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A HYBRID HIGH-ORDER METHOD FOR DARCY FLOWS IN
FRACTURED POROUS MEDIA*

FLORENT CHAVE'#, DANIELE A. DI PIETRO', AND LUCA FORMAGGIA?

Abstract. We develop a novel Hybrid High-Order method for the simulation of Darcy flows in
fractured porous media. The discretization hinges on a mixed formulation in the bulk region and a
primal formulation inside the fracture. Salient features of the method include a seamless treatment
of nonconforming discretizations of the fracture, as well as the support of arbitrary approximation
orders on fairly general meshes. For the version of the method corresponding to a polynomial degree
k > 0, we prove convergence in h¥*t1 of the discretization error measured in an energy-like norm. In
the error estimate, we explicitly track the dependence of the constants on the problem data, showing
that the method is fully robust with respect to the heterogeneity of the permeability coefficients, and
it exhibits only a mild dependence on the square root of the local anisotropy of the bulk permeability.
The numerical validation on a comprehensive set of test cases confirms the theoretical results.

Keywords: Hybrid High-Order methods, finite volume methods, finite element methods, fractured
porous media flow, Darcy flow
MSC2010 classification: 65N08, 65N30, 76505

1. Introduction. In this work we develop a novel Hybrid High-Order (HHO)
method for the numerical simulation of steady flows in fractured porous media.

The modelling of flow and transport in fractured porous media, and the correct
identification of the fractures as hydraulic barriers or conductors are of utmost im-
portance in several applications. In the context of nuclear waste management, the
correct reproduction of flow patterns plays a key role in identifying safe underground
storage sites. In petroleum reservoir modelling, accounting for the presence and hy-
draulic behaviour of the fractures can have a sizeable impact on the identification
of drilling sites, as well as on the estimated production rates. In practice, there are
several possible ways to incorporate the presence of fractures in porous media models.
Our focus is here on the approach developed in [30], where an averaging process is
applied, and the fracture is treated as an interface that crosses the bulk region. The
fracture is additionally assumed to be filled of debris, so that the flow therein can
still be modelled by the Darcy law. To close the problem, interface conditions are
enforced that relate the average and jump of the bulk pressure to the normal flux and
the fracture pressure. Other works where fractures are treated as interfaces include,
e.g., [7, 3, 28].

Several discretization methods for flows in fractured porous media have been
proposed in the literature. In [17], the authors consider lowest-order vertex- and
face-based Gradient Schemes, and prove convergence in h for the energy-norm of the
discretization error; see also [15] and the very recent work [26] on two-phase flows.
Extended Finite Element methods (XFEM) are considered in [11, 6] in the context of
fracture networks, and their convergence properties are numerically studied. In [9],
the authors compare XFEM with the recently introduced Virtual Element Method

(VEM), and numerically observe in both cases convergence in NB%F for the energy-
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2 F CHAVE, D. A. DI PIETRO, AND L. FORMAGGIA

norm of the discretization error, where Npor stands for the number of degrees of
freedom; see also [8, 10]. Discontinuous Galerkin methods are also considered in [5]
for a single-phase flow; see also [4]. Therein, an hp-error analysis in the energy norm is
carried out on general polygonal /polyhedral meshes possibly including elements with
unbounded number of faces, and numerical experiments are presented. A discretiza-
tion method based on a mixed formulation in the mortar space has also been very
recently proposed in [14], where an energy-error estimate in h is proved.

Our focus is here on the Hybrid High-Order (HHO) methods originally intro-
duced in [22] in the context of linear elasticity, and later applied in [1, 24, 23, 25] to
anisotropic heterogeneous diffusion problems. HHO methods are based on degrees of
freedom (DOFSs) that are broken polynomials on the mesh and on its skeleton, and
rely on two key ingredients: (i) physics-dependent local reconstructions obtained by
solving small, embarassingly parallel problems and (ii) high-order stabilization terms
penalizing face residuals. These ingredients are combined to formulate local contri-
butions, which are then assembled as in standard FE methods. In the context of
fractured porous media flows, HHO methods display several key advantages, includ-
ing: (i) the support of general meshes enabling a seamless treatment of nonconforming
geometric discretizations of the fractures (see Remark 6 below); (ii) the robustness
with respect to the heterogeneity and anisotropy of the permeability coefficients (see
Remark 13 below); (iii) the possibility to increase the approximation order, which can
be useful when complex phenomena such as viscous fingering or instabilities linked to
thermal convection are present; (iv) the availability of mixed and primal formulations,
whose intimate connection is now well-understood [13]; (v) the possibility to obtain
efficient implementations thanks to static condensation (see Remark 9 below).

The HHO method proposed here hinges on a mixed formulation in the bulk cou-
pled with a primal formulation inside the fracture. To keep the exposition as simple
as possible while retaining all the key difficulties, we focus on the two-dimensional
case, and we assume that the fracture is a line segment that cuts the bulk region in
two. For a given polynomial degree k > 0, two sets of DOFs are used for the flux
in the bulk region: (i) polynomials of total degree up to k on each face (representing
the polynomial moments of its normal component) and (ii) fluxes of polynomials of
degree up to k inside each mesh element. Combining these DOFs, we locally recon-
struct (i) a discrete counterpart of the divergence operator and (ii) an approximation
of the flux one degree higher than element-based DOFs. These local reconstructions
are used to formulate discrete counterparts of the permeability-weighted product of
fluxes and of the bluk flux-pressure coupling terms. The primal formulation inside
the fracture, on the other hand, hinges on fracture pressure DOFs corresponding to
(i) polynomial moments of degree up to k inside the fracture edges and (ii) point
values at face vertices. From these DOFs, we reconstruct inside each fracture face
an approximation of the fracture pressure of degree (k + 1), which is then used to
formulate a tangential diffusive bilinear form in the spirit of [24]. Finally, the terms
stemming from interface conditions on the fractures are treated using bulk flux DOFs
and fracture pressure DOF's on the fracture edges.

A complete theoretical analysis of the method is carried out. In Theorem 11 be-
low we prove stability in the form of an inf-sup condition on the global bilinear form
collecting the bulk, fracture, and interface contributions. An important intermediate
result is the stability of the bulk flux-pressure coupling, whose proof follows the classi-
cal Fortin argument based on a commuting property of the divergence reconstruction.
In Theorem 12 below we prove an optimal error estimate in 2**! for an energy-like
norm of the error. The provided error estimate additionally shows that the error on
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A HHO METHOD FOR DARCY FLOWS IN FRACTURED POROUS MEDIA 3

the bulk flux and on the fracture pressure are (i) fully robust with respect to the
heterogeneity of the bulk and fracture permeabilities, and (ii) partially robust with
respect to the anisotropy of the bulk permeability (with a dependence on the square
root of the local anisotropy ratio). These estimates are numerically validated, and the
performance of the method is showcased on a comprehensive set of problems. The
numerical computations additionally show that the L?-norm of the errors on the bulk
and fracture pressure converge as h¥+2.

