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We investigated whether a wearable system based on a commercial Inertial Measurement Unit (IMU) can re-liably provide the main spatiotemporal gait parameters in 
subjects with Parkinson’s disease (PD), compared to a gold-standard optoelectronic motion capture system. The gait of 22 subjects with PD (Age: 69.4 (6.1) years; 
UPDRS-III: 28.0 (9.2)) was recorded simultaneously with an optoelectronic system and a commercial IMU-based wearable system. Eight spatiotemporal parameters 
describing the step cycle (cadence, velocity, stride length, stride duration, step length, stance, swing and double support duration) were compared between the two 
systems. The IMU and the optical system reported comparable gait parameters, with the exception of walking velocity (optical system, 0.72 (0.27) m∙s−1 vs. IMU: 
0.86 (0.26) m∙s−1, p < 0.05). Although most parameters detected by the two systems were not statistically different, some of them like stride length, double support 
and step duration showed notable root mean square and mean absolute errors. In conclusion, the algorithm embedded in the current release of the commercial IMU 
requires further improvements to be properly used with subjects with PD. Overall, the IMU system was sufficiently accurate in the assessment of fundamental gait 
spatiotemporal parameters. The fast and simplified data re-cording process allowed by wearables makes this technology appealing and represents a possible solution 
for the quantification of gait in the clinical context, especially when using a traditional 3D optoelectronic gait analysis is not possible, and when subjects are not fully 
cooperative.

1. Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder 
characterized by motor impairments including limb tremor, decreased 
movement speed and amplitude, increased limb stiffness and gait dis-
turbances (Stamatakis et al., 2011). In 2005, in Western Europe’s five 
and World’s ten most populated nations, representing 2/3 of the World 
population, the number of individuals with PD aged over 50 was be-
tween 4.1 and 4.6 million. This number is expected to reach 8.7–9.3 
million by 2030 (Dorsey et al., 2007).

Gait disorders as the impairments in walking, turning, crossing 
obstacles or performing simultaneous motor and cognitive tasks are the 
most disabling symptoms of PD. The increase of the motor dysfunctions

as the disease progresses requires to quantitatively evaluate and monitor 
gait impairments over time. Instrumented Gait Analysis (GA) is 
commonly used to obtain kinematic, kinetic and spatiotemporal para-
meters, and thus a quantitative picture of the gait function. In parti-
cular, spatiotemporal parameters are widely used in the clinical con-
text, as they objectively describe the main events of the gait cycle and 
reflect the ability of the patient to fulfil the general requirements of gait, 
i.e. weight acceptance, single limb support and the advancement of the 
swing limb (Bugané et al., 2012). Several studies documented 
spatiotemporally the main features of gait in PD: reduction of stride 
length, often accompanied by lower walking speed (De Souza et al., 
2011) and by the attempt to extend the double support phase (Sofuwa et 
al., 2005); absence of “heel strike”, due to the typical flat foot support
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2.2. Data collection

All the trials were recorded at the Motion Analysis Laboratory of 
Hospital San Raffaele, Tosinvest Sanità, Cassino (FR, Italy). IMU and the 
optoelectronic motion data were recorded at the same time.

A marker-based optoelectronic system (SMART, BTS SpA, Milan, 
Italy) was taken as the ground truth. It was composed by eight optoe-
lectronics cameras, recording at a sampling frequency of 100 Hz the 
three-dimensional coordinates of 22 spherical passive markers (dia-
meter: 14 mm), placed on the subject’s skin at specific landmarks, ac-
cording to the Davis protocol (Davis et al., 1991). Two synchronized 
force platforms (Kistler, Germany) detected Ground Reaction Forces 
(GRF). Before data acquisition, system calibration was performed under 
the manufacturer’s guidelines, and all the trials were acquired by the 
same operator to avoid inter-examiner variability.

