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Abstract: We develop and test several machine-learning methods to perform detection
and identification of equipment failures in optical networks. Results, obtained over real BER
traces, show above 98% accuracy in most cases with reasonable algorithm complexity.
OCIS codes: 060.4250 Networks; 060.4257 Networks, network survivability.

1. Introduction

Accurate monitoring of received signal quality provides a precious source of information to secure optical networks
performance and to guarantee transmission quality. During network operation, several kinds of soft failures (as opposed
to hard failures, where signal is totally disrupted) can affect signal quality and induce anomalies in the BER at the
receiver, ultimately leading to packet losses or even service disruption. Hence, a solid mechanism for soft failure
detection (i.e., recognize anomalies due to failure occurrences), localization (i.e., identify where in the network the
failure occurred), and identification (i.e., understand the actual cause of the failure) is crucial, as it may be used by
operators to perform traffic re-routing and rapid failure recovery [1].

New generation coherent transponders give the opportunity to monitor several parameters associated to optical sig-
nal transmission, such as Optical Signal-to-Noise-Ratio (OSNR), Q-factor, or pre-Forward Error Connection Bit Error
Rate (pre-FEC BER). The amount of generated data is enormous and requires advanced data analysis techniques to
extract useful information for these large data-sets. In this context, techniques from machine learning (ML) discipline
are regarded as a strong candidate to address this issue, as ML enables automatized network self-configuration and
fast decision-making by effectively leveraging the plethora of data that can be retrieved via network monitors. Previ-
ous works have already leveraged ML to perform monitoring [2] and even failure detection in optical networks [3].
Even though some initial research works have appeared on this topic, several questions are still pending regarding,
e.g., which information is more important to be used, how often this information shall be sampled/collected by the
monitors, and which ML technique (among the large set of already existing and well established tools) is better suited
for soft-failure detection based on BER analysis at signal receiver.

To address some of these pending questions, in this paper we provide the following contributions: 1) we define a
framework for BER anomaly detection based on monitored BER data; here we employ different ML algorithms, for
which we assess the trade-off between complexity and prediction accuracy; 2) we perform a sensitivity analysis of the
accuracy of the various ML techniques in order to identify the right BER sampling time, i.e., how often BER values
should be collected and analyzed; 3) we propose, to the best of our knowledge for the first time in literature, a ML-
based methodology to discriminate among different sources of soft failure, enabling the capability to distinguish if a
BER anomaly is determined by narrow filtering (e.g., due to filters misalignment) or reduced amplification (e.g., due
to amplifier malfunctioning, impacting the OSNR performance at intermediate span). In this context, ML provides a
huge potential in extracting hidden patterns from BER data, while using other approaches would require the availability
and analysis of additional parameters, e.g., OSNR and/or Q-factor. The whole analysis is performed using real BER
traces obtained over an optical network testbed including a 380km optically amplified link and a commercial coherent
polarization multiplexed quadrature phase shift keying (PM-QPSK) 100 Gb/s transmission system.

2. Soft-failure detection and identification frameworks

The proposed ML framework to perform soft-failure detection and identification is summarized in Fig. 1. The initial
macro-step is data retrieval. First, BER samples are periodically monitored and collected in data-sets. Two examples
of real traces of BER data (i.e., “normal” BER and anomalous BER) considered in this paper are also shown in the
figure. Then, data preprocessing is performed to remove outliers, and the overall data-set is split into training, cross-
validation and test sets taking 75%, 15% and 15% of the original data-set, respectively.

After data retrieval, the building blocks of the ML algorithms are implemented. Specifically, we first divide the
samples in a set of windows containing several consecutive BER values. To train the ML algorithms, we set the
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Fig. 1. Soft-failure detection and identification framework.

BER sampling time TBER (i.e., the time between two consecutive BER observations in the window) and the window
size (i.e., its time-duration). Note that, for a given TBER and window size, different windows (i.e., different samples)
may include common monitored BER values and hence they would be correlated. As an example, consider windows
“a” with samples from #1 to #15 and window “b” containing BER samples #2 to #16; both windows contain 15
monitored BER observations and they share BER values #2 to #15. Then, features are extracted for each window,
considering some statistical characteristics (i.e., minimum, maximum, mean and standard deviation of BER in the
window) as well as the window’s strongest spectral components, extracted by applying Fourier transform. Finally,
the ML algorithms can be trained. To train the failure detection module (n.b., failure detection is needed to predict
if a BER sequence will result into a failure or not) we use different types of ML anomaly-detection classification
methods, namely Binary Support Vector Machine (SVM), Random Forest (RF), Multiclass SVM, and neural network
(NN) with single hidden layer. On the other hand, to train the failure identification module (n.b., failure identification
is needed to determine the cause of a failure), we use a NN with two hidden layers. As several parameters (e.g.,
number of hidden layers and nodes in the NN) can be tuned in each of the ML approaches, we run a cross-validation
optimization loop to improve the classifiers (please refer to [4] for more information on how to implement these
phases). While the Binary SVM is a semi-supervised classification algorithm, all the other approaches are (fully)
supervised. Note that, in semi-supervised models, less training data (i.e., only the non-anomalous class) is needed to
have high accuracy; conversely, in supervised approaches, sufficient data for all classes should be available to train
the model properly. In our experiment, for the former case we use only “normal” BER data (i.e., BER values not
resulting into a failure), whereas for the latter cases we need larger data-set, consisting of “normal” BER data and all
different types of anomalies, thus impacting data storage requirements and model accuracy, which, for a given size of
the data-set, is lower in comparison to semi-supervised approaches.