The rest of the paper is organized as follows. In Section 2 we introduce the contin-
uous setting and state the problem along with its weak formulation. In Section 3 we
define the mesh and the corresponding notation, and recall known results concerning
local polynomial spaces and projectors thereon. In Section 4 we formulate the HHO
approximation: in a first step, we describe the local constructions in the bulk and in
the fracture; in a second step, we combine these ingredients to formulate the discrete
problem; finally, we state the main theoretical results corresponding to Theorems 11
(stability) and 12 (error estimate). Section 5 contains an extensive numerical vali-
dation of the method. Finally, Sections 6 and 7 contain the proofs of Theorems 11
and 12, respectively. Readers mainly interested in the numerical recipe and results
can skip these sections at first reading.

2. Continuous setting.

2.1. Notation. We consider a porous medium saturated by an incompressible
fluid that occupies the space region Q < R? and is crossed by a fracture I'. We next
give precise definitions of these objects. The corresponding notation is illustrated in
Figure 1. The extension of the following discussion to the three-dimensional case is
possible but is not considered here in order to alleviate the exposition; see Remark 10
for further details.

From the mathematical point of view, 2 is an open, bounded, connected, polygo-
nal set with Lipschitz boundary 0f2, while I is an open line segment of nonzero length.
We additionally assume that €2 lies on one side of its boundary. The set Qp = Q\I'
represents the bulk region. We assume that the fracture I' cuts the domain € into
two disjoint connected polygonal subdomains with Lipschitz boundary, so that the
bulk region can be decomposed as Qg = Qg 1 U I 2.

We denote by 0Qp = Uf=1 0Qp,;\I the external boundary of the bulk region,
which is decomposed into two subsets with disjoint interiors: the Dirichlet boundary
208, for which we assume strictly positive 1-dimensional Haussdorf measure, and the
(possibly empty) Neumann boundary 0QF. We denote by msq the unit normal vector
pointing outward Qp. For i € {1,2}, the restriction of the boundary 00X (respectively,
093) to the ith subdomain is denoted by Qg ; (respectively, 0QF ;).

We denote by JI' the boundary of the fracture I' with the corresponding out-
ward unit tangential vector Tor. OI' is also decomposed into two disjoint subsets:
the nonempty Dirichlet fracture boundary éI'® and the (possibly empty) Neumann
fracture boundary oI'N. Notice that this decomposition is completely independent
from that of 0Qp. Finally, nr and 7 denote, respectively, the unit normal vector
to I with a fixed orientation and the unit tangential vector on I" such that (7r,nr)
is positively oriented. Without loss of generality, we assume in what follows that the
subdomains are numbered so that nr points out of {2 ;.

For any function ¢ sufficiently regular to admit a (possibly two-valued) trace on
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Fig. 1: Hlustration of the notation introduced in Section 2.1.

I", we define the jump and average operators such that

_ Plosa + P05,
—

When applied to vector functions, these operators act component-wise.

[elr = Yiop, — Plon.2; {{edr

2.2. Continuous problem. We discuss in this section the strong formulation
of the problem: the governing equations for the bulk region and the fracture, and the
interface conditions that relate these subproblems.

2.2.1. Bulk region. In the bulk region 25, we model the motion of the incom-
pressible fluid by Darcy’s law in mixed form, so that the pressure p : Qg — R and
the flux u : Qg — R? satisfy

(1a) KVp+u=0 in Qp,
(1b) V-u=f in Og,
(1c) P =gB on 893,
(1d) u-nyn =0 on (?Qg,

where f € L?(Qp) denotes a volumetric source term, gg € H7?(0QR) the boundary
pressure, and K : Qg — R2*2 the bulk permeability tensor, which is assumed to be
symmetric, piecewise constant on a fixed polygonal partition Py = {wp} of Qp, and
uniformly elliptic so that there exist two strictly positive real numbers Ky and Kp
satisfying, for a.e. x € Qp and all 2z € R? such that |z| = 1,
0<Kp<K(x)z z < Ks.
For further use, we define the global anisotropy ratio
Kp

2 =—
(2) OB Ky

2.2.2. Fracture. Inside the fracture, we consider the motion of the fluid as
governed by Darcy’s law in primal form, so that the fracture pressure pr : I' - R
satisfies

(3a) —V. - (KrV,pr) = {rfr + [u]r - nr in I,
(3b) pr = gr on Jr'P,
(3¢) KrV.pr-Tor =0 on or'Y,
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where fr € L?(I') and Kr = kMp with kL : I’ — R and ¢r : I' — R denoting the
tangential permeability and thickness of the fracture, respectively. The quantities K[
and ¢ are assumed piecewise constant on a fixed partition Pr = {wr} of T, and such
that there exist strictly positive real numbers K,Kr such that, for a.e. & € T,

0< KF < Kr(ilf) < ?F-

In (3), V, and V.- denote the tangential gradient and divergence operators along T',
respectively.

REMARK 1 (Immersed fractures). The Neumann boundary condition (3c) has
been used for immersed fracture tips. The case where the fracture is fully immersed
in the domain € can be also considered, and it leads to a homogeneous Neumann
boundary condition (3c) on the whole fracture boundary; for further details, we refer
to [2, Section 2.2.3], [17] or more recently [31].

2.2.3. Coupling conditions. The subproblems (1) and (3) are coupled by the
following interface conditions:

Ar{{ulir - nr = [[plr on I,
Alulr - nr = {phr —pr  onT,

(4)

where € € ( %, 1] is a model parameter chosen by the user and we have set

lr £ 1
(5) Ar=——, A= p (2—4).

As above, fr is the fracture thickness, while kK : I' — R represents the normal
permeability of the fracture, which is assumed piecewise constant on the partition Pr
of T introduced in Section 2.2.2, and such that, for a.e. x € T,

(6) 0 <Ap < Ap(z) < Ar,
for two given strictly positive real numbers Ar and Ap.

REMARK 2 (Coupling condition and choice of the formulation). The coupling con-
ditions (4) arise from the averaging process along the normal direction to the fracture,
and are necessary to close the problem. They relate the jump and average of the bulk
flux to the jump and average of the bulk pressure and the fracture pressure. Using as
a starting point the mized formulation (1) in the bulk enables a natural discretization
of the coupling conditions, as both the normal flur and the bulk pressure are present
as unknowns. On the other hand, the use of the primal formulation (3) seems natural
in the fracture, since only the fracture pressure appears in (4). HHO discretizations
using a primal formulation in the bulk as a starting point will make the object of a
future work.

REMARK 3 (Extension to discrete fracture networks). The model could be ex-
tended to fracture networks. In this case, additional coupling conditions enforcing the

mass conservation and pressure continuity at fracture intersections should be included;
see e.g., [17, 16].

2.3. Weak formulation. The weak formulation of problem (1)—(3)—(4) hinges
on the following function spaces:

U = {ue H(div;Qp) | u-nsq =0 on ('7’Qg and (u|QB’1 "M, Uy, ‘mr) € LQ(F)Q}7

Pg=L*(Qp), Pr={pre H'()|pr="0ondr"}
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6 F CHAVE, D. A. DI PIETRO, AND L. FORMAGGIA

where H (div;Qp) is spanned by vector-valued functions on Q0 whose restriction to
every bulk subregion Qg ;, ¢ € {1,2}, is in H(div; Qg ).

