud #Frauds IBAN ASN Beneficiary Amount (e)
scenario Distribution Bank Transfer Prepaid card Phone recharge
1 10 National National Equally 100-500 50-100 5-25
2 10 National National Equally 500-1,500 100-250 25-50
3 10 National National Equally 1,500-3,000 250-500 50-100
4 10 National National All to One 500-1,500 100-250 25-50
5 10 National National Max one 500-1,500 100-250 25-50
6 5 National National Equally 500-1,500 100-250 25-50
7 5 Foreign National Equally 500-1,500 - -
8 5 National Foreign Equally 500-1,500 100-250 25-50
9 5 National National Equally 2,500-7,500 500-1000 100-200

and to rank users. To evaluate the detection performance, we consider the top
N users in the ranking. The value of N is chosen according to bank workforce,
but from our information, the team of analysts is able to analyze around 1-5%
of users. Therefore, in these experiments, we consider the top N = 1% users of
the final ranking from those ranked as anomalous. We perform these operations
for each threat scenario described in Tab. 3, which specifies the number, the
transaction’s beneficiary distribution, and the features’ values of frauds injected
per user. Moreover, we repeat the test 50 times and average the results to avoid
statistical artifacts due to the injection pattern of frauds to random users.

Under these assumptions and considering as defrauded the top N users in the
ranking, a True Positive (TP) is a defrauded user correctly ranked as defrauded,
False Positive (FP) is a legitimate user wrongly ranked as defrauded, a False
Negative (FN) is a defrauded user wrongly ranked as legitimate, and a True
Negative (TN) is a legitimate user correctly ranked as non-anomalous. Then,
we compute the well-known evaluation metrics of True Positive Rate (TPR),
which compute the percentage of correctly identified defrauded users and False
Positive Rate (FPR), which compute the percentage of legitimate users who
are wrongly identified as defrauded: T P R = T P

T P +F P
, F P R = F P

T N+F P
. We also

compute the Average Precision (AP) that summarizes the precision-recall curve
as the weighted mean of the precision achieved at every position in the ranking.
By doing this, it takes into account the position (i.e., the order) of defrauded
users in the ranking: AP =

∑n

k=1
P (k)·F (k)
R

, where R is the number of defrauded
users, N is the number of user considered in the raking, P (k) is the precision
at cut off k, and F (k) = 1 if the kth user is fraudulent, 0 otherwise. Since
our dataset is highly unbalanced in favor of normal users, we use the Average
Accuracy (AA) metrics. The AA is an average of the accuracy obtained for both
fraudulent and normal users classes: AA = 1

2

[
T P

T P +F N
+ T N

T N+F P

]
. Finally, we

graphically represents FraudBuster performances with the Receiver Operating
Characteristic (ROC) that express the ratio between TPR and FPR.

It is important to highlight that the described evaluation approach and met-
rics, besides giving an index of the detection performance, allow us to indirectly
evaluate FraudBuster from the point of view of the cost of challenging frauds and

Table 4. Experiment 1 results. Considered metrics: True Positive Rate (TPR), Average
Accuracy (AA), and Average Precision (AP). The label FB refers to FraudBuster , while
BS refers to temporal profile of BankSealer.

Bank Transfer Prepaid Debit Card Phone Recharges
TPR AP AA TPR AP AA TPR AP AA

Scenario FB BS FB BS FB BS FB BS FB BS FB BS FB BS FB BS FB BS
1 69 15 61 12 84 57 90 44 95 33 95 71 97 70 99 78 98 85
2 75 28 70 21 87 63 91 52 95 46 95 75 97 80 99 90 99 90
3 79 40 77 34 89 70 93 60 97 62 96 80 98 89 99 96 99 94
4 82 28 80 21 91 63 91 52 95 46 95 75 98 80 99 90 99 90
5 74 28 69 21 87 63 95 52 98 46 97 75 98 80 99 90 99 90
6 42 16 30 11 70 57 75 31 66 23 87 65 87 61 93 67 93 80
7 79 16 73 11 89 57 - - - - - - - - - - - -
8 76 16 79 11 88 57 88 31 90 23 94 65 98 61 99 67 99 80
9 62 16 51 11 81 57 82 55 76 77 91 55 98 87 99 93 99 95

mixture 70 25 65 19 85 62 85 47 92 41 92 73 96 76 98 85 99 88

amount of funds protected from defrauding attempts. In fact, while the cost of a
FP is the time spent by the analyst in the verification process, the cost of a FN
is the stolen amount and the loss of trust in the financial institution. Hence, a
high TPR, AA, and AP associated to a low FPR guarantees that FraudBuster is
correctly ranking frauds while reducing the rate of “false” alarms, which directly
impacts the banking analyst activity, and the amount of founds stolen (i.e., TN).
Finally, by limiting the analysis to the top N% positions in the ranking, we are
putting a cap on the costs of challenging frauds (e.g., banking analysts).