After training the ML modules, we test them and evaluate their performance by utilizing the Detect-Failure (DET-F)
and Identify-Failure (IDENT-F) modules. DET-F is able to detect anomalous BER sequences, whereas the IDENT-F
module classifies the source of anomaly, i.e., it distinguishes between filters misalignment and reduced amplification.

3. Numerical results
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Fig. 2. Testbed setup.

To obtain numerical results we
adopt the experimental setup
shown in Fig. 2. Measure-
ments were performed on an
Ericsson 380km transmission
system employing PM-QPSK

modulation at 100 Gb/s line rate and 30.071 Gbaud. Signal is amplified through a series of 6 Erbium Doped Fibre
Amplifiers (EDFA) followed by Variable Optical Attenuators (VOAs). The first Bandwidth Variable-Wavelength Se-
lective Switch (BV-WSS 1) is configured to introduce narrow filtering or additional attenuation in intermediate span
with the intent to emulate two possible impairments that cause BER degradation, i.e., filter misalignment and an unde-
sired amplifier-gain reduction, respectively. This allowed us to gather data representing two different BER-degradation
causes, over which we could train and test our IDENT-F module. The BV-WSS 2 does not introduce extra attenuation
or filtering effects and is used only for noise reduction. We built our data-set by collecting BER samples for 24 hours,
with a sampling interval of 22 seconds and 3 seconds in case of soft-failure detection and identification, respectively.

We first assess the performance of the Binary-SVM algorithm by evaluating its accuracy for different values of TBER
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(a) Binary-SVM accuracy vs window features.
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(b) Failure detection accuracy and complexity.
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(c) IDENT-F accuracy vs window size.

Fig. 3. Numerical results obtained for the DET-F (a)-(b) and IDENT-F (c) frameworks.

as shown in Fig. 3(a). Note that, for a given value of TBER, we do not consider all possible window durations, but we
stop our evaluation when we reach 100% model accuracy. From Fig. 3(a) we observe that for lower TBER, a shorter
window is sufficient to collect enough BER samples to optimize the performance (100% accuracy is obtained for
window duration of around 18 minutes). Conversely, as TBER increases, longer window duration is necessary to have
acceptable performance, in order to include more BER samples and extract more significant features. For example,
with TBER = 44 s, around 73 minutes window duration is needed to have 98% accuracy.

In Fig. 3(b) we compare the accuracy (on the left y-axis of Fig. 3(b)) of the three supervised models used for soft-
failure detection DET-F, as well as their complexity, expressed as the duration for training the model (right y-axis of
Fig. 3(b)). For each of the three models we consider the values of TBER and window duration providing the highest
possible accuracy. The lowest complexity is obtained with the NN approach, but it also provides the worst accuracy
(98.2%) among the three models. On the other hand, SVM substantially improves accuracy compared to NN, reaching
99%, but it requires longer to train the model, due to SVM algorithm complexity. The optimal compromise between
accuracy and complexity is represented by RF, which provides the highest accuracy (99.1%) but it has a drastically
lower computational complexity in comparison to SVM.

Finally, in Fig. 3(c) we evaluate the accuracy of our method for failure identification IDENT-F, using multilayer NN,
for different window sizes and TBER. As expected, increasing window size, IDENT-F accuracy increases accordingly.
Moreover, for a given window duration, increasing TBER reduces identification accuracy, since larger TBER reduces the
amount of data used to train the model. In general, window size of around 15 minutes is sufficient to provide 100%
accuracy for all values of TBER. In conclusion, our proposed ML approach promises to be able to identify different
soft-failure sources by extracting failure-specific features over our data-set. We plan to perform further analysis to
investigate which are the most relevant BER features (e.g., mean, standard deviation, some of the spectral components)
to perform this identification and how our results are affected by the specific way we have emulated BER degradation.

4. Conclusion

We investigate several ML-based methods for early soft-failure detection (DET-F) and for the identification of the
failure cause (IDENT-F), based on continuous monitoring of BER. We explored the trade-off between model accuracy
and complexity provided by the different ML algorithms, by tuning several model parameters, such as BER sampling
time and amount of BER data needed to train the models. The right tuning of parameters allows DET-F to reach
100% accuracy within all the considered ML approaches. For the IDENT-F framework, we consistently achieved 98%
accuracy on our available data-set.
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