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Abstract

The global buckling and wrinkling behavior of sandwich plates with anisotropic facesheets is inves-

tigated by means of a linearized stability analysis. High-order plate models are formulated referring

to a sublaminate variable-kinematic approach: an axiomatic through-thickness description of the

displacement field is introduced, wherein the selected model is employed for an arbitrarily defined

group of plies, i.e., the sublaminate. The two-dimensional governing equations of the plate model

are solved in weak form by means of the Ritz method. The modeling approach is applied to sandwich

plates with anisotropic laminated facesheets and orthotropic cores. A wide set of configurations

is analyzed: critical loads and wrinkling patterns are determined for panels with foam and honey-

comb cores, subjected to uniaxial as well as multiaxial loads. The proposed approach is shown to

provide accurate, quasi-3D predictions for both long and short wavelength buckling with a reduced

computational effort.

Keywords: Buckling; wrinkling; sandwich plates; anisotropy; variable-kinematics.
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1. Introduction

Sandwich panels are a particular case of composite structures, which consist of two thin and stiff

layers, the facesheets, that are separated by a rather thick and weak layer, the core. The geometric

and constitutive mismatch between the skins and the core provides the sandwich panel with high

specific bending stiffness which, in turn, provides beneficial effects over the buckling response. For

this reason, sandwich panels are often employed as structural elements in buckling critical regions,

where compressive and shear loads may promote elastic instability phenomena. Hence it is not

surprising that the first scientific paper dedicated to sandwich panels, written by Marguerre in 1944,

addressed the buckling problem (Vinson, 1999). Space launchers and ship hulls are few but examples

of buckling-driven designs where sandwich panels have been successfully employed. As opposed

to the case of thin-walled panels, a complicating effect of sandwich panels is due to the strong

mismatch of geometric and constitutive properties along the thickness. This feature induces sharp

gradients across the thickness direction, even in the presence of a smooth response over the plate’s

major dimensions, i.e., global buckling or long wavelength response. In addition, and depending

on the elastic and geometrical relative properties of core and faces, the buckling behavior can be

characterized by a local response, commonly denoted as wrinkling-type instability, with halfwaves

of the order of the panel thickness (Ley et al., 1999; Carlsson & Kardomateas, 2011). Both local

and global instabilities are generally prevented from design operative conditions, as they may lead

the structure to premature failure. For this reason, accurate yet reliable analysis tools are of crucial

importance when designing a sandwich structure against buckling or, to a more general extent, by

accounting for buckling requirements. While early sandwich designs made large use of isotropic

and cross-ply facesheets, increasing attention has been dedicated in the years to fully exploit the

tailoring potentialities offered by composites, thus enlarging the class of suitable configurations

to include those characterized by anisotropic faces. This also demands for improved modeling

capabilities, meaning that improved higher-order theories (Reddy & Liu, 1985; Librescu & Reddy,

1989; Piskunov et al., 1993; Khdeir et al., 1989), axiomatic approaches (Carrera, 2002, 2003b,a;

Demasi, 2009a,b,c; Carrera et al., 2017) as well as asymptotic approaches (Berdichevsky, 1979; Yu

et al., 2002; Berdichevsky, 2010) can be a useful framework for coping with the peculiar aspects

offered by highly heterogeneous laminates. An interesting assessment between the capabilities

offered by axiomatic and asymptotic strategies can be found in Demasi & Yu (2013). Among the

theories specifically developed for analyzing sandwich structures, it is worth highlighting the high-
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order sandwich panel theory (HSAPT) due to Frostig et al. (1992). It is based on Euler-Bernoulli

beam theory for the skins, while transverse and in-plane displacements in the core are described

using second and third order polynomials, respectively. The theory accounts for transverse and shear

stresses in the core, but neglects the in-plane stresses in the core. A successful application of HSAPT

to curved panels in the presence of debonding between core and faces is illustrated in Frostig &

Thomsen (2011). An improvement to HSAPT is given by its enhanced version, commonly referred

to as extended sandwich plate theory (EHSAPT) and due to Phan et al. (2012b). The theory

accounts for in-plane rigidity of the core and leads to a kinematic model where three generalized

displacement coordinates are associated with the core instead of just one, as in HSAPT. The theory

has been applied to analyze free vibration (Phan et al., 2013) and buckling problems Phan et al.

(2012c,a), revealing good agreement with benchmark elasticity solutions due to Kardomateas (2005,

2010). Recently, a finite element formulation of EHSAPT was developed by Yuan et al. (2015). A

comprehensive overview of analytical methods used for sandwich analysis is available in Birman &

Kardomateas (2018).

In the context of global buckling evaluation, different strategies were developed in the past.

Exact elasticity solution were derived for the case of sandwich struts (Kardomateas, 2010; Ji &

Waas, 2012), while other works focused on the obtainment of approximate solutions at panel level by

means of various approaches. In some cases the Ritz method has been adopted due to its excellent

tradeoff between accuracy-to-computational cost ratio. For instance Rao (1985) implemented a

Ritz-based approach by adopting a Libove-Batdorf sandwich model in conjunction with plane stress

constitutive law, while Kim & Hong (1988) considered the sandwich plate as the assembly of an

anti-plane core, and two laminated faces connected by means of adhesive layers of finite bonding

stiffness. The Ritz method is used also in the work of Hadi & Matthews (1998) in conjunction

with a three-layers model in which facesheets and core are modeled according to the first-order

shear deformation theory (FSDT). Fazzolari & Carrera (2013) studied the buckling of sandwich

plates in the framework of a variable-kinematics approach. The Ritz approximation employed in

the aforementioned works is built from trigonometric functions, which restricts the solution to

simply-supported plates, and leads to strong inaccuracies in the presence of non-negligible amounts

of bending/twisting coupling (Stone & Chandler, 1996; Wu et al., 2012; Vescovini et al., 2018).

Recently, Ritz-based approaches were developed for sandwich plates with variable-stiffness faces

based on FSDT (Coburn & Weaver, 2016) and variable-kinematics models (Vescovini & Dozio,
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2016).

Other tools for global buckling analysis have been developed on the basis of a finite element

approach. While the literature is relatively wide – a comprehensive overview can be found in the

survey paper (Noor et al., 1996) –, significant examples are found in (Babu & Kant, 1999, 2000)

where 2D elements are developed based on high-order equivalent single layer (ESL) model; third-

order theory inclusive of zig-zag effects was implemented in C0 elements by Pandit et al. (2008).

Typical patterns of wrinkling-type instabilities render the solution of the problem particu-

larly challenging. Indeed, refined spatial modeling is needed to properly capture the short half-

wavelengths characterizing the buckling modes. For this reason, analytical strategies and design

formulae have been the subject of several investigations. Well-known solutions for axially loaded

isotropic panels were derived following the approaches outlined by Hoff (1945), Plantema (1966)

and Allen (1969), see, e.g., the engineering design procedures proposed by Niu & Talreja (1999).

Improved models accounting for face orthotropy can be found, among the relatively vast litera-

ture, in the analytical approaches due to Vonach & Rammerstorfer (2000), Birman & Bert (2004),

Lopatin & Morozov (2008) and Koissin et al. (2011). On the contrary, much less research has been

devoted to the wrinkling analysis of sandwich panels with anisotropic faces. The analytical strategy

proposed by Fagerberg (2003) and Fagerberg & Zenkert (2005a) is among the few to account for

these effects, which can have a drastic impact on the panel response. In addition, it can be adopted

for predicting the wrinkling response in the presence of multiaxial loading conditions.

Analytical strategies do generally provide a material strength interpretation of the wrinkling

instabilities (Fagerberg & Zenkert, 2005b), meaning that the phenomenon can be treated as a

real material failure, independently from panel dimensions and boundary conditions. The reduced

computational effort, which is essential during the early design steps, is another advantage provided

by these strategies. At the same time, it should be noted that analytical approaches suffer a

restricted range of applicability due to the many underlying assumptions that are necessary to

render the problem tractable in a closed-form manner. In particular, they generally treat local

buckling independently from the global one, thus excluding any possible interaction between these

failure modes.