7.3 Experiment 1: Evaluation Against Fraud Scenarios

In this experiment, we show the effectiveness of FraudBuster comparing the re-
sults with the temporal profile of BankSealer [9] only, since it detects “stealthy
frauds” repeated in times, like salami-slicing frauds. For each test, we inject the
synthetic frauds described above and summarized in Tab. 3, equally distributed
in the timespan of the testing data. The classification performance is shown in
Tab. 4, while the ROC curve for bank transfers is presented in Fig. 4. We show
the detection performance for the bank transfers context only for brevity, but
similar results were obtained for the other contexts. Remarkably, Fig. 4a shows
that FraudBuster outperforms the temporal profile of BankSealer in all fraud
scenarios under analysis. In particular, FraudBuster reaches a detection rate of
82%, 95%, and 98%, an average precision of 80%, 98%, and 99% and an average
accuracy of 91%, 97%, and 99% in the bank transfer, phone recharges, and pre-
paid cards dataset respectively. These results represent an improvement in all
the metrics under analysis that is 30-60% larger with respect to the temporal
profile of [9]. Therefore, FraudBuster ranks salami-slicing frauds in higher posi-
tion with respect to [9]. ROC analysis shown in Fig. 4c and Fig. 4e, highlights
that FraudBuster maintains good performance in almost every threat scenario.
The best performance is obtained in case of 10 frauds injected per users, consid-
ering national beneficiary and low amounts, with a TPR up to 82% for the bank
transfers context (95% and 97% for phone recharges and debit card contexts).

Moreover, the Average Accuracy (AA) is always particularly high, meaning that
FraudBuster successfully reduces the number of false positives while maintaining
a good TPR. The lowest performance is obtained in scenario 6, since it repre-
sents the most difficult to detect due to the low number of frauds and their high
resemblance to legitimate transactions. FraudBuster shows a TPR of 42% in
the bank transfer context (75% and 82% in the prepaid debit cards and phone
recharges contexts). However, also in this case FraudBuster detects 30% more
salami-slicing frauds than BankSealer and puts all fraudulent users in the top
3% of the ranking (see Fig. 4e). The results obtained on prepaid debit card and
phone recharges are, on average, better with respect to bank transfer domain,
since in these contexts frauds toward previously unseen values are easier to spot.

7.4 Experiment 2: Effectiveness of the Time-series-based Profile

The purpose of this experiment is to compare the detection rate of the time-
series-based profile with respect to the time-windows-based profile alone for each
attribute. Since the time-series-based profile is defined only for periodic users,
here we design the experiment following the same methodology of the previous
one, but keeping only periodic users. We consider two different scenarios: (1) 5
random frauds are injected per infected user over 5 days; (2) 10 random frauds
are injected per infected user over the whole month. Fig. 4 shows that the time-
series-based profile and the time-windows-based profile have similar performances
in the first part of the ROC curves but, after few FP cases, the detection rate
of the time-series-based profile outperform the one of the time-windows-based
profile by 20-30%. This is even more evident in the testing scenario with only
5 frauds where both profiles detect “easy-to-spot” frauds, but only the time-
series-based one, which exploit recurrent temporal patterns, is able to catch
“stealthiest” ones. These results highlight the effectiveness of the time-series-
based profile in the detection of salami-slicing frauds.

7.5 Experiment 3: Evaluation Against Mimicry Attack

Though there has been a good amount of research on fraud analysis, the security
of these systems against evasion attacks seems not to have received much atten-
tion in the banking fraud analysis context. There are many papers proposing new
techniques for fraud detection, and authors often try to measure their detection
power by testing whether they can detect currently-popular attacks. However,
the notion of security against adaptive adversarial attacks, defined as “mimicry
attacks” [25], is much harder to measure. In this experiment we investigate the
performance of FraudBuster under the assumptions that the fraudster knows the
detection algorithm and the spending habits of the victim. With this data the
attacker can approximate the behavior of the user in order to generate fraudu-
lent transactions to trick the anti-fraud framework and silently commit frauds.
Therefore, in this scenario, we inject 10 frauds mimicking user’s behavior (i.e.,
we follow the target user’s spending pattern). The results of this experiment are

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Random Ranking
FB - scenario 1
FB - scenario 2
FB - scenario 3
FB - scenario 6
FB - scenario 9
FB - scenario MIX
BS - scenario 1
BS - scenario 2
BS - scenario 3
BS - scenario 6
BS - scenario 9

(a) Exp. 1: FraudBuster vs BankSealer

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Random Ranking
time-windows-based 5 frauds-5 days
time-series-based 5 frauds-5 days
time-windows-based 10 frauds-month
time-series-based 10 frauds-month
FB - 10 frauds-month-mimicry

(b) Exp. 2 and 3: Number of transactions

0.0 0.5 1.0 1.5 2.0 2.5 3.0
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Random Ranking
FB - scenario 1
FB - scenario 2
FB - scenario 3
FB - scenario 4
FB - scenario 5

(c) Exp. 1: 10 frauds injected.