For any X < Q, we denote by (-,-)x and |-|x the usual inner product and
norm of L?(X) or L?(X)2, according to the context. We define the bilinear forms
ac :UxU >R, b:UxPg—>R,c:UxPr—R,and d: Pr x Pr — R as follows:

K~ ', v)o,+ (A [ullonr, [v]rne) e+ O {ulenr, {olrnr)r,
V-u,q)ag,

[ullr - nr,qr)r,

KrV pr,Voqr)r.

ag(u,v) =
b(u,q
C('U,, qr

d(pra qr

~_ — — —
~ o~~~

With these spaces and bilinear forms, the weak formulation of problem (1)—(3)—(4)
reads: Find (u,p,pro) € U x Pg x Pr such that

ag(u, v)=b(v,p) + c(v,pro) =—(g8,v" naﬂ)ang YvelU,
(8) b(u7 (Z) = (f7 q)QB Vq € PB7
—c(u,qr) + d(pr,0,qr) = (br fr,qr)r — d(pr,p, qr) Vqr € Pr,

where prp € HY(T) is a lifting of the fracture Dirichlet boundary datum such that
(pF}D)‘aFD = gr. The fracture pressure is then computed as pr = pro + pr,p. This
problem is well-posed; we refer the reader to [6, Proposition 2.4] for a proof.

3. Discrete setting.

3.1. Mesh. The HHO method is built upon a polygonal mesh of the domain 2
defined prescribing a set of mesh elements 7, and a set of mesh faces Fp,.

The set of mesh elements 7}, is a finite collection of open disjoint polygons with
nonzero area such that Q = Urer, T and h = maxger, hy, with hy denoting the
diameter of T. We also denote by 0T the boundary of a mesh element T € 7},. The
set of mesh faces Fj, is a finite collection of open disjoint line segments in Q with
nonzero length such that, for all F' € Fj,, (i) either there exist two distinct mesh
elements T1,T5 € Ty, such that F < Ty n 0Ty (and F' is called an interface) or (ii)
there exist a (unique) mesh element 7' € T;, such that F' < 0T n 2 (and F is called
a boundary face). We assume that Fj, is a partition of the mesh skeleton in the sense

tha‘t UTETh &T = UFE]‘—h F

REMARK 4 (Mesh faces). Despite working in two space dimensions, we have pre-
ferred the terminology “face” over “edge” in order to (i) be consistent with the standard
HHO nomenclature and (ii) stress the fact that faces need not coincide with polygonal
edges (but can be subsets thereof); see also Remark 6 on this point.

We denote by Fi the set of all interfaces and by FP the set of all boundary faces,
so that Fj, = ]-',iz U ]-'}1’. The length of a face F' € Fj, is denoted by hp. For any mesh
element T' € Ty, Fr is the set of faces that lie on 0T and, for any F' € Fr, nyp is
the unit normal to F' pointing out of 7. Symmetrically, for any F' € Fp,, Tr is the set
containing the mesh elements sharing the face F (two if F' is an interface, one if F is
a boundary face).

To account for the presence of the fracture, we make the following

ASSUMPTION 5 (Geometric compliance with the fracture). The mesh is compli-
ant with the fracture, i.e., there exists a subset Fi < Fi such that T = UFE]—'}F F. As

a result, F} is a (1-dimensional) mesh of the fracture.

This manuscript is for review purposes only.
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A HHO METHOD FOR DARCY FLOWS IN FRACTURED POROUS MEDIA 7

[Pentagons

Squares

Fig. 2: Treatment of nonconforming fracture discretizations.

REMARK 6 (Polygonal meshes and geometric compliance with the fracture).
Fulfilling Assumption 5 does not pose particular problems in the context of polygo-
nal methods, even when the fracture discretization is nonconforming in the classical
sense. Consider, e.g., the situation illustrated in Figure 2, where the fracture lies
at the intersection of two nonmatching Cartesian submeshes. In this case, no spe-
cial treatment is required provided the mesh elements in contact with the fracture are
treated as pentagons with two coplanar faces instead of rectangles. This is possible
since, as already pointed out, the set of mesh faces Fy, need not coincide with the set
of polygonal edges of Tp,.

The set of vertices of the fracture is denoted by Vj, and, for all F' € F}, we denote
by Vg the vertices of F'. For all F € ]-'{ and all V € Vg, T7py denotes the unit vector
tangent to the fracture and oriented so that it points out of F. Finally, V,? is the set
containing the points in oI'P.

To avoid dealing with jumps of the problem data inside mesh elements, as well
as on boundary and fracture faces, we additionally make the following

AssuMPTION 7 (Compliance with the problem data). The mesh is compliant
with the data, i.e., the following conditions hold:

(i) Compliance with the bulk permeability. For each mesh element T € Ty, there
exists a unique sudomain wp € Py (with P partition introduced in Section 2.2.1)
such that T < wg;

(i) Compliance with the fracture thickness, normal, and tangential permeabilities.
For each fracture face F € F}., there is a unique subdomain wr € Pr (with Pr
partition introduced in Section 2.2.2) such that F' C wr;

(i4i) Compliance with the boundary conditions. There exist subsets FP and F of

FP such that 0QY = Urerx F and 008 = Urerp F.

For the h-convergence analysis, one needs to make assumptions on how the mesh
is refined. The notion of geometric regularity for polygonal meshes is, however, more
subtle than for standard meshes. To formulate it, we assume the existence of a
matching simplicial submesh, meaning that there is a conforming triangulation ¥} of
the domain such that each mesh element T' € 7}, is decomposed into a finite number of
triangles from ¥, and each mesh face F' € F}, is decomposed into a finite number of
edges from the skeleton of T,. We denote by g € (0,1) the regularity parameter such
that (i) for any triangle S € T, of diameter hg and inradius rg, ohs < rg and (ii) for
any mesh element T' € T;, and any triangle S € ¥}, such that S ¢ T, phr < hg. When
considering h-refined mesh sequences, ¢ should remain uniformly bounded away from

This manuscript is for review purposes only.
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8 F CHAVE, D. A. DI PIETRO, AND L. FORMAGGIA

zero. We stress that the matching triangular submesh is merely a theoretical tool,
and need not be constructed in practice.

3.2. Local polynomial spaces and projectors. Let an integer [ > 0 be fixed,
and let X be a mesh element or face. We denote by P!(X) the space spanned by
the restriction to X of two-variate polynomials of total degree up to I, and define the
L?-orthogonal projector 7 : L*(X) — P!(X) such that, for all v € L*(X), w v solves

(9) (thv —v,w)x =0 Vwe P(X).

By the Riesz representation theorem in P!(X) for the L%-inner product, this defines
7k v uniquely.

It has been proved in [21, Lemmas 1.58 and 1.59] that the L2-orthogonal projector
on mesh elements has optimal approximation properties: For all s € {0,...,]+ 1}, all

TeTy, and all ve H¥(T),

(10a) v — 7T£f’l)|Hm(T) < Chy "[vlgs () Ym e {0,...,s},
and, if s > 1,

(10b) v — 7ol gm () < O™ Plolgery  Yme{0,...,s —1},

with real number C' > 0 only depending on g, I, s, and m, and H™ (Fr) spanned by the
functions on 07 that are in H™(F') for all F' € Fr. More general W#®P-approximation
results for the L2-orthogonal projector can be found in [19]; see also [20] concerning
projectors on local polynomial spaces.