For these reasons, a useful and modern approach consists in developing design strategies capable

of accurately predicting global and local buckling in a unified framework. Under the simplifying

assumption of one-dimensional strut model, closed-form solutions were derived by Léotoing et al.
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(2002) based on CLT assumptions for facesheets and third order model for core. Exact solutions

for global and local buckling of sandwich struts were derived referring to elasticity solutions (Ji &

Waas, 2007, 2008). D’Ottavio & Polit (2015); D’Ottavio et al. (2016b) obtained quasi-3D solutions

for global buckling and wrinkling of uniaxially loaded orthotropic sandwich panels and struts by

means of Navier-type solutions and high-order models formulated within a variable-kinematics

approach. Two-dimensional structural models were considered by Rose et al. (2002), where 2D

sandwich elements were implemented in the finite element code STAGS and complemented with a

strip-based feature for local buckling analysis. The Finite Strip Method was employed along with

a three-layer model in (Yuan & Dawe, 2001a,b), where the faces are modeled as CLPT or FSDT

plates and the core with a {1, 2} kinematics. Recently Khalili & amd F.K. Malekzadeh (2015)

proposed a third order, fixed-kinematic approach in conjunction with a Navier solution procedure;

a nonlinear strategy is proposed by Yu et al. (2015) based on finite element solution and a combined

CLPT-{3, 2} kinematics for the faces and core, respectively.

Based on the previous literature survey, it appears that the availability of unified tools capable

of dealing with local and global buckling instabilities of sandwich panels is still rather limited. The

formulation presented in this paper relies upon the combined use of the Sublaminate Generalized

Unified Formulation (SGUF) and the method of Ritz. It aims at providing a novel computational

tool that can be successfully used for capturing both global and local instabilities, trying to conju-

gate the accuracy of detailed numerical computations with the efficiency of analytical solutions. The

approach, due to D’Ottavio et al. (2016b), extends the Generalized Unified Formulation (GUF) by

introducing the possibility of defining sublaminates, each of them associated with a distinct polyno-

mial representation, making it possible a drastic improvement of the accuracy-to-number of degrees

of freedom ratio. SGUF is inscribed within the variable-kinematics framework of Carreras Uni-

fied Formulation (CUF), whose formalism has been generalized in order to account for different

kinematics models for different sublaminates, which is also the approach classically applied in sand-

wich theories, such as HSAPT/EHSAPT. However, contrarily to HSAPT/EHSAPT, the present

approach does not rely upon kinematic assumptions which are defined ex ante. Any arbitrary kine-

matics can be defined, at sublaminate level, as an input of the analysis procedure. The possibility of

deriving elegant, closed-form solution of HSAPT/EHSAPT models is thus lost, but the advantages

are twofold. Firstly, improved refinement of core/faces can be achieved if needed – some test cases

discussed in the paper will demonstrate this aspect. Secondly, the formulation is general enough to
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allow the analysis of those configurations which are not necessarily composed by the conventional

sequence face-core-face. Examples can be found in the sandwich constructions studied by Cho &

Averill (2000) or, recently, by Suzuki et al. (2017). To a more general extent, the proposed tool can

be easily employed for analysis purposes as new designs of sandwich structures become available,

with no needs to modify the underlying theory.

The approach outlined in this paper is not intended as an alternative to finite element analyses,

which, nowadays, can be conducted in a very effective way. The SGUF approach is aimed at pro-

viding a tool characterized by improved efficiency – the time for the analysis is of the order of few

seconds –, allowing researchers to obtain upper-bound, highly-refined solutions that can be used

for assessing design formulae or for benchmarking. This latter aspect can be particularly useful in

those cases where the derivation of elasticity solutions can be hard to achieve, such as in the case of

anisotropic two-dimensional plates. Furthermore, the availability of a variable-kinematic approach

can be exploited to gather insight into the mechanical response of the panel, which could be more

complex in the context of 3D finite element analyses.

The SGUF-Ritz approach is presented here in the context of a challenging case, given by the lo-

cal/global buckling response of anisotropic sandwich panels, where finite element simulations would

demand for highly refined mesh or local strip models. The formulation is effectively applied by con-

sidering multiaxial loading conditions, any kind of boundary conditions and accounting for the

effects of face anisotropy.

2. Modeling approach

The sandwich plate considered in this paper occupies a volume V = Ω × [−t/2, t/2], where

Ω = [0, a] × [0, b] is the mean surface lying on the Cartesian (x1, x2)−plane and t is the uniform

thickness along the direction x3 = z. A symmetric, single-core sandwich cross-section is considered

that consists of an orthotropic core of thickness tc. Each skin has a uniform thickness tf and

consists of a stack of Nf orthotropic plies. The principal material axes of each ply k = 1, 2, . . . Ns

are oriented at an angle θk with respect to the global x1 direction. A sketch of the sandwich panel

is provided in Figure 1.
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2.1. Weak form of the linearized stability problem

The weak form of the governing equations for the linearized stability analysis is obtained by

application of the Trefftz criterion (Jones, 2006):

δ
(
δ2Π

)
=

∫
V

(
δeijC̃ijln eln + δul,βλσ

0
αβ ul,α

)
dz dS = 0 , (1)

where ui and eij are the displacement vector and the compatible linear strain tensor, respectively,

and δ indicates virtual variation. The buckling multiplier is denoted with λ, whilst σ0
αβ defines the

prebuckling membrane state of stress. Note that, unless otherwise stated, Einstein’s summation

convention is adopted with Latin indices taken in {1, 2, 3} and Greek indices in {1, 2}.

The constant stiffness moduli, expressed in the global Cartesian frame, are denoted as C̃ijln,

while εij is the work-conjugate Green-Lagrange finite strain tensor defined as:

εij = eij + εij with eij =
1

2

(
ui,j + uj,i

)
and εij =

1

2
ul,iul,j . (2)

The weak form in Eq. (1) can be expressed as function of the displacement components upon

substitution of Eq. (2). The subsequent approximation of the displacement field allows provides

the variationally consistent governing equations. On the one hand, approximations are associated

with the chosen plate model, which postulates the dependence upon the thickness direction z

according to the following general expression

ui(xα, z) =

Nui∑
τ=1

Fτ (z)ûiτ (xα) . (3)

The actual form of the assumed plate model is discussed in the next section. On the other hand,

the Ritz approximation is introduced, which expresses the dependence on the in-plane coordinates

xα of the generalized displacement ûiτ :

ûiτ (xα) =

M∑
j=1

Nuij(xα)Uiτ j . (4)

Details about the chosen set of functions Nj(xα) are reported in the section dedicated to the Ritz

approximation. Once the approximation in Eqs. (3) and (4) are introduced into Eq. (1), all the

derivatives and integrals can be explicitly evaluated and the following matrix form of the governing

equations is eventually obtained:

δUT [K + λKG]U = 0 (5)

8



where K corresponds to the linear stiffness matrix and KG to the geometric stiffness matrix related

to the initial stress field. The solution of the linear eigenvalue problem expressed by Eq. (5) yields

the critical load levels λ, the lowest of which defines the buckling load.

2.2. Variable-kinematics plate models with SGUF

The present variable kinematics modeling approach subdivides the composite stack composed

of Np physical plies of thickness tp, into Nk computational sublaminates of thickness tk. Each

sublaminate is thus composed of Nk
p plies and has a thickness tk =

∑Nkp
p=1 tp, where the local ply

index p is introduced for each sublaminate. Hence, t =
∑Nk
k=1 tk =

∑Nk
k=1

∑Nkp
p=1 tp. Local ply-specific

and sublaminate-specific thickness coordinates zp ∈ [− tp2 ,
tp
2 ] and zk ∈ [− tk2 ,

tk
2 ] are introduced

along with the corresponding non-dimensional coordinates ζp =
zp
tp/2

and ζk = zk
tk/2

for defining

the approximations of the plate model. The link between these non-dimensional coordinates is

expressed through following relation:

ζp =
tk
tp
ζk +

2

tp

(
z0k − z0p

)
(6)

where z0p and z0k are the midplane coordinates of the pth ply and kth laminate, respectively.