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100
Tr

ue
 P

os
iti

ve
 R

at
e

(%
)

Random Ranking
time-windows-based 5 frauds-5 days
time-series-based 5 frauds-5 days
time-windows-based 10 frauds-month
time-series-based 10 frauds-month
FB - 10 frauds-month-mimicry

(d) Exp. 2 and 3: Histogram amount.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Random Ranking
FB - scenario 6
FB - scenario 7
FB - scenario 8
FB - scenario 9
FB - scenario MIX

(e) Exp. 1: 5 frauds injected.

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(%

)

Random Ranking
time-windows-based 5 frauds-5 days
time-series-based 5 frauds-5 days
time-windows-based 10 frauds-month
time-series-based 10 frauds-month
FB - 10 frauds-month-mimicry

(f) Exp. 2 and 3: Total Amount.

Figure 4. Experiment 1, 2, and 3 Receiver Operating Characteristic (ROC) curves,
varying the number N of users considered as defrauded. FB stands for FraudBuster ,
BS stands for BankSealer. Fig. 4c and Fig. 4e show an enlargement of the ROC curves.

superimposed in Fig. 4 to have a better comparison with FraudBuster ’s perfor-
mance. As expected, FraudBuster performs worse than the previous experiments
since frauds are more similar to legitimate ones and, hence, more difficult to de-
tect. In fact, the mimicry-attack tries to keep a lower risk score, spreading frauds
in the ranking. However, it is important to highlight that FraudBuster is able to
mitigate the mimicry-attack keeping an overall detection rate around 65% and
pushing frauds in the top 3% of the ranking. This allows to detect at least the
majority of frauds and stop them. The good results obtained are mainly due to
the combination of the time-windows-based and the time-series-based profiles,
which require more effort to an attacker that wants to mimicry users’ behaviors.

7.6 Experiment 4: Evaluation Against Real-world Frauds

Due to the good results obtained in the previous experiments, we deployed
FraudBuster in the real-world setting of a large national banking group and
measured its detection performance. FraudBuster analyzed 482,930 bank trans-
fer transactions executed by 58,562 users from October 2014 to February 2015.
In particular, similarly to previous experiments, we build the spending profiles
on the first two months and analyze the performance on the sequent months,
progressively updating the temporal models with legitimate transactions only.
In order to have a ground-truth, we ask banking analysts to manually inspect
and label frauds in the ranking. FraudBuster was able to detect salami-slicing
frauds, not detected by the other protection system installed, for a total of al-
most 20 fraudulent transactions. Tab. 5 contains two different examples of the
real frauds detected by FraudBuster . The same fraudulent transactions are also
graphically presented in Fig. 5, which show (with the red color) the amount of
funds stolen in time. The fraudulent transactions in Fig. 5a and Tab. 5a present
amount less than 1,500 e and represents an attacker that exploits different ses-
sions (by hijacking real sessions or deceiving the victims to insert session tokens)
to perform his/her frauds. In this case, frauds are executed toward foreign and
Italian bank accounts, which, in some cases, are also used twice. These charac-
teristics make these salami-slicing frauds as a combination of scenario 4 (single

2015-01-12

2015-01-22

2015-02-01

2015-02-11

2015-02-21

Timestamp

0

5000

10000

15000

20000

25000

Am
ou

nt

Legitimate transactions
Frauds detected at runtime

14:24 14:52 15:21 15:500

500

1000

1500

(a)
2015-01-12

2015-01-22

2015-02-01

2015-02-11

Timestamp

0

1000

2000

3000

4000

5000

Am
ou

nt

Legitimate transactions
Frauds detected at runtime

11:22 11:25 11:280
200
400
600
800

(b)

Figure 5. Experiment 4. Examples of real frauds detected by FraudBuster . Legitimate
transactions are represented in green, while frauds in red.