4. The Hybrid High-Order method. In this section we illustrate the local
constructions in the bulk and in the fracture on which the HHO method hinges,
formulate the discrete problem, and state the main results.

4.1. Local construction in the bulk. We present here the key ingredients to
discretize the bulk-based terms in problem (8). First, we introduce the local DOF
spaces for the bulk-based flux and pressure unknowns. Then, we define local diver-
gence and flux reconstruction operators obtained from local DOF's.

In this section, we work on a fixed mesh element T" € T, and denote by K =
K1 € P°(T)**? the (constant) restriction of the bulk permeability tensor to the
element 7. We also introduce the local anisotropy ratio

Kgr
(11) OB,T = —,
Kg

where Kp 1 and K . denote, respectively, the largest and smallest eigenvalue of K.
In the error estimate of Theorem 12, we will explicitly track the dependence of the
constants on pp,r in order to assess the robustness of our method with respect to the
anisotropy of the diffusion coeflicient.

4.1.1. Local bulk unknowns. For any integer [ > 0, set Ul = KpVP!(T).
The local DOF spaces for the bulk flux and pressure are given by (see Figure 3)

(12) U; =Uj x < X IED'“(F)> ., Pp=PHD).

FeFr

This manuscript is for review purposes only.
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(1 )

Fig. 3: Local DOF space Q]fp for a hexagonal mesh element and k € {0, 1, 2}.

312 Notice that, for k = 0, we have U = K7VPY(T) = {0}, expressing the fact that
313 element-based flux DOF's are not needed. A generic element v, € Ql} is decomposed
314 as vy = (vr, (vrF)rery). We define on Q}} and on P§7T, respectively, the norms

315 |-|u.r and |||, such that, for all v, € U% and all g € Pt r,
316 (13)  uply = (Kpr)™ <|UT% + ) hF|UTF|%) o larlsr = lar|r,
FeFr

317 where we remind the reader that ?By denotes the largest eigenvalue of the two-

318  by-two matrix K7, see Section 4.1. We define the local interpolation operator I’ ? :
319 HY(T)? - U% such that, for all v e H'(T)?,

320 (14) l’%v = (KTVyT, (W?(’U : nTF))FE]'—T)v

321 where yr € P¥(T) is the solution (defined up to an additive constant) of the following
322 Neumann problem:

323 (15) (KrVyr,Var)r = (v,Var)r  Var € P¥(T).

324 REMARK 8 (Domain of the interpolator).  The regularity in H'(T)? beyond
325 H(div;T) is classically needed for the face interpolators to be well-defined; see, e.qg., [12]
326 Section 2.5.1] for further insight into this point.

327 4.1.2. Local divergence reconstruction operator. We define the local diver-
328 gence reconstruction operator DX : Ql% — é’T such that, for all v = (vr, (vrF) Fer,) el

320 Uk, DEwy solves

330 (16) (Dywp.qr)r = —(vr,Var)r + Y, (vrr.qr)r  Yar € P o
331 FeFr

332 By the Riesz representation theorem in PQT for the L2-inner product, this defines
333 the divergence reconstruction uniquely. The right-hand side of (16) is designed to
334 resemble an integration by parts formula where the role of the function represented
335 by vy is played by element-based DOF's in volumetric terms and face-based DOFs in
336 boundary terms. With this choice, the following commuting property holds (see [23,
337 Lemma 2]): For all ve HY(T)?,

35 (17) DiIfv = 73 (V - v).

This manuscript is for review purposes only.
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10 F CHAVE, D. A. DI PIETRO, AND L. FORMAGGIA

We also note the following inverse inequality, obtained from (16) setting gr = DXv,.
and using Cauchy—Schwarz and discrete inverse and trace inequalities (see [23, Lemma
8] for further details): There is a real number C' > 0 independent of h and of T, but
depending on p and k, such that, for all v, € Q;,

S
(18) hr|Dfvr|r < CKgrlvr|u,r

4.1.3. Local flux reconstruction operator and permeability-weighted
local product. We next define the local discrete flux operator F?H : Qifp — U;H

such that, for all v = (vr, (vrF)Fer,) € Qifp, F’%HQT solves

(19) (F'I;j_lyT, VU)T)T = —(D’%QT, wT)T + Z (’UTF7 wT)F Ywr € ]Pk+1<T).
FE]'-T

By the Riesz representation theorem in U?H for the (K ;1~, -)p-inner product, this
defines the flux reconstruction uniquely. Also in this case, the right-hand side is
designed so as to resemble an integration by parts formula where the role of the
divergence of the function represented by v, is played by DXw,., while its normal
traces are replaced by boundary DOFs.

We now have all the ingredients required to define the permeability-weighted local
product myp : Ql% X Q’% — R such that

(20) mr(ur, vy) = (K;F]:;HE% F§"+IET)T + Jr(ur, vr),

where the first term is the usual Galerkin contribution responsible for consistency,
while Jp : U 17“« X Qé — R is a stabilization bilinear form such that, letting purp =
KTTLTF “NTFR for all F € FT7

hp

_ k1 k1

Jr(up,vy) = Z —(F7"up -nrp —urp, Fp v - nrp — vrp) F.
FE]'-T MTF

The role of Jr is to ensure the existence of a real number 7, > 0 independent of h,
T, and K, but possibly depending on ¢ and k, such that, for all v, € Qi},

(21) T HQT”%J,T < HQTH%L,T = mr(vr,vr) < nmpB,THQTH%],Tv

with norm ||y r defined by (13); see [23, Lemma 4] for a proof. Additionally, we
note the following consistency property for Jr proved in [23, Lemma 9]: There is a
real number C' > 0 independent of h, T, and K, but possibly depending on ¢ and
k, such that, for all v = K7Vq with ¢ € H*+2(T),

2 =12

(22) Jr(Lhov, Thv)'? < CoprKg h§“+1|Q|Hk+2(T)-

4.2. Local construction in the fracture. We now focus on the discretization
of the fracture-based terms in problem (8). First, we define the local space of frac-
ture pressure DOF's, then a local pressure reconstruction operator inspired by a local
integration by parts formula. Based on this operator, we formulate a local discrete
tangential diffusive bilinear form. Throughout this section, we work on a fixed frac-
ture face F' € F} and we let, for the sake of brevity, Kp == (Kr)r € P*(F) with K
defined in Section 2.2.2.