The overall plate model is constructed as a Layer-Wise assembly of sublaminates. Each sublami-

nate is associated with a variable kinematics description that is defined according to the Generalized

Unified Formulation proposed in (Demasi, 2009a,b,c): each displacement component ui of all plies

of the kth sublaminate can be expanded with arbitrary order Nk
ui , and can be described in an ESL

or LW manner. Due to this modeling strategy, different arbitrary kinematics can be independently

chosen for the facesheets and the core of a sandwich plate.

The displacement component up,ki (xα, z) of the pth ply within the kth sublaminate is expressed

according to Eq. (3) as

up,ki (x1, x2, zp) =

Nkui∑
αui=0

Fαui (zp) ûiαui (x1, x2) . (7)

It is emphasized that the expansion order Nk
ui can be different depending on the component i that is

considered, for instance, in-plane displacements up,k1 and up,k2 may have a different expansion order

than the out-of-plane displacement up,k3 . If the kth sublaminate has a LW description, the resulting

approximation over zk is obtained upon assembling the ply-specific approximations Eq. (7) across
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all Nk
p plies through enforcing the continuity conditions at the interfaces between adjacent plies. If

the sublaminate is described in an ESL sense, Eq. (7) still holds with the coordinate change zp = zk

and by setting up,ki = uki and ûp,kiαui
= ûkiαui

.

The thickness functions Fαui are defined in the non-dimensional coordinate ζ, where ζ = ζp

if the sublaminate has an LW description and ζ = ζk if the sublaminate has an ESL description.

These functions are defined as follows

if Nk
ur = 0 : F0(ζ) = 1

if Nk
ur > 0 : F0(ζ) =

1 + ζ

2
; F1(ζ) =

1− ζ
2

Fl(ζ) = Pl(ζ)− Pl−2(ζ) l = 2, 3, . . . , Nk
ur

(8)

where Pl(ζ) is the Legendre’s polynomial of order l which is defined recursively as:

P0 = 1; P1 = ζ; Pl+1 =
(2l + 1)ζPl − lPl−1

l + 1
(9)

By virtue of these functions, the LW assembly procedures that enforces the displacement field con-

tinuity between adjacent plies and sublaminates can be accomplished in a straightforward manner

(D’Ottavio, 2016; D’Ottavio et al., 2016a).

2.3. Ritz method

Within the Ritz solution framework, the functions Nj(xα) that approximate the solution ac-

cording to Eq. (4) should form a complete and admissible set of functions. In this work, two

different sets of linearly independent approximating functions are proposed and compared. For the

sake of generality, the physical domain Ω is conveniently mapped onto the computational domain

Ω� = [−1, 1] × [−1, 1], described by the natural coordinates ξ and η. The approximating Ritz

functions for the displacement component ur (r = 1, 2, 3) are then expressed as

Nurj(ξ, η) = φurm(ξ)ψurn(η) (10)

with m = 1, . . . R; n = 1, . . . S and j = S(m− 1) + n (11)

where R and S are the orders of the expansion along ξ and η, respectively, and j = 1, . . .M = R×S.

The first set of approximating functions consists of the product of a basis function and of a poly-

nomial boundary function that allows to satisfy the essential conditions at the domain boundaries:

φurm(ξ) = fur (ξ)pm(ξ) ; ψurn(η) = gur (η)pn(η) (12)
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where the boundary functions are defined as:

fur (ξ) = (1 + ξ)e1r (1− ξ)e2r ; gur (η) = (1 + η)e1r (1− η)e2r (13)

and the coefficients e1r and e2r are set to either 0 or 1 depending on the boundary conditions (Dozio

& Carrera, 2012). The basis functions pm and pn are here chosen to be the orthogonal Legendre

polynomials defined recursively by means of Eq. (9) with l = m,n and ζ = ξ, η. It is worth

emphasizing that Legendre polynomials are characterized by excellent convergence properties and

provide the highest degree of sparsity in the resulting stiffness matrix among the class of orthogonal

polynomials (Vescovini et al., 2018).

For comparison purposes with the existing literature, a second set of approximating functions is

considered, corresponding to the classical trigonometric Ritz expansion, taken from the well-known

Navier solutions for plates simply-supported along the four edges. It consists of a complete basis

that inherently verifies the essential boundary conditions of the problem, and can be cast in the

form given by Eq. (10) as follows:

Nu1j(ξ, η) = cos
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

Nu2j(ξ, η) = sin
mπ

2
(ξ + 1) cos

nπ

2
(η + 1)

Nu3j(ξ, η) = sin
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

(14)

It is important to note that the trigonometric basis functions do automatically impose some condi-

tions on the derivatives of the solution at the boundaries. In particular, Eq. (14) implies vanishing

curvatures at the supported edges, which meets well the natural boundary conditions of nil bending

moments for isotropic and orthotropic plates. However, Eq. (14) imposes spurious over-constraints

in the presence of bending-twisting coupling that characterizes the response of anisotropic plates,

with detrimental effects over the convergence of the solution.

2.4. Kernel integrals

By virtue of the index notation employed in Eq. (7) and Eq. (10) for expressing the displacement

components along z and in the plane Ω, respectively, the variational statement Eq. (1) can be written

in a compact manner in terms of so-called kernel integrals. It is worth noting that the kernel

evaluation of the Ritz integrals allows for a highly efficient implementation, which is of paramount

importance in wrinkling problems where several degrees of freedom need to be considered.
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The integral across the thickness of the plate is represented as an assembly of integrals over

sublaminates, which in turn consist of an assembly of integrals over the thickness of individual

plies. A detailed derivation of these kernel integrals can be found in the literature dedicated to the

variable kinematics approach (Vescovini et al., 2018), so in the following only the main equations

are reported for the sake of conciseness. The approximations expressed by Eq. (7) and Eq. (10) are

introduced into Eq. (1) and, taking into account the definition of the compatible strains Eq. (2),

the following discrete form of the variational statement is obtained

Nk∑
k=1

Nkp∑
p=1

δUp,krαur iC̃
p,k
RSZ

pαurβus
(∂)ur(∂)us

Idefgurusij
Up,ksβusj + δUp,krαur iλσ

0 p,k
γµ Z

pαurβus
urus Idefgurusij

Up,ksβusj = 0 (15)

with r, s = 1, 2, 3; γ, µ = 1, 2; αur = 1, 2 . . . Nk
ur ; βus = 1, 2 . . . Nk

us ; i, j = 1, 2, . . .M.

C̃p,kRS represents the generic RS coefficient of the ply stiffness matrix expressed in the global reference

system in Voigt notation

σp,kR = C̃p,kRSe
p,k
S (R,S = 1, 2, . . . 6) (16a)

with

 e1 = e11, e2 = e22, e3 = e33, e4 = 2e23, e5 = 2e13, e6 = 2e12

σ1 = σ′11, σ2 = σ′22, σ3 = σ′33, σ4 = σ′23, σ5 = σ′13, σ6 = σ′12

(16b)

where the notation σ′ recalls that these are perturbation stresses. The terms Z
pαurβus
(∂)ur(∂)us

and Idefgurusij

are the integrals of the thickness functions and of the Ritz functions, respectively, which are defined

according to the following notation:

Z
pαurβus
urus =

∫ ztopp

zbot
p

FαurFβusdz Z
pαurβus
∂urus

=

∫ ztopp

zbot
p

∂Fαur
∂z

Fβusdz

Z
pαurβus
ur∂us

=

∫ ztopp

zbot
p

Fαur
∂Fβus
∂z

dz Z
pαurβus
∂ur∂us

=

∫ ztopp

zbot
p

∂Fαur
∂z

∂Fβus
∂z

dz

(17)

Idefgurusij
=

∫ 1

−1

∫ 1

−1

∂d+eNuri
∂xd∂ye

∂f+gNusj
∂xf∂yg

dηdξ (d, e, f, g = 0, 1) (18)