IP SID Timestamp Amount IBAN
1..8 1..7 2015-01-07 14:03:06 880.17 GB..8
1..8 5..1 2015-01-07 14:32:17 200 IT..a
1..8 5..1 2015-01-07 14:44:52 55.18 IT..7
1..8 5..1 2015-01-07 14:54:08 159.2 IT..7
1..8 5..1 2015-01-07 14:55:06 1,171.2 IT..5
1..8 5..1 2015-01-07 14:56:15 631.96 IT..d
1..8 5..1 2015-01-07 14:57:16 120 IT..a
1..8 5..1 2015-01-07 14:58:29 561 IT..5
1..8 5..1 2015-01-07 15:07:43 150 FR..c
1..8 5..1 2015-01-07 15:13:11 1,318.82 IT..5
1..8 5..1 2015-01-07 15:29:01 300 IT..d
1..8 5..1 2015-01-07 15:35:17 640 IT..a
1..8 5..1 2015-01-07 15:52:50 780 FR..5
a..5 0..0 2015-01-12 12:01:23 224.74 GB..8
1..1 1..d 2015-01-21 10:07:22 5,187.5 FR..f

(a)

IP SID Timestamp Amount IBAN
2..7 5..c 2015-02-03 11:20:08 48 IT..a
2..7 5..c 2015-02-03 11:22:23 175 IT..4
2..7 5..c 2015-02-03 11:23:45 495 GB..6
2..7 5..c 2015-02-03 11:24:28 66 IT..2
2..7 5..c 2015-02-03 11:24:59 84 IT..3
2..7 5..c 2015-02-03 11:26:20 93 IT..b
2..7 5..c 2015-02-03 11:26:56 443.52 IT..1
2..7 5..c 2015-02-03 11:28:25 418.88 IT..a
3..a G..5 2015-02-04 9:52:10 5,300.6 GB..4

(b)

Table 5. Experiment 4. Examples of real frauds detected by FraudBuster . IP, Ses-
sionID (SID), and IBAN are hidden for privacy reason.

IBAN destination), scenario 7 (foreign IBAN destination), and 9 (medium-high
amount) (Tab. 3). The fraudulent transactions in Fig. 5b and Tab. 5b present
low amounts and are mainly in the same day, except for the last fraud that try
to steal a medium-high amount. These characteristics are similar to the ones of
injection scenario 5 (small amount, different IBAN destination), summarized in
Table 3. Besides salami-slicing frauds, FraudBuster was able to improve the de-
tection performance of defrauded users by placing in the first 1% of the ranking
8 defrauded users not detected by the already installed detection system.

8 Conclusions

In this paper, we provided an in-depth temporal analysis on real data exploiting
time series techniques to discern recurrent vs. non-recurrent spending patterns,
which is, to the best of our knowledge, the first of such analysis in the literature.

We presented FraudBuster , a framework that exploits users’ recurrent vs.
non-recurrent spending patterns to detect salami-slicing frauds. FraudBuster
automatically extracts end user’s spending pattern and evaluates the deviation
from its historical one. FraudBuster builds two models based on user’s period-
icity. The first model is the time-series-based profile that is designed for users
with a periodic spending pattern only. The second model is the time-windows-
based profile that is designed for all users independently from the periodicity
and aggregates user’s transactions according to time-windows. For each incom-
ing transaction, FraudBuster measures the deviation (i.e., anomaly score) of the
user’s spending activity from the learned models. The final output is an ag-
gregated score that quantifies the risk of a user of being defrauded. By doing
this, FraudBuster supports the necessary ex-post analysis (i.e., manual investi-
gation of frauds), making analysts focusing only on highly ranked users and on
transactions that deviates most from the user’s spending pattern.

We tested FraudBuster in the real-world context of a large national bank.
Leveraging the domain expert’s knowledge, we reproduced salami-slicing frauds
(in a controlled environment) performed against banking users, and recorded the
resulting fraudulent transactions. FraudBuster outperformed the state-of-the-art
temporal approach considered by detecting up to 60% more defrauded users. In
particular, FraudBuster was able to reach a detection rate up to 82%, 95%, and
99% respectively in the bank transfers, in the prepaid debit cards, and in the phone
recharges context. In addition, we demonstrated the benefits of the time-series
analysis and we investigated the performance of FraudBuster against mimicry
attacks and real-world salami-slicing frauds. FraudBuster was able to identify
real-world salami-slicing frauds, for a total of almost 20 fraudulent transactions.