This manuscript is for review purposes only.
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4.2.1. Local fracture unknowns. Set P(V) := span{l} for all V' € Vp. The
local space of DOFs for the fracture pressure is

Prp = P(F)* x ( X IP’(V)>~
Vevr

In what follows, a generic element gg € BI}%F is decomposed as Q; = (g%, (@} vevyr)-

We define on E?F the seminorm |-|r F such that, for all le; € E?F,

1 KF
laglt.r = 1KEVrar i+ 3 3 (ar = av) (V).

VEVF

We also introduce the local interpolation operator [’} :HY(F) — BIE,F such that, for
all e HY(F),

lllc«"q = (ﬂ-é'qv (Q(V))VEVF)

4.2.2. Pressure reconstruction operator and local tangential diffusive
bilinear form. We define the local pressure reconstruction operator r?“

P*+1(F) such that, for all gll; = (¢%, (¢ )vevy) € BF’F, rff,flg; solves

. pk
-BF,FH

(KpVerit' e, Vowp)r = = (g5, Ve - (KeVewp))e + . qp (KpVewp - mev)(V),
VeVr

for all wh e PET1(F). By the Riesz representation theorem in VP**!(F) for the
(Kp-,-)p-inner product, this relation defines a unique element VTTII%HQE, hence a

polynomial r?’lgg e P*+1(F) up to an additive constant. This constant is fixed by
additionally imposing that

(ri'qt — qp, 1)p = 0.

We can now define the local tangential diffusive bilinear form dp : Blli’ X Blli, r—R
such that

dp(p,,q%) = (KpVorp ™ ph, Vork g ) e + jr(ph, 4%,

where the first term is the standard Galerkin contribution responsible for consistency,
while jp : BIF,F X B’lin — R is the stabilization bilinear form such that

. K
IP@h ) = 35 G- (BE (V) = pU) (R (V) — av),
VEVF

with R BIIE,F — PE+L(F) such that, for all QE € BﬁF, Rkﬂg; =g+ (rﬁfﬂ“gl; -
W%T?Jrlqg). The role of jr is to ensure stability and boundedness, expressed by the
existence of a real number 7y > 0 independent of h, F, and of Kp, but possibly
depending on k£ and p, such that, for all q; € 21137 r, the following holds (see [24,
Lemma 4]): B

(23) g gkl 2 P

2 <dp(qh.qh) <nalqh]
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4.3. The discrete problem. We define the global discrete spaces together with
the corresponding interpolators and norms, formulate the discrete problem, and state
the main results.

4.3.1. Global discrete spaces. We define the following global spaces of fully
discontinuous bulk flux and pressure DOFs:

~ k
— k k. k
U,= X Uy, PB,h = X PB,Ta
TeTh TeTh

with local spaces U% and P§7T defined by (12). We will also need the following

- k
subspace of U, that incorporates (i) the continuity of flux unknowns at each interface
F e Fi\F} not included in the fracture and (ii) the strongly enforced homogeneous
Neumann boundary condition on 69%:

(24) UL, = {v, eU, | [o,]lr = 0 ¥F e F\FE and vp = 0 VF e FN},

where, for all F' € ]-"}j, we have set vp = vpp with T denoting the unique mesh
element such that F' € Fr, while, for all F' € }‘}L with F' < 0Ty n 0715 for distinct mesh
elements 17, Ty € Ty, the jump operator is such that

v llF = vrr + v1yp.

Notice that this quantity is the discrete counterpart of the jump of the normal flux
component since, for ¢ € {1,2}, vr,F can be interpreted as the normal flux exiting T;.

We also define the global space of fracture-based pressure unknowns and its sub-
space with strongly enforced homogeneous Dirichlet boundary condition on oI'P as
follows:

P, :—( % Pkm) ; ( % P<v>>, Pl 45 € Pl | g = 0V € VD).

FeF} Vevy,

A generic element gl}: of B’li’h is decomposed as g}: = ((¢r) perr (av)vev,) and, for

all F € 7}, we denote by gll; = (¢% (g} )vevy) its restriction to B{i,p

<k
4.3.2. Discrete norms and interpolators. We equip the DOF spaces Uy,
Pgh, and BI’i’h respectively, with the norms ||y ¢n and ||-|B,n, and the seminorm

||lr.5 such that for all v, € U¥, all g, € Pgh, and all QZ € E{i’h,

HQhH%J,g,h = Z HQT”%LT + |, g,h’ v, ?,h = Z ()\%H[Qh]]FH% + )\FH{{Eh}}F”QF)a
TeTh FeFr
lanlgn = D) larlz e, g l2n = D, ldul? p,

TeTh FeFr

where, for the sake of brevity, we have set A\ = (Ar)|r and )\% = (A§)|F (see (5) for
the definition of A\r and )\%), and we have defined the average operator such that, for

~ k
all Fe FF and all v, e Uy,

e =5 ) vrelnrr nr).
TeTr
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Using the arguments of [22, Proposition 5], it can be proved that ||-|r is a norm on
k
Pr 10
Let now H'(7;)? denote the space spanned by vector-valued functions whose
restriction to each mesh element T € Ty, lies in H'(T)2. We define the global interpo-

-k
lators I}, : HY(T;)? — U, and Ij; : HY(T') — Pf., such that, for all v € H'(T)? and
all e HY(T),

(25) lZ'U = (llﬂc“’u\T)TeTh’ lﬁq = ((W§7Q)F€f}:v (Q(V))VGV;L)v

where, for all T € Ty, the local interpolator I%. is defined by (14). We also denote by
ﬂ’,j the global L2?-orthogonal projector on Pgh such that, for all ¢ € L*(Qp),

(m’fq)w = 7r§~q|T VT € Tp.

4.3.3. Discrete problem. At the discrete level, the counterparts of the contin-

ko~ k
uous bilinear forms defined in Section 2.3 are the bilinear forms ai U, xU, - R,

~ k ~ k
by : Uy, x Pk, >R, ¢, : Uy, x P, > R, and dj, : Pf. ), x P, — R such that

(26) ai(ﬂhagh) = Z mr(Wr, Vr)
TeTh

+ 2 (O5laalle loalle)r + (el e onlhe)r )

FeF}

(27) b (W, pn) = 2 (Dfwr, pr)r,
TeTh

09  enlunp) = S (lualeph)e,
FeF}

(29) di(ph.q)) = Y. dr(ph.q}).

FeF}

The HHO discretization of problem (8) reads : Find (gh,ph,gi o) € Qﬂo X Pgh X

Blli’h,o such that, for all (gh,qh,g}:) € Qﬁ,o X P]I3€,h X B’li’h’o,

(30a)  af (s 0p)=bn(wy,pn) + cn(wyopy ) == ), (98,0R)E,
FeFpP
(30b)  ba(uy,qn) = > (frar)r,
TeTh
(30c)  —en(up,q;) +du(p) 0 ay) = Y, Urfrap)r — dn(p] . qp);
FeF}

where, for all F' € ]-',]3, we have set vp == vpp with T € T, unique element such that
F < 0T n d9 in (30a), while Bg,h = ((pFD’F)Fefg, (Ph.v)vew,) € E’Eﬁh is such that

Pbr=0 VFeFy, pby =gr(V) VVeVp, Phy =0 YV eV,\V.

. k-
The discrete fracture pressure QI}: € Pr, is finally computed as BE = Bg,o + Bg,h'
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REMARK 9 (Implementation).  In the practical implementation, all bulk fluz
DOFs and all bulk pressure DOFs up to one constant value per element can be stat-
ically condensed by solving small saddle point problems inside each element. This
corresponds to the first static condensation procedure discussed in [23, Section 3.4],
to which we refer the reader for further details.