2.5. Prebuckling state

The prebuckling stress condition is evaluated in a closed-form manner as first step of the analysis

procedure. By assuming that the stress resultants N0
αβ are imposed at the sandwich edges, it is

possible to determine the distribution of internal stress after imposing compatibility requirements
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between the various plies composing the plate. By assuming a prebuckling plane stress state, the

membrane stiffness matrix of the plate AIK (I,K ∈ {1, 2, 6}) and its inverse aIK = A−1IK are

evaluated following the standard CLT procedure (Jones, 1998; Reddy, 2004). The prebuckling

strains are then obtained as:

ε0xx = a11N
0
xx + a12N

0
yy + a16N

0
xy

ε0yy = a12N
0
xx + a22N

0
yy + a26N

0
xy

γ0xy = a16N
0
xx + a26N

0
yy + a66N

0
xy

(19)

The corresponding prebuckling stresses are determined in each ply from the constitutive law

σ0,p,k
xx = Cp,k11 ε

0
xx + Cp,k12 ε

0
yy + Cp,k16 γ

0
xy

σ0,p,k
yy = Cp,k12 ε

0
xx + Cp,k22 ε

0
yy + Cp,k26 γ

0
xy

σ0,p,k
xy = Cp,k16 ε

0
xx + Cp,k26 ε

0
yy + Cp,k66 γ

0
xy

(20)

where Cp,kIK denote the reduced plane stress stiffness coefficients of the pth ply.

Two different strategies are considered here for evaluating the prebuckling stresses. The first

one consists in applying Eqs. (19) and (20) as reported, thus accounting for the contribution of the

facesheets and core to the overall axial stiffness of the laminate. This approach simulates the case

of plate loaded by means of rigid blocks, where the load is introduced both in the face plies and

the core, according to their relative stiffnesses.

The second approach considers a load introduction mechanism where the core remains unloaded.

In this case the application of Eqs. (19) and (20) is formally identical, but the core contribution

is removed from the evaluation of the compliance matrix aIK and the index p of Eq. (20) varies

over the plies belonging to the facesheets only. This second load introduction strategy resembles

the well-known anti-plane stress assumptions used for deriving wrinkling closed-form solutions.

3. Results

A number of test cases is illustrated to show the potentialities of the proposed formulation

as a unified mean for addressing global and local instabilities of sandwich plates. Comparisons

are illustrated against reference results from the literature as well as closed-form design formulae.

Global buckling is addressed first, while local instabilities are illustrated in the second part of the

discussion.
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As far as several examples are presented, the material elastic properties used throughout this

section are preliminarily summarized in Tables 1 and 2. The materials are labeled as Fi and Ci to

denote the facesheet and core properties, respectively.

The notation for specifying the underlying kinematic theory is based on two acronyms, the

first referring to the model adopted for the facesheet, the second relative to the core. Since all

the examples considered here involve symmetric sandwich plates, the top and bottom facesheets

are always modeled using the same theory. Furthermore, all sublaminate models employed in the

subsequent examples are characterized by expansion orders Nk
u1

= Nk
u2

= Nk
u3

+ 1, i.e., they form

a consistent approximation of order Nk
u3

of the transverse shear strain γkα3. These choices are,

however, not mandatory within the present implementation. For instance, ESL110/ESL332 defines

a model where the facesheet sublaminate is described by means of an Equivalent Single Layer

theory of order 110 – i.e., an FSDT kinematics with plane stress constitutive law and a unit shear

correction factor –, while the core is modeled according to a {3, 2} kinematics, in which the in-plane

displacements are cubic and the transverse displacement quadratic along the thickness. The full

3D constitutive law is used whenever the polynomial order used for the transverse displacement is

greater than one.

3.1. Global buckling

The first two examples are aimed at assessing the accuracy of the predictions obtained with

SGUF-Ritz approach in case of global buckling modes, i.e. modes characterized by halfwaves of

length similar to the in-plane dimensions of the structure.

3.1.1. Example 1 – Thick sandwich strut with orthotropic core

The test case is taken from Ji & Waas (2012), who derived the exact elasticity solution for a

sandwich strut subjected to simply support conditions at the two ends, and loaded with an imposed

end shortening. The strut aspect ratio a/h is equal to 3, where h denotes the overall thickness of

the strut, and a is the total length. The thickness of the facesheets is equal to 0.1 mm, while the

core is 0.8 mm thick. Two different configurations are analyzed: in the first case the facesheets

are made of the isotropic material F1 and the core of the orthotropic material C1; the second case

refers to orthotropic facesheets made of material F2 and the orthotropic core C2. Note that in both

configurations the core stiffness along the x direction is larger in comparison to the stiffness along

the transverse direction z.
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The strut model is inherently two-dimensional and defines a plane problem, associated here with

the xz plane. The corresponding Ritz model is realized as a degeneration of the general framework

previously outlined by dropping out the contributions due to the derivatives along the y direction.

The model is thus reduced to a cylindrical bending problem, and the Ritz description is based

upon the approximation of the generalized displacement components along the strut axis only. The

results are summarized in Figure 2, where the non-dimensional buckling load is plotted against the

orthotropy ratio of the core material. The reference value Pb denotes the buckling load calculated

as:

Pb =
Pe

1 + Pe/GA
(21)

where Pe is the Euler buckling load, and GA the strut transverse shear stiffness according to Bazant

& Beghini (2006).

All the configurations buckle with a global shape, characterized by one single halfwave along the

strut axis. The results are presented by considering two different models, namely ESL110/ESL332

and ESL110/ESL554, and a number of Ritz functions equal to 10 is used following a preliminary

numerical assessment. The comparison against the exact results of Ji & Waas (2012) reveals the

convergence with respect to the theory order. As seen, using the high-order model 332 for the core

can be inadequate for accurately predicting the buckling loads, especially for relatively high values

of core orthotropy ratios, i.e., when the in-plane stiffness of the core is much larger than that in

the thickness direction. Close matching is observed with the reference results when the core model

is refined up to the order 554, as seen from Figure 2. Further refinement of the kinematic theory,

both for the facesheets and core, does not provide any additional benefit, as the reduction of the

buckling load is below 0.3%. In this sense the model ESL110/ESL554 represents the optimal ratio

between accuracy and number of degrees of freedom. As expected, the results obtained with the

present Ritz approach lead to buckling loads which are slightly higher in comparison to the exact

elasticity solution.

This preliminary example provides good evidence of the advantages due to the sublaminate

variable-kinematics approach, where the core model can be refined up to the desired level of accuracy

depending on the problem at hand.
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3.1.2. Example 2 – Sandwich panel with honeycomb core

The second example deals with the test case proposed by Rao (1985) and Yuan & Dawe (2001b).

Simply-supported square panels of dimension 225 mm are considered. Uniaxial loading conditions

are introduced by imposing a uniform compressive strain at the facesheets, while assuming iden-

tically null the prebuckling stress in the core. The facesheets are 0.2 mm thick and made of one

single ply (material F3) oriented at θ, while the honeycomb core (material C3) has thickness equal

to 10 mm.

The present configuration is characterized by membrane and bending anisotropy when θ is dif-

ferent from 0◦ and 90◦. This feature renders the Ritz solution of particular interest, as Navier-type

results cannot be achieved unless anisotropy is assumed negligible. Based on a preliminary conver-

gence analysis, 30 trial functions are used along both the coordinate directions x and y. Consistently

with the B-spline finite strip formulation of Yuan & Dawe (2001a), the model ESL110/ESL221 is

adopted for the present computations. The results are reported in Figure 3, where the buckling

force per unit length is plotted against the orientation θ of the facesheet. A first set of results is

obtained by expanding the displacement field by means of Legendre polynomials that, due to their

excellent convergence properties, is the default approach considered here. The predicted buckling

loads are reported with a continuous line and are in close agreement with the reference results, with

a maximum percent difference below 0.6%. It is worth noting that no appreciable improvement

is achieved by further refining the underlying kinematic theory. With the aim of illustrating the

effects of an improper choice of the trial functions, the results are calculated also by considering a

trigonometric expansion in the form of Navier-type functions. The buckling loads are plotted with

dash-dotted lines in Figure 3, by considering 4 functions, as done by Rao (1985), and 30 functions.