The commercial portable device was made up by the BTS® G-Sensor 
(BTS SpA, Milano, Italy), communicating with the receiving unit (per-
sonal computer) via a Bluetooth link, and by a software, BTS® G-Studio, 
for data recording, processing, reporting and storage. The IMU includes 
a triaxial accelerometer (16 bit/axes, up to 1000 Hz) with multiple 
sensitivity ( ± 2, ± 4, ± 8, ± 16 g), a 16-bit triaxial magnetometer ( ± 
1200μ T, up to 100 Hz), and a triaxial gyroscope (16 bit/axes, up to 
8000 Hz), with multiple sensitivity ( ± 250, ± 500, ± 1000, ± 2000°/
s). Proprietary algorithms fuse sensors data at 200 Hz. The previously 
validated “Walk” protocol within the G-Studio software was used 
(Bugané et al., 2012): this protocol requires the sensor to be placed at 
the L5 level by means of a provided elastic belt, with the power con-
nector pointing upwards and the logo facing out. The position of the 
sensor has to be kept vertical to correctly define the reference system. 
The final report obtained using the IMU provides all the spatial-tem-
poral gait parameters and the pelvic tilt angles.

Five trials were acquired with both the optoelectronic and IMU-
based systems, asking participants to walk barefoot along a 10-m 
walkway at their self-selected walking speed. The values of the three 
central trials were used for systems comparison, in order to get the 
patients acquainted with the test and to avoid any fatigue effect.

2.3. Data processing

Data collected with the optoelectronic system were processed using 
two software: BTS® TrackLab and Smart Analyzer (BTS Bioengineering 
S.p.A., Version 1.10.458.0) were used for the labeling process and to 
develop a customized routine, which returned the spatiotemporal 
parameters. Raw kinematic data were filtered with a Butterworth 
fourth-order low-pass filter (cut-off frequency: 5 Hz); gait events were 
detected by visually inspecting 3D reconstruction based on GRF – this is 
the standard procedure for clinical gait analysis tests.

The bundle IMU-system software automatically provides a report 
with mean and standard deviation (SD) over the assessed gait cycles of 
the spatiotemporal parameters (for the right and left limb), as well as 
pelvic obliquity, tilt and rotation traces, time-normalized to the gait 
cycle duration. In this study, pelvis kinematics was acquired but not 
considered and further elaborations on inertial data were not performed 
since our intent was to assess the sensor as it comes in its commercial, 
end-user form. The G-Studio software implements the following general

Table 1
Participants’ anthropometrics and clinical data
(n= 22, 12 males and 10 females).

Characteristics Mean (SD)

Age [years] 69.4 (6.1)
Height [cm] 162.1 (12.4)
Weight [kg] 76.6 (15.0)
H&Y 3.00 (0.50)
UPDRS III 28.00 (9.25)

(Sofuwa et al., 2005); troubles in changing direction during turning 
(Morris et al., 2001; Nutt et al., 2011). In particular, Morris et al.(Morris 
et al., 2001) highlighted that turning can be even more frequent than 
forward walking, especially in confined environments such as dwellings.

To date, optical motion analysis systems (3D-GA) have been widely 
recognized as the gold standard in measuring gait parameters 
(Stamatakis et al., 2011). Through the computation of spatiotemporal, 
kinematic and kinetic parameters, traditional optoelectronic systems 
provide the essential information on the functional status of a subject. 
However, a clinical gait test also requires specialized personnel, con-
siderable equipment and time, in most cases allows for the assessment of 
just a few steps, and patients need to be transferred to an in-strumented 
laboratory (Muro de la Herran et al., 2014). These con-straints may 
represent critical issues, especially in the context of PD, where the gait 
function of patients is characterized by a great varia-bility, due to 
physical fatigue and to pharmacological treatments (O’Sullivan et al., 
1998). Thus, optoelectronic marker-based systems are not always 
optimal for patients’ monitoring in daily-life conditions, and for the 
assessment of gait fluctuations throughout the day (Muro de la Herran et 
al., 2014).

For these reasons, research is moving towards the development and 
employment of portable devices based on Inertial Measurement Units 
(IMUs) for the assessment of GA parameters. These devices enable the 
real-time assessment of spatiotemporal parameters in real-life en-
vironments, indoor and outdoor, thus overcoming the typical limita-
tions of laboratory measurements. Moreover, IMUs are cheaper and 
more practical than full GA systems; only a relatively fast preparation of 
the patients is required, as the sensor is placed on the body (typically on 
the waist) by means of an elastic belt. Data can be easily transferred via 
Bluetooth to the dedicated software. These features broaden the range 
of its potential users. However, commercial IMU-based systems for gait 
analysis also have limitations, such as the lower number of computable 
parameters (especially in terms of kinematics) due to the single unit 
usually worn, reduced accuracy and precision, and increased suscept-
ibility to noise and external factors.