We next write a more compact equivalent reformulation of problem (30). Define
the Cartesian product space X} = Qﬁ’o X Pgh X Blli,,w as well as the bilinear form

A5 - XF x XF — R such that

A5 (o pnsPL)s (W an @) = a5, (g, ) + bi(wy, an) — b (v, o)
(31) T T T
+en(vn,py,) — cn(un, q;,) + du(py,, 4,)-

Then, problem (30) is equivalent to: Find (gh,ph,gg 0) € XZ such that, for all
(QmCIh»Ql;:) € X]]jm

A (s pro 2y o)s (Wrsans @) = )5 (frar)r + Y (befroap)r
TeTh FeFF

- (QB,UF)F—dh(BBWQI;)-
FeFpP

(32)

REMARK 10 (Extension to three space dimensions). The proposed method can
be extended to the case of a three-dimensional domain with fracture corresponding to
the intersection of the domain with a plane. The main differences are linked to the
fracture terms, and can be summarized as follows: (i) the tangential permeability of
the fracture is a uniformly elliptic, 2 x 2 matriz-valued field instead of a scalar; () the
fracture is discretized by means of a two-dimensional mesh Fi composed of element
faces, and vertex-based DOF's are replaced by discontinuous polynomials of degree up
to k on the skeleton (i.e., the union of the edges) of Fi; (iii) all the terms involving
pointwise evaluations at vertices are replaced by integrals on the edges of ]-',1; . Similar
stability and error estimates as in the two-dimensional case can be proved in three
space dimensions. A difference is that the right-hand side of the error estimate will
additionally depend on the local anisotropy ratio of the tangential permeability of the
fracture, arguably with a power of /2.

4.4. Main results. In this section we report the main results of the analysis
of our method, postponing the details of the proofs to Section 6. For the sake of
simplicity, we will assume that

(33) aQN = @a gB = Oa aFN = @a gr = 0

which means that homogeneous Dirichlet boundary conditions on the pressure are
enforced on both the external boundary of the bulk region and on the boundary of
the fracture. This corresponds to the situation when the motion of the fluid is driven
by the volumetric source terms f in the bulk region and fr in the fracture. The
results illustrated below and in Section 6 can be adapted to more general boundary
conditions at the price of heavier notations and technicalities that we want to avoid
here.

In the error estimate of Theorem 12 below, we track explicitly the dependence
of the multiplicative constants on the following quantites and bounds thereof: the
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bulk permeability K, the tangential fracture permeability [, the normal fracture
permeability xf, and the fracture thickness ¢r, which we collectively refer to in the
following as the problem data.

We equip the space X} with the norm || x , such that, for all (v,,, qh,gi) e XF,

(34) |n, an @) n = lonltr en + lanlEn + g, IF 5

THEOREM 11 (Stability). Assume (33). Then, there exists a real number v > 0
independent of h, but possibly depending on the problem geometry, on o, k, and on
the problem data, such that, for all z; € Xﬁ,

(35) lznlxn <~ sup Ai(éh,gh)~
y,€X7ly, |x,n=1

Consequently, problem (32) admits a unique solution.
Proof. See Section 6. O
We next provide an a priori estimate of the discretization error. Let (u,p,pr) €
U x Pg x Pr and (uy, ph, BI}:) € X, denote, respectively, the unique solutions to
problems (8) and (30) (recall that, owing to (33), pr = pr,o and 135 = Bl;:,o)‘ We
further assume that w € H'(7;)?, and we estimate the error defined as the difference

between the discrete solution (gh,ph,]f}:) and the following projection of the exact
solution:

(36) (@haﬁhvﬁ;) = (lZ’uﬂﬂ-Zp?lﬁpF) € Xh'

THEOREM 12 (Error estimate). Let (33) hold true, and denote by (u,p,pr) €
U x Pg x Pr and (gh,ph,]j:) € X7V the unique solutions to problems (8) and (30),
respectively. Assume the additional regularity pir € H**2(T) for all T € T;, and

(pr)|r € H¥Y2(F) for all F € F}. Then, there exist a real number C > 0 independent
of h and of the problem data, but possibly depending on o and k, such that

laey, — @y v en + ||B£ - @Z”F,h + x|l — Drl B0
1/2

7 2(k+1 2(k+1
<C| Y emrKerhy  Vlplimesy + 3, Kehi™ Plprliee |
TeTh FE]:}I:

(37)

with x > 0 independent of h but possibly depending on o, k, and on the problem
geometry and data.

Proof. See Section 6. O

REMARK 13 (Error norm and robustness). The error norm in the left-hand side
of (37) is selected so as to prevent the right-hand side from depending on the global bulk
anisotropy ratio o (see (2)). As a result, for both the error on the bulk flur measured
by |uy, — @y |uen and the error on the fracture pressure measured by HBZ - @ZHF”“
we have: (i) as in more standard discretizations, full robustness with respect to the
heterogeneity of K and Kr, meaning that the right-hand side does not depend on the
Jumps of these quantities; (i) partial robustness with respect to the anisotropy of the
bulk permeability, with a mild dependence on the square root of o (see (11)). As
expected, robustness is not obtained for the L?-error on the pressure in the bulk, which
is multiplied by a data-dependent real number x.
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(a) Triangular (b) Cartesian (¢) Nonconforming

Fig. 4: Mesh families for the numerical tests

In the context of primal HHO methods, more general, possibly nonlinear diffusion
terms including, as a special case, variable diffusion tensors inside the mesh elements
have been recently considered in [19, 20]. In this case, one can expect the error estimate
to depend on the square root of the ratio of the Lipschitz module and the coercivity
constant of the diffusion field; see [20, Eq. (3.1)]. The extension to the mized HHO
formulation considered here for the bulk region can be reasonably expected to behave
in a stimilar way. The details are postponed to a future work.

REMARK 14 (L2-supercloseness of bulk and fracture pressures). Using arqu-
ments based on the Aubin—Nitsche trick, one could prove under further reqularity as-
sumptions on the problem geometry that the L*-errors |py, — puls,n and |p}, — ph|rn
converge as h*+2, where we have denoted by p}; and ]31,; the broken polynomial func-
tions on I' such that (p},)|r = P and (p},) = Py for all F € Fy.. This supercloseness
behaviour is typical of HHO methods (cf., e.g., [23, Theorem 7] and [2/, Theorem 10]),
and is confirmed by the numerical example of Section 5.1; see, in particular, Figure 77.