In the first case, close agreement is noticed with the buckling loads reported by Rao (1985) that

are, however, much higher with respect to the correct predictions. Even by increasing the number

of trial functions up to 30, the errors are still relatively large, especially for those configurations

characterized by high degree of bending/twisting elastic coupling. The fallacy of trigonometric

functions is related to their inability to fulfill the natural boundary conditions in the presence of

bending anisotropy as well as their incompleteness in the strain energy norm (Stone & Chandler,

1996; Vescovini et al., 2018).
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3.2. Wrinkling under uniaxial loads

This second section is directed toward the analysis of wrinkling-type instabilities, thus the

SGUF-Ritz approach is adopted for assessing the response of sandwich panels undergoing buckling

modes characterized by wavelengths of the order of the panel thickness. It should be noticed

that honeycomb cores are modeled as homogeneous orthotropic materials, such that intracellular

buckling (“dimpling”) of the facesheets is excluded from the present approach.

3.2.1. Example 3 – Sandwich strut with foam core

Aiming at further highlighting the capabilities of the formulation, an initial benchmark from the

literature is illustrated. The problem was previously investigated by Ji & Waas (2007) that derived

the exact elasticity solution. For this reason, the comparison is believed of special importance.

The sandwich construction is a simply-supported strut of length equal to 200 mm; the thicknesses

of each facesheet and the core are equal to 1 mm and 68 mm, respectively. Three distinct core

properties are considered, corresponding to foam cores with different densities and denoted here

as C4, C5 and C6. The elastic constants of the facesheet are derived by evaluating the equivalent

modulus and Poisson’s ratio of the cross-ply stack [0/90]s of material F2 that are found to be equal

to 61.44 GPa and 0.0738, respectively (D’Ottavio et al., 2016b). Uniaxial loading conditions are

imposed by means of an imposed strain along the whole strut section. The analysis is conducted to

identify both symmetric and antisymmetric wrinkling modes associated with different wavelengths.

In this case, convergence of the results is obtained by considering a model ESL110/ESL554.

The plot of Figure 4 reports the axial strain at buckling against the non-dimensional half-

wavelength of the wrinkling mode λ/tf , where λ is the half-wavelength and tf the thickness of

the facesheet. Within the present Ritz implementation, the wrinkling half-wavelength cannot be

imposed ex ante, as the displacement field is the superposition of several trial functions. For this

reason, the problem is solved for a relatively large expansion – up to 150 function –, and all the

150 eigenvalues are computed. For each eigenvalue, the corresponding eigenvector is post-processed

in order to establish the half-wavelength and to check whether it is of symmetric or antisymmetric

type. The plot reported in Figure 4 is the collection of the obtained points. It is worth noting that

the eigenvalues tend to be clustered in the short wavelength regime, thus the overall reference curve

cannot be exactly reproduced. However, the results demonstrate the close agreement between the

approximate SGUF solution and the exact elasticity one. Also the distinction between symmetric
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and antisymmetric modes is properly described, which confirms that the method correctly captures

the through-the-thickness behavior. For the sake of illustration, Figure 4 also shows the symmetric

and antisymmetric buckling modes predicted at λ/tf = 50 for the configuration with the C6 core.

3.2.2. Example 4 – Sandwich panel with foam core

Having illustrated the capability of the method to obtain quasi-3D predictions for the wrinkling

response, the analysis is now shifted to a more complex case characterized by the presence of

facesheets with anisotropic behavior. With this regard, the amount of data available in the literature

is relatively poor, and few numerical and experimental results are available for comparison purposes.

The sandwich panel studied analytically and experimentally by Fagerberg (2003) is considered: it

has planar dimensions 200 mm and 150 mm along the longitudinal and transverse directions,

respectively. The facesheets consist of a symmetric laminate of four plies (material F2, thickness

0.25 mm) with stacking sequence [α/(90 +α)]s. The angle α defines the rotation of the orthotropy

principal axes and varies between 0 and 90 degrees. Therefore, the faces are specially orthotropic if

α equal to 0◦ or 90◦, while different amounts of flexural anisotropy are associated with the remaining

configurations, depending on the magnitude of the off-axis angle α. The core is 50 mm thick and is

made of material C7. In order to reproduce the effect of the tabs used for the load introduction, the

panel is assumed fully clamped along the transverse edges, and free on the longitudinal ones; the

load is introduced by means of an imposed axial strain. The results are summarized in Figure 5,

where the critical load and the skew angle of the wrinkles are reported for different values of

α. Note that, for consistency with the results reported in Fagerberg (2003), the load N∗x,buck is

defined as half of the buckling force per unit length carried by the panel. The same notation

is adopted hereinafter. The buckling loads obtained using the SGUF-Ritz approach are reported

with respect to different kinematic theories: FSDT models are assumed for the facesheet, whilst

the core model is progressively refined by increasing the order of the theory. From Figure 5(a) it

can be noted that highly unconservative buckling loads are predicted if the lowest order kinematic

theory, corresponding to that proposed by Yuan & Dawe (2001a), is used for the core. Even the

third order model 332 is responsible for buckling loads 2% higher with respect to the converged

results, which are achieved using a 554 core model. Again, the advantages due to the adoption of a

variable-kinematics approach, whose levels of refinement can be defined form case to case, are quite

evident.

18



Figure 5(a) reports also the results obtained by the closed-form solution proposed by Fagerberg

& Zenkert (2005a) and the classical one due to Plantema (1966). Both these models rely upon an

assumed exponential decay of the wrinkling mode along the thickness direction. While Plantema’s

model is based on the assumption of wrinkling modes perpendicular to the load direction, the

solution due to Fagerberg and Zenkert accounts for the skewness of the wrinkling mode. Close

matching between the present Ritz solution and the closed-form solution by Fagerberg and Zenkert

can be noticed by inspection of Figure 5(a). For any value of α, the analytical approach leads to

slightly higher buckling loads with respect to those obtained with the converged Ritz solution. On

the contrary, Plantema’s solution reveals a certain inaccuracy, always on the unsafe side, for those

lay-ups characterized by an important amount of flexural anisotropy with angles α comprised in

the range between 10 and 60 degrees.

Finally, it is interesting to have a closer look at the shape of the wrinkling modes by comparing

the skewness angle as predicted by the model of Fagerberg and Zenkert and the Ritz solution. The

results are reported in Figure 5(b), where the buckling pattern is presented for a selected set of

panels. A substantial agreement is noted, both in terms of trend of the curve as well as numerical

values.

3.3. Wrinkling under biaxial loads

Wrinkling modes due to biaxial loading conditions have been quite rarely addressed in past

efforts in the literature, especially for sandwich panels with anisotropic facesheets. For this reason,

a deep analysis is presented here, both with respect to the assessment of the underlying kinematic

theory, and in terms of comparison against available closed-form results.

The sandwich configurations considered in this section are taken from Fagerberg & Zenkert

(2005a), among the few authors to address, both analytically and experimentally, the role of biaxial

loads and facesheet anisotropy. The sandwich panels have dimension 200 mm × 150 mm; the

core (material C8) has a thickness of 50 mm, while the facesheet is made of one orthotropic ply of

material F2 and thickness 0.5 mm. Different orientation angles θ of the facesheet ply are considered.

The boundary conditions are modeled by assuming the panel as fully clamped, while biaxial loads

are introduced by means of imposed strains at the four edges. Note that the load is introduced

both in the facesheets and the core.
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3.3.1. Theory assessment

An assessment over the kinematic model is performed for illustrating the roles of biaxiality ratio

and facesheet anisotropy in relation to the order of the theory to guarantee accurate predictions.