Recently, the performance of inertial sensors in detecting spatio-
temporal gait parameters has been compared to optoelectronic systems 
in healthy subjects (Bugané et al., 2012; Mariani et al., 2010). Further, 
applications of IMUs in rehabilitation and in recovery of patients’ mo-
bility have been reported (Bugané et al., 2012; Bauer et al., 2015; 
Cimolin et al., 2016; Godfrey et al., 2008; Larivière et al., 2013; 
Rueterbories et al., 2010; Schwesig et al., 2011); in several studies, 
IMUs have been used to assess the gait performance in PD subjects 
(Jochen et al., 2013; Sant’Anna et al., 2011; Weiss et al., 2015). How-
ever, no study ever investigated the agreement between spatiotemporal 
parameters simultaneously computed with 3D-GA and IMUs in a po-
pulation of patients with PD. In the current study we aimed at in-
vestigating whether a commercially available inertial sensor can re-
liably provide basic gait spatiotemporal parameters in PD during level 
walking.

2. Methods

2.1. Participants

Twenty-two older adults aged 60–80 years and diagnosed with PD 
were involved; they signed a written informed consent to participate in 
the study. Participants’ anthropometrics and clinical data are shown in 
Table 1. Participants with liver, kidney, lung, or heart diseases, dia-
betes, or other causes of autonomic dysfunction were excluded. The 
present study was conducted in accordance with the guidelines on 
human experimentation (Declaration of Helsinki, 1964) and did not 
receive any specific grant from funding agencies in the public, com-
mercial, or not-for-profit sectors.



algorithms to extract the parameters (Cimolin et al., 2016): along the 
line of progression, the pattern of pelvic acceleration is predicted by an 
inverted pendulum model; thus, the forward acceleration component is 
low-pass filtered and then used to determine the onset of the support 
phase, as accelerations can be observed after mid-stance and decel-
erations after initial contact. The step length is estimated based on the 
amplitude of vertical pelvic displacement and leg length using a simple 
inverted pendulum model. Vertical displacements were obtained by 
double integration of the corresponding acceleration component, fol-
lowing high-pass filtering to correct for low-frequency drifts (4th-order 
zero-lag Butterworth filter at 0.1 Hz). Step lengths were then calculated
as 2 2lh h2 , where l is leg length and h the vertical displacement. Gait−

velocity was computed as the ratio between walking distance and 
duration (Cimolin et al., 2016).

The following spatiotemporal gait parameters were compared be-
tween the two measurement systems: cadence (steps/min), number of 
strides per minute; mean velocity (m∙s−1), average instantaneous ve-
locity; stride length (m), distance between two consecutive heel strikes 
(or initial contacts) of the same foot; stride duration (s), time between 
two consecutive initial contacts of the same foot; step duration (%), 
time between the initial contact of one foot and the contralateral initial 
contact, computed as percentage of the stride duration; stance phase 
duration (%), time from the initial contact to the toe off of the same 
foot, computed as percentage of the gait cycle; swing phase duration 
(%), time from the toe off of one foot to the initial contact of the same 
foot, expressed as percentage of the gait cycle; double support phase 
duration (%), phase in which both feet touch the ground, computed as 
percentage of the gait cycle.

2.4. Statistical analysis

SPSS Statistics (version 22, IBM) was used to perform the statistical 
computations. Data normality assumption was rejected by the 
Kolgomorov-Smirnov test. Bilateral variables were tested for laterality-
driven differences with the Wilcoxon signed rank test; median and 
Interquartile Ranges (IQR) were computed for all parameters.

The agreement between the IMU and the optoelectronic system was 
tested using the Wilcoxon signed rank test: alongside the value of α, 
probability of false positive findings (type-I error), in this research it 
was important to provide the probability of false negative findings 
(type-II error for non-parametric tests). The potential tendency of the 
IMU to underestimate or overestimate gait parameters was analysed 
computing Confidence Intervals at 95% (95% CI); error measures as the 
Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) 
were computed (Chai and Draxler, 2014). Non-parametric Effect Sizes 
(ES) were computed to evaluate the practical significance of groups 
differences; a value of ES smaller than 0.3 was considered small, around 
0.5 medium, greater than 0.8 large (Cohen, 1992). Lastly, a Spearman 
correlation analysis was conducted between the measurements re-
turned by the two systems. The significance level was set at α = 5% for 
all tests.