5. Numerical results. We provide an extensive numerical validation of the
method on a set of model problems.

5.1. Convergence. We start by a non physical numerical test that demonstrates
the convergence properties of the method. We approximate problem (30) on the
square domain Q = (0,1)? crossed by the fracture I' = {x € Q | 1 = 0.5} with
0QN = oI'N = . We consider the exact solution corresponding to the bulk and
fracture pressures

sin(4z1) cos(mzg) if 21 < 0.5 _
p(@) = {cos(élxl) cos(mwy) if x> 0.5 Pr(®@) = £{cos(2) + sin(2)) cos(may),

and let w|q, , = —Vpjq,, for i € {1,2}. We take here { = 3/1, k. = 1, fr = 0.01 and

(38) K — [ “?/E)%F) (1) ]7

where k%, > 0 is the normal permeability of the fracture. The expression of the source
terms f, fr, and of the Dirichlet data gp and gr are inferred from (30). It can be
checked that, with this choice, the quantities [p]lr, [u]lr, and {u}}r are not identi-
cally zero on the fracture. We consider the triangular, Cartesian, and nonconforming
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mesh families of Figure 4 and monitor the following errors:

._ = o -~ r._ T AI' r._ T A
(39) e, =wu,—u,,  €=py—Dbn € =p, —D,s € =pn—Dp

where u,,, pp, and ﬁl}: are the broken fracture pressures defined by (36), while p},
and ﬁg are defined as in Remark 14. Notice that, while the triangular and Cartesian
mesh families can be handled by standard finite element discretizations, this is not the
case for the nonconforming mesh. This kind of nonconforming meshes appear, e.g.,
when the fracture occurs between two plates, and the mesh of each bulk subdomain
is designed to be compliant with the permeability values therein.

We display in Figure 5 and 6 various error norms as a function of the meshsize,
obtained with different values of the normal fracture permeability 7t € {2{p,1} in
order to show (i) the convergence rates, and (ii) the influence of the global anisotropy
ratio gp on the value of the error, both predicted by Theorem 12. By choosing
Kk = 2{r, we obtain an homogeneous bulk permeability tensor K = I so the value of
the error is not impacted by the global anisotropy ratio gp (since it is equal to 1 in that
case); see Figure 5. On the other hand, letting k% = 1, we obtain a global anisotropy
ratio og = 50 and we can clearly see the impact on the value of the error |e,|lu.¢,n in
Figure 6. For both configurations, the orders of convergence predicted by Theorem
12 are confirmed numerically for |e,|v.¢.n and |€}]rn (and even a slightly better
convergence rate on Cartesian and nonconforming meshes). Moreover, convergence in
h¥+2 is observed for the L?-norms of the bulk and fracture pressures, corresponding
to |len|B,n and |€} |, respectively; see Remark 14 on this point.

5.2. Quarter five-spot problem. The five-spot pattern is a standard configu-
ration in petroleum engineering used to displace and extract the oil in the basement by
injecting water, steam, or gas; see, e.g., [18, 32]. The injection well sits in the center of
a square, and four production wells are located at the corners. Due to the symmetry
of the problem, we consider here only a quarter five-spot pattern on Q = (0, 1)? with
injection and production wells located in (0,0) and (1, 1), respectively, and modelled
by the source term f : Qg — R such that

F() = 200( tanh (200(0.025 — (a3 + 23)"))

— tanh (200(0.025 — ((z1 — 1) + (w5 — 1)2)1/2))).

Test 1: No fracture. In Figure 7a, we display the pressure distribution when the
domain 2 contains no fracture, i.e. Qg = €Q; see Figure 8a. The bulk tensor is given by
K = I,, and we enforce homogeneous Neumann and Dirichlet boundary conditions,
respectively, on (see Figure 8a)

008 ={xedQp |z =00r x5 =0o0r (r; >3/ and zy > 3/1)},

005 ={xedp | (v1 =1and x5 <341) or (v2 =1 and z; < 3/1)}.

Since the bulk permeability is the identity matrix and there is no fracture inside the
domain, the pressure decreases continuously moving from the injection well towards
the production well.

Test 2: Permeable fracture. We now let the domain €2 be crossed by the fracture
I' ={zx e Q| x =1-—ux1} of constant thickness /r = 1072, and we let fr =
0. In addition to the bulk boundary conditions described in Test 1, we enforce

This manuscript is for review purposes only.



612
613
614

615

F CHAVE, D. A. DI PIETRO, AND L. FORMAGGIA

—o k= 08—k —l—ek—2

T T T 100 F T T 100 g T T
1071 1071
1072 B
= 102 1072
m 3
= 107 ¢ 1073
el ]
= 1074 1074
- 4 4
9 ) 107°F 3 1075 3
= 1076 B N 5
= 1075 ¢ 100 F ?
w0 1 1077 E I
10751 | ] . . ] . .
10725 1072 10712 10725 1072 10715
T T T 100 100F
1071 E
< 1 107
“ // 10
102 E
= 102} 1072
qﬁ 1073 E|
= 103 103
5 1074} ° ’ :
s: 2 1074 E 2 1074 | 2
= 107° ¢ L 1 .
1075 F 10-5 L
s 1 1 1
10-o L . . ‘, . . . . . .
1022 1072 10712 10722 102 10°19 10725 102 10°19
T T T F T T T T T
-k 1 1071 10-1|
1072
-3 [ ]
ETEEEY 03k 10741
IS -1 ]
10
w —4
== 1070
-5 [ ] 107°
5 10 B 10-5F
N
= 1075 34 10-6 | 3 4
m 2 N 1077 F 3
- N 2
1077 E 107
s ‘ L eI ‘ ! 07 ‘ !
10725 10-2 10715 10725 1072 10715 10725 1072 10715
T T T T T T T T T
1071 // E 1071k // 101 E
< 1072 E| 1072 1072
= -4
= o8| ] 10-3F 1073
=5 -1
= 10} 4 10tk 10
3 3 3 1070 ¢ ,
= sl ] 10-5F ) :
ﬁ 10 2 2 10-6 [ 2
1076 "] 0ok ! !
1077 F
1 1 1
. . . 10-7 . | ] . |
10722 1072 10712 1072 1072 10710 107 1072 10712
Triangular Cartesian Nonconforming

Fig. 5: Errors vs. h for the test case of Section 5.1 on the mesh families introduced
in Figure 4 with st = 20p

homogeneous Dirichlet boundary conditions on dI'P = oI'; see Figure 8a. The bulk
and fracture permeability parameters are such that

K=1, ke =1, kp = 100,

and are chosen in such a way that the fracture is permeable, which means that the
fluid should be attracted by it. The bulk pressure corresponding to this configuration
is depicted in Figure 7b. As shown in Figure 8b, we remark that (i) in Qg 1, we

have a lower pressure, and that the pressure decreases more slowly than in Test 1
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Fig. 6: Errors vs. h for the test case of Section 5.1 on the mesh families introduced
in Figure 4 with x¢t =1

going from the injection well towards the fracture and (ii) in Qp 2, the flow caused
by the production well attracts, less significantly than in Test 1, the flow outside the
fracture.

Test 3: Impermeable fracture. We next consider the case of an impermeable frac-
ture: we keep the same domain configuration as before, but we let
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—4.70 . 101

7.54 .10 1

5.96-10"1 —4.71.10"1

6.17-10"1 —4.73.1071

(a) No fracture (b) Permeable fracture (¢) Impermeable fracture

Fig. 7: Bulk pressure for the test cases of Section 5.2 on a triangular mesh (h =
7.68-1073) with k = 2

Unlike before, we observe in this case a significant jump of the bulk pressure across the
fracture I', see Figure 7c. This can be better appreciated in Figure 8b, which contains
the plots of the bulk pressure over the line 1 = x5 for the various configurations
considered.