The main limitation of this work is related to the scarcity of data. An analysis
of a larger dataset could have revealed more information about user’s spending
pattern. A future work could be the application of the Matching Pursuit decom-
position [26] algorithm that allows to decompose a time series in a linear combi-
nation of patterns, hence, detecting different mixture of periodicities. Moreover,
to include a more precise prediction of user’s activity in windows-based pro-
files, a numerical prediction based on ARMA process can be implemented. In
addition, it was not possible to exploit the semantic data (e.g., name of the re-
cipient, payment description/reason) due to regulatory and privacy reasons. A
future extension could be the extraction of privacy-preserving semantic features
from the bank side. Finally, the results of the spending pattern analysis of § 4
heavily depend on the modeled country (i.e., what follows a monthly pattern in
Italy could follow a weekly pattern in a different nation, or even no pattern at
all). Therefore, the findings are not easy to generalize. However, the described
methodology is independent from the context and the recurrent spending pat-
terns analysis and classification can applied automatically on any dataset.

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme, under grant agreement No.700326 (RAMSES project).

References

1. Wei, W., Li, J., Cao, L., Ou, Y., Chen, J.: Effective detection of sophisticated
online banking fraud on extremely imbalanced data. World Wide Web 16(4) (July
2013) 449–475

2. Emm, D., Unuchek, R., Kruglov, K.: Kaspersky Security Bulletin 2016. Technical
report, Kaspersky Lab (2017)

3. Bidgoli, H.: Handbook of Information Security, Threats, Vulnerabilities, Preven-
tion, Detection, and Management. Handbook of Information Security. Wiley (2006)

4. Müller, M.: Dynamic time warping. Information retrieval for music and motion
(2007) 69–84

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM
Comput. Surv. 41(3) (July 2009) 15:1–15:58

6. KasperskyLab: Banking Trojans: mobile’s major cyberthreat (09 2015)
7. Phua, C., Alahakoon, D., Lee, V.: Minority report in fraud detection: classification

of skewed data. SIGKDD Explor. Newsl. 6(1) (June 2004) 50–59
8. Bolton, R.J., Hand, D.J.: Statistical fraud detection: A review. Statistical Science

17 (2002)
9. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S.: BankSealer: A decision

support system for online banking fraud analysis and investigation. Computers &
Security 53 (2015) 175–186

10. Chen, L.M., Chen, M.C., Sun, Y.S., Liao, W.: Spectrum analysis for detecting
slow-paced persistent activities in network security. In: ICC, IEEE (2013)

11. Aiello, M., Cambiaso, E., Mongelli, M., Papaleo, G.: An on-line intrusion detection
approach to identify low-rate DoS attacks. Security Technology (ICCST), 2014
International Carnahan Conference on (2014)

12. Cover, T., Thomas, J.: Elements of information theory. Wiley, New York (1991)
13. Janacek, G.J., Bagnall, A.J., Powell, M.: A Likelihood Ratio Distance Measure for

the Similarity Between the Fourier Transform of Time Series. In Ho, T.B., Che-
ung, D.W.L., Liu, H., eds.: PAKDD. Volume 3518 of Lecture Notes in Computer
Science., Springer (2005) 737–743

14. Seyedhossein, L., Hashemi, M.: Mining information from credit card time series for
timelier fraud detection. In: Telecommunications (IST), 2010 5th Intl. Symposium
on. (2010) 619–624

15. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for
credit card fraud: A comparative study. Decision Support Systems 50(3) (2011)
602–613

16. Krivko, M.: A hybrid model for plastic card fraud detection systems. Expert Syst.
Appl. 37(8) (2010) 6070–6076

17. Kundu, A., Panigrahi, S., Sural, S., Majumdar, A.K.: BLAST-SSAHA Hybridiza-
tion for Credit Card Fraud Detection. IEEE Trans. Dependable Sec. Comput. 6(4)
(2009) 309–315

18. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. Journal of Molecular Biology 215 (1990) 403–410

19. van der Vaart, A.: TIME SERIES. Technical report, Vrije Universiteit Amsterdam
(2010) pages 67–79.

20. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing.
Prentice Hall, Upper Saddle River, NJ (1999)

21. Bartlett, M.: Periodogram Analysis and Continuous Spectra. Biometrika 37 (1950)
22. Cha, S.H., Srihari, S.N.: On measuring the distance between histograms. Pattern

Recognition 35(6) (2002) 1355–1370
23. Tran, N.M., Osipenko, M., Härdle, W.K.: Principal Component Analysis in an

Asymmetric Norm. arXiv preprint arXiv:1401.3229 (2014)
24. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic

time warping, with applications to clustering. Pattern Recognition 44(3) (2011)
678–693

25. Wagner, D., Soto, P.: Mimicry Attacks on Host-Based Intrusion Detection Systems.
In: CCS02. (2002)

26. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on 41(12) (December 1993) 3397–3415

	FraudBuster: Temporal Analysis and Detection of Advanced Financial Frauds