3. Results

No differences between the right and the left side were found for any 
variable (p > 0.05), therefore right and left values of bilateral variables 
were pooled.

Median and Interquartile Range (IQR) of the variables detected by 
the two systems are reported in Table 2, as well as the results of the 
Wilcoxon test, the Confidence Intervals, the error measures (ES, RMSE 
[%], MAE [%]) and the results of the Spearman correlation. All the gait 
variables measured with the two systems resulted to be not statistically 
different, with the exception of the gait velocity (p < 0.05); prob-ability 
of type-II error was lower than 0.2 except for stance/swing and stride 
duration. Positive, high correlations were obtained for cadence, velocity, 
stride duration and stride length; positive, moderate correla-tion for the 
other parameters. All correlations were statistically sig-nificant.

4. Discussion

The present study evaluated the performance of a commercial IMU-
based gait analysis system in assessing spatiotemporal parameters 
during walking in PD subjects, compared to an optoelectronic GA 
system. The reliability of a sensor depends not only on its accuracy per 
se, but also on its accuracy relative to the variability of the measured 
system. In healthy subjects, IMU-based measurements were previously 
found to be sufficiently accurate in the determination of basic gait 
parameters in 22 healthy subjects (Bugané et al., 2012) and in a cohort 
of 10 young and 10 old adults (Mariani et al., 2010). However, gait in 
patients with PD is generally deemed with higher variability than in 
healthy subjects (Peterson and Horak, 2016; Hausdorff et al., 2003). 
Thus, it is useful to evaluate the capability of a new commercial IMU 
system to detect gait parameters in such specific population. Our 
comparison showed that the IMU was able to reliably measure most 
spatiotemporal gait parameters, while seemed to be less accurate in 
computing walking speed. Furthermore, although some parameters 
detected by the two systems were not significantly different, the error 
measures associated to their comparison resulted practically not neg-
ligible.

4.1. Optoelectronic system vs. IMU

The parameters detected by the two systems were comparable, with 
no statistical significance (p > 0.05, Table 2), with the exception of the 
walking velocity, which was significantly higher in the measurements by 
the wearable system (Velocity3D-GA = 0.72 (0.27) m∙s−1, Veloci-tyIMU = 
0.86 (0.26) m∙s−1); the related ES and MAE values were larger than 0.8 
and 10%, respectively (Table 2), indicating a practically sig-nificant 
difference between 3D-GA and IMU.

Although spatiotemporal parameters as stride length, step duration, 
stance and double support duration did not show statistically significant 
differences (Table 2), we obtained MAE values higher than 10%; these

Table 2
Median and Interquartile range (IQR) of data obtained from the optoelectronic system (3D-GA) and the Inertial Unit (IMU).

Variable 3D-GA IMU p ES type-II error CIlow CIhigh RMSE MAE [%] Rs

Cadence [step∙min−1] 108.6 (17.0) 107.5 (13.5) 0.95 0.028 0.047 −2.21 1.63 4.24 3.0 0.91
Velocity [m∙s−1] 0.72 (0.27) 0.86 (0.26) 0.01 0.806 0.006 −0.21 −0.12 0.19 26.6 0.87
Stride length [m] 0.93 (0.30) 1.00 (0.27) 0.23 0.378 0.109 −0.13 −0.02 0.13 12.3 0.84
Stride duration [s] 1.11 (0.22) 1.15 (0.15) 0.40 0.163 0.389 −0.04 0.00 0.07 3.7 0.86
Step duration [%] 45.6 (10.2) 50.00 (4.1) 0.36 0.594 0.002 −7.7 −1.8 10.8 23.5 0.41
Stance duration [%] 63.2 (3.2) 63.9 (5.6) 0.24 0.278 0.265 −1.9 −0.1 3.2 4.0 0.68
Swing duration [%] 37.1 (2.8) 36.0 (5.6) 0.10 0.361 0.254 0.3 2.3 3.5 7.8 0.64
Double support [%] 12.6 (3.0) 12.8 (7.4) 0.14 0.394 0.147 −2.5 −0.1 3.6 25.4 0.64

1-power: Type-II error probability; p: Wilcoxon Signed rank test; CIlow/high: 95% confidence intervals of the difference between 3D-GA (3D-Gait Analysis) and IMU;
ES: non-parametric Effect Size; RMSE: Root Mean Square Error; MAE: Mean Absolute Error; Rs: Spearman Correlation coefficient (all correlations were statistically
significant, p < 0.05).