The results are summarized in Table 3, where the local buckling loads are reported by considering

different facesheet orientations θ and values of the ratio r = Ny/Nx. The comparison is presented

for different core models, while keeping fixed the kinematics used for the facesheet. In particular,

a preliminary assessment, not reported here for the sake of conciseness, revealed that a facesheet

model ESL110 is always adequate. Furthermore, the core model ESL776 was found to guarantee

convergence of the predictions. Therefore, the results obtained using the model ESL110/ESL776 are

taken as reference.

As seen from Table 3, large errors are obtained when the core is modeled using 332 kinematics,

with percent differences ranging between 7 and 29% with respect to the reference results. These

results, obtained with a kinematic model similar to that of EHSAPT, provide good evidence of the

advantages offered by the proposed approach when facing some class of problems. Note that the

magnitude of errors is not negligible even when the core is modeled using a 554 kinematics, with

values as high as 2%. In both cases, the errors increase by moving along the rows and the columns

of the table. In other words, the need for increased core refinement is determined by larger values

of r and θ. This behavior is explained by noticing that higher amounts of biaxiality ratio tend

to reduce the half-wavelengths of the wrinkles. Similarly, the facesheet stiffness along the axial

direction is progressively weakened as the orthotropic plies are rotated, and the half-wavelengths

of the corresponding mode are reduced. The onset of shorter wrinkles, in turn, determines a more

rapid decay of the wrinkling perturbation through the core thickness. So, as the biaxiality ratio r

and rotation angle θ are increased, the core deformation is confined into a decay region that becomes

thinner, which calls for a refinement of the core model kinematics. This behavior is demonstrated

by the plots of Figure 6: the curves report the normalized transverse and axial displacements of

the core at the buckle crest obtained for different biaxiality ratios and ply angles. The plots are

obtained using the high-order kinematics 776 to model the core. For θ = 0◦, an increasing decay

rate can be observed in the transverse displacement curves of Figure 6(a) if the ratio r is increased

from 0 to 1. The axial displacement shows, in turn, an increasingly non-linear behavior, with the

steepest gradient occurring next to the facesheets within a region that becomes narrower as the

biaxiality ratio increases. For θ = 45◦, the curves in each plot are close to each other, and all of
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them are characterized by relatively steep gradients in the top and bottom regions adjacent to the

facesheets, even in the case of pure axial load (r=0), see Figure 6(b). This also explains the large

percent errors observed in Table 3 when θ = 45◦, irrespective on the loading condition.

3.3.2. Further remarks on the refinement of the theory

Further insight into the role played by the kinematic model employed for the core can be gained

through the analysis of the strain energy contributions of the wrinkled configuration. The non-

dimensional strain energy contributions can be evaluated, for each sublaminate k, as

U
k

αβ =
1

2Utot

∫
V k
σαβεαβdV k

U
k

33 =
1

2Utot

∫
V k
σ33ε33dV k

U
k

α3 =
1

2Utot

∫
V k
σα3γα3dV k with α, β = 1, 2

(22)

where no summation is implied now for the repeated indexes.

The results are shown in Figure 7 for the biaxial case (r=0.5) and facesheet ply orientation

θ = 45◦ of Table 3. The internal energy distribution is compared with respect to the different

core models previously considered. Again, the lowest order kinematic is taken as ESL110/ESL332

to resemble the assumptions of classical high-order sandwich panel models, and providing evidence

of the need for improved refinement for the test case at hand. As observed, most of the energy is

stored in the core in the form of normal and transverse shear deformation energies. The presence

of both these contributions highlights a wrinkling mode which is not purely extensional along the

thickness. It follows that refinement is needed for both, the displacement component uz, which is

strictly associated with the transverse normal deformation energy U33, and the components ux and

uy, which are related to the transverse shear deformation energy Uα3. The comparison between

different sandwich models reveals that low-order core models tend to alter the internal load path

by overestimating the transverse shear deformation mechanisms. This is due to the incapability of

the models to properly describe the vertical displacement along the thickness, and so the correct

amount of extensional energy U33 cannot be stored. This, in turn, determines a spillover of strain

energy from U33 to the contributions Uα3, creating an internal load path dominated by transverse

shear mechanisms.

These considerations clearly explain the need for a high-order theory for correctly predicting the

wrinkling behavior of sandwich panels with isotropic cores. These remarks are next extended to
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a broader class of configurations, in particular by including the core orthotropy ratio Ecore
11 /Ecore

33 .

Preliminary investigations indicated a high sensitivity of the internal strain energy distribution

to this parameter (D’Ottavio & Polit, 2015). Present results refer to the same sandwich panel

investigated above, but the in-plane elastic moduli of the core C8 are now varied, while keeping

constant Ecore
33 . The results are plotted in Figure 8(a) in terms of non-dimensional transverse

normal and transverse shear energy contributions for core’s orthotropy ratios between 1 (isotropic)

and 10-5. The configuration with r = 1 and θ = 45◦ has been computed with the high-order

model ESL110/ESL776. Figure 8 illustrates also the deformed cross-sections of the wrinkling modes

associated with four values of the core’s orthotropy ratio.

The results show that weak in-plane properties tend to determine purely extensional core mech-

anisms. Hence, for approximately Ecore
11 /Ecore

33 < 10−3, the kinematic model is only required to

correctly grasp the transverse normal strain in order to guarantee accurate wrinkling predictions.

In this case, it turns out that the classical Winkler model provides fairly accurate results (Vonach

& Rammerstorfer, 2000) and, accordingly, low order models yield accurate results as well. For in-

stance, the core model ESL221, which entails transverse normal strains and transverse shear strains

that are constant and linear, respectively, across the core thickness, is typically sufficient to provide

accurate results. On the contrary, wrinkling of isotropic cores, like that investigated in Table 3,

is characterized by an equal repartition of the transverse normal and shear strain energies. As

previously discussed, this configuration demands a core model based on high-order kinematics for

capturing the interaction between the transverse normal and shear deformations within the decay

region of the core.

The wrinkled cross-section illustrated in Figure 8(b) shows that no interaction occurs between

the facesheets for an isotropic core. In fact, the decay region is small compared to the core thickness

tc and the buckling loads for antisymmetric and symmetric short wavelength wrinkling modes are

practically coincident for isotropic cores (see, e.g., Niu & Talreja (1999); Vonach & Rammerstorfer

(2000)). Starting from the isotropic case, the decrease of the core’s in-plane moduli extends the

decay region and, hence, stimulates the interaction between the facesheets. For the considered core

material, the interaction is mainly driven by the transverse shear strains, which thus triggers a

predominant antisymmetric mode as illustrated in Figure 8(c). A further reduction of the core’s

in-plane stiffness enhances the interaction between the facesheets, which is now triggered mainly

by the axial strains. The predominant wrinkling mode becomes the symmetric one, as seen from
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Figures 8(d) and 8(e). The transition between symmetric and antisymmetric wrinkling modes can

also be observed in Figure 8(a) because the variation of the strain energy contributions with respect

to the core’s orthotropy ratio is linear for the antisymmetric mode and nonlinear for the symmetric

mode.

3.3.3. Interaction curves

The stability region for combined biaxial loads can be quickly traced by making use of the

present SGUF-Ritz implementation. This feature is particularly useful for realizing design charts

in the form of interaction curves. With this regard, the sandwich panel of the previous example

is analyzed for different values of the biaxiality ratio r and ply angle equal to 15◦. The results

are summarized in Figure 9, where the comparison is presented against the Fagerberg closed-form

solution, both in terms of buckling loads and skew angle of the buckling half-waves. The curves

report also the results of detailed 3D finite element analyses taken from Fagerberg & Zenkert

(2005a). Good agreement can be noticed between the finite element predictions and the present

SGUF-Ritz solutions, the latter providing, in general, slightly higher buckling loads, exception made

for the range 0.6 < r < 0.8. These discrepancies are attributed to the different definition of the

boundary conditions utilized in FEM and Ritz analyses, the former allowing the in-plane shear, the

latter preventing it. On the contrary, despite the comparison with the analytical solution reveals a

similar trend, both for the buckling loads and the predicted skew angle, significant differences are

obtained in terms of predicted values. The percent differences for the buckling loads range between

6% and 11%. The discrepancies are attributed to the assumptions of the closed-form solution over

the periodicity of the buckled pattern, which is not observed in the Ritz (see Figure 9(b)) and FEM

results.

Additional results are presented in Figure 10 for different orientations of the facesheet ply. Also

in this case the SGUF-Ritz results are very close to detailed 3D FEM analyses, while the closed-form

solution describes a similar trend, but smaller buckling loads. It is interesting to highlight the close

matching between Ritz and closed-form results in the initial region of the specially orthotropic panel

of Figure 10(a). This configuration is characterized by a buckling pattern with by zero skew angle

and short-wave wrinkles along both directions, which verifies fairly well the periodicity assumption

the closed-form solution relies upon. On the contrary, in presence of anisotropy a buckling patterns

arises with short waves along one single direction, thus leading to a buckling phenomenon at panel
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level that is inherently different from the periodic one assumed by the closed-form solution.

3.4. Wrinkling under multi-axial loads

In this section the results are presented for general loading conditions, where in-plane shear

loads are introduced in addition to biaxial compression.

3.4.1. Example 5 – Isotropic sandwich panel with honeycomb core

A first example is aimed at demonstrating the capability of the present implementation to

handle in-plane shear loads. The example is taken from Yuan & Dawe (2001b) and deals with a

simply-supported square sandwich plate of edge length 228 mm, whose facesheets (material F4) and

honeycomb core (material C9) are 0.65 and 25 mm thick, respectively. The prebuckling condition

consists of longitudinal compression and in-plane shear and is introduced by loading the plate

facesheets.

The shear-compression interaction curve is plotted in Figure 11(a), and Ritz results are reported

against detailed finite strip calculations reported by Yuan & Dawe (2001b). Ritz calculations are

performed by means of 50 × 50 functions, using the model ESL110/ESL221, which corresponds to

that adopted in the reference. The comparison reveals almost identical results, thus demonstrating

the possibility of successfully applying the present approach to the analysis of more complex loading

conditions. It is worth noting that no appreciable difference is observed if the order of the theory

is refined. Since the honeycomb core has a null in-plane stiffness, the wrinkling mode is purely

extensional along the thickness direction and no transverse shear energy is stored in the core.

The kinematics order 221 adopted for the core is thus sufficient to properly capture the buckling

mechanism. A sketch of wrinkling modes is available in Figure 11(a), where the top view is shown

for different ratios between compression and shear, and in Figures 11(b)-11(d), where the through-

the-thickness behavior is reported along the x-coordinate at y = b/2.

3.4.2. Example 6 – Composite sandwich panel with foam core

Novel results are reported by considering the sandwich panel studied by Fagerberg & Zenkert

(2005a) and analyzing the wrinkling behavior for combined loads of shear and biaxial compression.

The dimensions of the panel are 200 × 150 mm2, each facesheet consists of one 0.5 mm thick ply

(material F2) oriented at θ and the core (material C8) has a thickness equal to 50 mm. The panel is
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fully clamped at the four edges and the prebuckling condition is achieved by loading the sandwich

panel by means of imposed strains, uniformly distributed across the sandwich thickness.

This test case is more challenging than the previous one, as the buckling mechanism involves

both extensional and transverse shear energies. It follows that the core description demands for a

high-order theory. A sandwich model ESL110/ESL776 was found adequate to guarantee convergence

and is thus used for performing the calculations.

The results are summarized in Figure 12, where the buckling forces per unit length are presented

in the classical form of interaction curves. Two configurations are considered, namely an orthotropic

panel with the ply constituting the facesheets oriented at θ = 0◦, and a strongly anisotropic panel

whose facesheets are oriented at 45◦. The interaction curves reported in Figure 12(a) are traced

by considering axial compression and shear, those reported in Figure 12(b) refer to a prebuckling

condition consisting of biaxial compression and shear. The results provided by the Fagerberg

closed-form solution are included for comparison purposes. For the orthotropic configuration, the

interaction curves are symmetric with respect to the x axis because the sign of the shear load has

no influence on the buckling response. It is worth noting the good agreement between the present

results and the closed-form solution for purely axial conditions, while larger discrepancies appear

for increasing amounts of shear. In the case of the anisotropic configuration, the sign of the shear

load has a strong influence on the buckling response and, as a result, the interaction curves are not

symmetric with respect to the horizontal axis. The differences between the present Ritz solution

and the analytical closed-form solution are small for negative values of shear, corresponding to

compressive loads along the fiber direction. On the contrary, positive shear determines compressive

loads along the weaker in-plane direction, which yields larger discrepancies according to the findings

highlighted in the biaxial load case.

3.5. Transition from global buckling to wrinkling

The main advantage of a unified approach for the buckling analysis, as the one outlined here,

relies upon the possibility of capturing both global and local instabilities within the context of

the same framework. This feature becomes especially useful when performing sensitivity studies

or parametric analyses. Indeed, the modification of one or more design parameters of a sandwich

construction may lead to a change of the buckling mechanism, which may turn from global to

local. In some cases, the coupled use of distinct analysis models was suggested for analyzing global
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buckling and local buckling separately. In the context of finite element simulations, this need is

mainly dictated by the computational burden associated with the large number of degree of freedom

associated with highly refined meshes. This need is prevented by the adoption of the present Ritz

approach, where both global and local buckling modes can be effectively captured with a reduced

computational effort, and convergence is achieved quickly thanks to the excellent properties of the

Legendre polynomials.

Two examples illustrating the transition from global to local instabilities are reported in Fig-

ures 13 and 14. Note that the results extracted from the original sources have been put in a

consistent form, reporting the force per unit length against the non-dimensional parameter tc/a.

The results reported in Figure 13 refer to a case study proposed by Rose et al. (2002), which

involves a rectangular sandwich panel of dimensions 508 × 254 mm2, whose facesheets are made of

aluminum (material F5), while the core is the honeycomb denoted as C10. The panel is constrained

with simply-supported conditions along the four edges, and loaded with uniaxial compression. For

consistency with the finite element models discussed by Rose et al. (2002), a uniform strain is

applied at the facesheets, thus leading to a prebuckling state where no stresses are carried by the

core. Figure 13 reports the buckling loads for two different values of the facesheet thickness, i.e.,

a thin face with hf = 0.508 mm and a thick face with hf = 2.794 mm. The present SGUF-Ritz

results are obtained using a standard three-sublaminate configuration, in which the facesheets are

modeled according to FSDT and the core with a 332 kinematics. The comparison is made against

the results reported by Rose et al. (2002) from computations carried out with the finite element

code STAGS, in which special-purpose sandwich elements were implemented with the possibility

of stacking one or four elements along the thickness direction. Starting from low tc/a ratios (thin

cores), an initial increase of the core thickness increases the bending stiffness of the panel and,

hence, the global buckling loads are progressively higher in the leftmost part of the curves. At a

threshold value of the tc/a ratio, which is different for the thin- and thick-face configurations, the

transition to a local buckling instability is observed, and the local buckling load is progressively

reduced by further increase of the core thickness. The Ritz solution correctly captures this trend,

with buckling loads that are in close proximity with those obtained by the four-layer models in

STAGS in both the global and local buckling regime. From Figure 13, it can be noted that STAGS

models using only a single though-the-thickness element tend to underpredict the buckling load.

These conclusions hold for both the thin- and thick-face configurations. It is worth highlighting that
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the elastic properties of the core trigger local buckling modes with a symmetric wrinkling pattern, in

which the transverse shear energy stored by the core is much smaller than the transverse extensional

energy. A core theory 332 is hence sufficient to grasp the response with a high degree of accuracy.

A last example is addressed that is taken from Yuan & Dawe (2001b), in which a square panel of

edge length 225 mm is considered under the same boundary and loading conditions of the previous

case study. Each facesheet is made of one single ply of the orthotropic material F3, oriented at 0

or 40 degrees, while the honeycomb core has the elastic properties labeled C11 in Table 2. Since

the in-plane moduli of the honeycomb core are null, a low-order theory can be adopted for the

wrinkling analysis. The present results are thus obtained with the sandwich model ESL110/ESL221.