5. Conclusion

The main spatiotemporal gait parameters detected by the IMU were

mostly comparable to the output of marker-based GA systems. Only one 
variable (velocity), was significantly higher when measured with the 
wearable system. Some parameters (e.g. stride length and step dura-
tion), although not statistically different, showed moderate values of 
MAE and RMSE.

However, the results of the comparisons between IMUs and gold 
standard 3D GA systems were encouraging. In fact, adopting such 
wearable IMU system can be feasible, especially in routine clinical 
analysis of PD and whenever a quantitative evaluation is needed, but a 
traditional Gait Analysis test is not viable. Even if the IMU system 
overestimated the walking velocity, being aware of this limitation al-
lows to consciously employ the device in cases such as the evaluation of 
gait pre and post therapies, or to assess changes induced in patients by 
specific interventions.
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constitute notable differences between the accurate measurements de-
tected by the 3D-GA ground truth and those obtained from the wearable 
system. The stride length and the step duration also showed high RMSE 
(0.13 m and 11%, respectively). However, most of the boundaries of the 
percentage change 95% CIs crossed the zero value, indicating a sub-
stantial overlapping of the results; consistently, the Spearman correla-
tion analysis showed a good correlation between the two instruments for 
all measured variables, except for the step duration.

It is worth noting that type-II error probability was fairly high 
(> 0.2) just for few parameters. This is common when applying non-
parametric tests. It should be also considered that the highest values of 
type-II error probability are matched with p-values higher than 0.1, 
thus for these variables (stance, swing and stride duration) we cannot 
state neither the similarity nor the dissimilarity of IMU vs.3D-GA 
measures.

The inferential and descriptive statistical figures used in this in-
vestigation allowed to identify the conditions in which the IMU pre-
sented high error measures and/or low correlation coefficient, even 
when it was not strictly statistically different compared to the optoe-
lectronic system. This study helped to gain a global picture on the 
performance and reliability of this specific commercial IMU device in 
detecting gait spatiotemporal parameters in patients with PD.

4.2. Strengths and limitations

Besides a relatively small sample size, the difference detected in 
some parameters was probably due to the different algorithm used in the 
two devices to detect gait events. The optoelectronic system para-meters 
were obtained by evaluating gait cycles separately, while the IMU 
parameters were computed by the provided software considering a 
contiguous set of cycles. This may be tricky especially when evaluating 
pathological gait, where the intra-subject variability can be high. As the 
IMU data (tri-planar accelerations and angular velocities) are different 
in nature to the markers trajectories recorded by motion capture sys-
tems, algorithms commonly used to compute final parameters are also 
markedly different and may have introduced additional variability be-
tween measures. Third, the partial loss of a pendulum-like gait pattern 
that may occur in pathological conditions, as in PD (Seyoung et al., 
2009), may explain the difference in spatiotemporal parameters ob-
served in this population. This highlights the need to improve the 
current algorithms, especially when the locomotion function is severely 
compromised – as in patients with PD.

Despite the discussed limitations, the analysed IMU system re-
presents a promising and viable alternative to the standard gait analysis 
systems, also in clinical applications. Considering its intrinsic ad-
vantages (cheaper purchase price, cheaper cost per recording, portable 
system, real-life and laboratory-independent setting), there will be 
growing interest in using inertial in place of optoelectronic systems. 
This holds even more true when a continuous, daily monitoring of 
patients is required outside a gait-lab, or when a relevant number of 
data acquisitions needs to be performed.

Technological advancements in this direction will certainly allow to 
increase the use of wearable systems also in clinical and research en-
vironments. This will provide two major advantages: (a) overcome the 
intra-individual variability at different times of the day in a single pa-
tient due the disease fluctuations, thanks to prolonged recording times;
(b) provide the medical staff with technology suitable to make accurate 
diagnoses, and to develop a more effective targeted therapy, thanks to 
objective, long-term measurements of treatment outcomes.
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