This choice is in agreement with the considerations made before, and has been corroborated by

a convergence analysis not reported here for the sake of brevity. Furthermore, the chosen model

corresponds with that adopted in (Yuan & Dawe, 2001a,b), whose results are taken here as reference.

The evolution of the buckling loads with respect to the tc/a ratio is reported in Figure 14. The

comparison with SGUF-Ritz calculations reveals close matching if the expansion is based upon 40

terms along both directions. However, further spatial refinement is needed to properly capture the

highly localized modes characterizing the local instabilities of the configurations investigated here.

In particular, it was found that convergence can be reached by enriching the Ritz basis up to 70

terms, leading to the results reported in Figure 14 with continuous lines. The effect of increasing

the number of functions is twofold: firstly the buckling loads in the wrinkling regime are lowered;

secondly, the transition from overall to local buckling is anticipated. It is worth noting that the

off-axis configuration with θ oriented at 40 degrees renders this aspect particularly severe due to

the more complex pattern induced by the facesheet anisotropy. With this regard, the proposed

approach seems a particularly efficient strategy, as a relatively high number of Ritz functions can

be easily accounted for.

4. Conclusions

The work has presented a computational approach for analyzing the global and local buckling

response of sandwich panels, based on the method of Ritz. The underlying kinematic theory relies

upon the subdivision of the structure into sublaminates, and allows to define multiple theories within

the same unified framework. Extensive numerical computations have been conducted that focus
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principally on the wrinkling response of sandwich panels made of orthotropic cores and anisotropic

facesheets and subjected to multi-axial loading conditions.

The SGUF variable kinematics approach is particularly attractive inasmuch as the refinement

of the theory to be used for the core may need to be tuned depending on the problem under

investigation, while keeping a simple theory for the relative thin facesheets. In particular, the

results demonstrate that high-order core models, – even with transverse and in-plane displacements

representation of order higher then the second and third, respectively – are generally needed in the

presence of quasi-isotropic cores undergoing antisymmetric wrinkling. Furthermore, compression

loads acting along the weakest in-plane direction tend to determine shorter half-wavelengths and,

hence, increased requirements for the refinement along the thickness direction. On the contrary,

low-order core models suffice whenever the buckling mode is symmetric, thus involving principally

the through-thickness normal strain with a negligibly small amount of transverse shear. When

compared to numerical techniques developed in the past and based on pre-defined kinematic models,

the proposed approach offers a broader range of use and allows maximizing the ratio between

accuracy and number of degrees of freedom.

A further advantage of the proposed approach is provided by the efficiency of the proposed Ritz

implementation, which is based on the use of Legendre polynomials. Accurate results can be derived

with a small computational effort, while guaranteeing FEM-like accuracy, as demonstrated by the

comparison against numerical results. Furthermore, the efficiency of the basis can be exploited to

predict buckled configurations with long and short half-wavelengths, thus allowing to capture the

transitions between global and local modes within the same unified framework.

The comparison against closed-form results demonstrates good matching in the case of axial

loads, while discrepancies can be relevant whenever multi-axial conditions are of concern or, more

generally, when the buckling mode does not verify some assumptions upon which the closed-form

solution relies. In contrast with the strength of material approach of common design formulae,

the present approach considers the wrinkling response at panel level. Nevertheless, it is believed

that it can be successfully employed to help reducing conservativeness, especially in those cases

characterized the presence of multi-axial loads.

For the above reasons the SGUF-Ritz approach appears as a suitable tool for the preliminary and

intermediate design phases, where thousands of configurations need to be analyzed or sensitivity

studies conducted. Further research work will be directed toward the extension of the present
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approach to account for the effects of initial imperfections, with the aim of deriving improved

knock-down factors to be used in conjunction with linearized buckling predictions.
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Table 1: Material elastic properties of the facesheets.

F1 F2 F3 F4 F5

E11 (MPa) 30000 107000 229000 69000 68950

E22 (MPa) 30000 15000 13350 69000 68950

E33 (MPa) 30000 15000 13350 69000 68950

G12 (MPa) 11538 4300 5249 26538 26519

G13 (MPa) 11538 4300 5249 26538 26519

G23 (MPa) 11538 4300 3000 26538 26519

ν12 0.30 0.30 0.3151 0.30 0.30

ν13 0.30 0.30 0.3151 0.30 0.30

ν23 0.30 0.30 0.3151 0.30 0.30
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Table 2: Material elastic properties of the cores (F: foam; H-C: honeycomb).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Type F F H-C F F F F F H-C H-C H-C

E11 (MPa) variable variable ≈ 0 40.00 80.00 140.00 20.00 56.00 ≈ 0 0.6895 ≈ 0

E22 (MPa) / / ≈ 0 40.00 80.00 140.00 20.00 56.00 ≈ 0 0.6895 ≈ 0

E33 (MPa) 46.15 86.00 +∞ 40.00 80.00 140.00 20.00 56.00 109.00 68.95 828.0

G12 (MPa) / / ≈ 0 16.00 32.00 56.00 13.00 22.00 ≈ 0 0.265 ≈ 0

G13 (MPa) 11.54 21.50 146 16.00 32.00 56.00 13.00 22.00 26.60 82.74 146.0

G23 (MPa) / / 90.40 16.00 32.00 56.00 13.00 22.00 15.50 49.64 90.4

ν12 / / 0.00 0.25 0.25 0.25 0.25 0.25 0.00 0.3 0.00

ν13 0.25 0.25 0.00 0.25 0.25 0.25 0.25 0.25 0.00 0.01 0.00

ν23 / / 0.00 0.25 0.25 0.25 0.25 0.25 0.00 0.01 0.00
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Table 3: Buckling loads (N/mm) for biaxially compressed panels: effects of face ply orientation and biaxiality ratio.

Face theory ESL110, and various core theories; 50 × 50 functions.

r=0.0 r=0.5 r=1.0

Core theory ESL332 ESL554 ESL776 ESL332 ESL554 ESL776 ESL332 ESL554 ESL776

α

0 227.31 214.19 213.38 229.64 214.87 213.05 168.57 134.08 131.14

15 222.13 205.03 203.97 214.94 185.78 183.42 168.47 133.99 131.05

30 207.73 181.33 179.51 196.32 163.62 161.00 168.38 133.90 130.96

45 190.50 158.09 155.58 182.23 148.28 145.49 168.39 133.89 130.96

60 177.59 143.06 140.23 173.54 139.08 136.21 168.40 133.90 130.97

75 171.31 136.32 133.39 169.93 135.18 132.27 168.45 133.96 131.02

90 169.97 135.08 132.15 169.59 134.83 131.91 168.51 134.03 131.12
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Figure 1: Sandwich panel and reference system.
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Figure 2: Global buckling loads of a sandwich strut – comparison against exact elasticity solution.
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Figure 3: Global buckling load of axially loaded sandwich plate – effect of different shape functions.
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Figure 4: Symmetrical and anti-symmetrical local buckling loads of a sandwich strut for different core properties –

comparison against exact elasticity solution.
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against closed-form solutions: (a) buckling loads, (b) skew angle of the buckled pattern.
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Figure 10: Local buckling response of biaxially loaded soft-core sandwich plate for different ply face orientations and

comparison against 3D FEM and closed-form solutions: (a) θ = 0◦, (b) θ = 30◦.
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(a)

(b) Nxy/Nx = 0

(c) Nxy/Nx = 0.75

(d) Nxy/Nx = +∞

Figure 11: Local buckling behavior of isotropic sandwich plate with honeycomb core, loaded with combined shear

and compression: (a) interaction curve, (b)-(d) wrinkling modes at y = b/2.
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Figure 12: Local buckling behavior of composite, foam-core sandwich plate, loaded with combined shear and com-

pression and: (a) Ny = 0, (b) Ny = 0.25Nx.
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Figure 13: Transition from global to local buckling response: isotropic sandwich plate with honeycomb core.
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Figure 14: Transition from global to local buckling response: composite sandwich plate with honeycomb core.
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