Flow across the fracture. Since an exact solution is not available for the previous
test cases, we provide a quantitative assessment of the convergence by monitoring the

quantity
k,h
Mp/i = Z J[[Hh]]Fa
FeF} F

which corresponds to the global flux entering the fracture for the permeable (subscript
p) and impermeable (subscript i) fractured test cases. The index k refers to the
polynomial degree k € {0, 1,2}, and the index h to the meshsize. Five refinement levels
of the triangular mesh depicted in Figure 4a are considered. We plot in Figure 8c
and 8d the errors €, = |Mf>/; — Mf/h| for the permeable/impermeable case (P/i), where
My, denotes the reference value obtained with k& = 2 on the fifth mesh refinement

corresponding to h = 9.60 - 10~%. In both cases we have convergence, with respect to
the polynomial degree and the meshsize, to the reference values M} = 9.96242 - 1072
and M = 3.19922-10~2. For the permeable test case depicted in Figure 8c, after the
second refinement, increasing the polynomial degree only modestly affect the error
decay, which suggests that convergence may be limited by the local regularity of the
exact solution. For the impermeable test case depicted in Figure 8d, on the other
hand, the local regularity of the exact solution seems sufficient to benefit from the
increase of the approximation order.

5.3. Porous medium with random permeability. To show the influence of
the bulk permeability tensor on the solution, we consider two piecewise constants
functions p, s @ Qs — (0,2) and the heterogeneous and possibly anisotropic bulk
tensor K given by
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1072

(c) ep vs. h (d) & vs. h

Fig. 8: Domain configurations, pressure along the line x1 = 2, and errors on the flow
across the fracture vs. h for the test cases of Section 5.2.

For the following tests, we use a 64 x 64 uniform Cartesian mesh (h = 3.91-1073)
and k = 2. The domain = (0,1)? is crossed by a fracture I == {0.5} x (0,1) of
constant thickness ¢r = 1072. We set the fracture permeability parameters k7 = 1
and kT = 100, corresponding to a permeable fracture. The source terms are constant
and such that f = 4 and fr = 4. We enforce homogeneous Neumann boundary
conditions on dQY = {x € 0Qp | z1 € {0,1}} and Dirichlet boundary conditions on
008 = {x € 00p | 2 € {0,1}} and TP = oI with

Vo e orP.

gp(x) =29 V€ OB, gr(z) = x4

Test 1: Homogeneous permeability. In Figure 9, we depict the bulk pressure dis-
tribution corresponding to 1 = ps = 1. As expected, the flow is moving towards the
fracture but less and less significantly as we approach the bottom of the domain since
the pressure decreases with respect to the boundary conditions.

Test 2: Random permeability. We next define inside the bulk region Qg horizontal
layers of random permeabilities which are separated by the fracture, and let the
functions pp and po take, inside each element, a random value between 0 and 1 on
one side of each layer, and between 1 and 2 on the other side; see Figure 10a. High
permeability zones are prone to let the fluid flow towards the fracture, in contrast to
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1.05
p=1 pr =1 p=1
Qp
o (==}
Il Il
g g
g r g
3 3
QB
p=0 pr =0 p=0
(a) Domain configuration ) Bulk pressure p

Fig. 9: Bulk pressure for the first test case of Section 5.3 (homogeneous permeability).

1.14

—2.76 - 1073

b) Bulk
(a) Values of p; (left) and po (right) (b) Bulk pressure p

Fig. 10: Permeability components distribution and bulk pressure for the second test
case of Section 5.3 (random permeability).

the low permeability zones in which the pressure variations are larger; see Figure 10b,
where dashed lines represent the different layers described above. This qualitative
behaviour is well captured by the numerical solution.

6. Stability analysis. This section contains the proof of Theorem 11 preceeded
by the required preliminary results. We recall that, for the sake of simplicity, we
work here under the assumption that homogeneous Dirichlet boundary conditions are
enforced on both the bulk and the fracture pressures; see (33). This simplifies the
arguments of Lemma 15 below.

Recalling the definition (26) of ai, and using (21) together with Cauchy—Schwarz
inequalities, we infer the existence of a real number 7, > 0 independent of h and of

-k
the problem data such that, for all v, € U,,,

2,g,h = ai(ﬂh&h) < naQBHQhH%],g,ha

(40) e wnlt e n < |l
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with global bulk anisotropy ratio gp defined by (2). Similarly, summing (23) over
Fe .7-',1;, it is readily inferred that it holds, for all gl}: € Blli,h’

(41) gy 120 < dnay 4,) < nalg |17,
The following lemma contains a stability result for the bilinear form by,.

LEMMA 15 (Inf-sup stability of by). There is a real number 8 > 0 independent
of h, but possibly depending on o, k, and on the problem geometry and data, such
that, for all qp € P}’?f,h:

(42) lanlls,n < B sup bn(wp qn)-
w, €UF o |w,u.en=1
Proof. We use the standard Fortin argument relying on the continuous inf-sup
condition. In what follows, a < b stands for the inequality a < Cb with real number
C > 0 having the same dependencies as § in (42). Let ¢, € Pé“,h. For each i € {1, 2},
the surjectivity of the continuous divergence operator from H (div; Qg ;) onto L?(Qg ;)
(see, e.g., [29, Section 2.4.1]) yields the existence of v; € H(div;Qp ;) such that

(43) V-v; = qhn in QBJ' and ”UiHH(div;SZB,z‘) < HQhHQB,w

with hidden multiplicative constant depending on Qg ;. Let v : Q5 — R? be such that
V|, = v; for i € {1,2}. This function cannot be interpolated through Ih, as it does
not belong to the space H'(75)? introduced in Section 4.3.2; see also Remark 8 on
this point. However, since we have assumed Dirichlet boundary conditions (cf. (33)),
following the procedure described in [29, Section 4.1] one can construct smoothings
v; € H'(Qp;)?, i € {1,2}, such that

(44) V . ’QNIZ = V -V in QB,i and Hf)iHHl(QBJV S Hvi”H(diwﬁn,i)'

Let now ¥ : Qg — R2 be such that Vi, = ; for i € {1,2}. The function ¥ belongs
to U n H'(T;,)?, and it can be easily checked that It® e Q’Z,O. Recalling the defini-
tion (13) of the ||| 7-norm and using the boundedness of the L?-orthogonal projector

in the corresponding L2-norm together with local continuous trace inequalities (see,
e.g., [21, Lemma 1.49]), one has that

2 2

k ~ ~

(45) Z HlTUH%J,T S Z HviH%l(QB,iP S 2 H”iH%J(div;QB,i) S H(Ih||123,hv
TeT, i=1 i=1

where we have used (44) in the second inequality and (43) in the third. The hidden
constant depends here on K 1 Moreover, using a triangle inequality, the fact that
o< ap = (Ar)jr < Ar (see (6)) for all F € F}, the boundedness of the L2-
orthogonal projector, and a global continuous trace inequality in each bulk subdomain
OB, i € {1,2}, we get

2 2
(46) IoZ ), < Z COIMBEON RS Z 193 (@02 <
] =1

where we have used (44) and (43) in the third inequality. The hidden constant de-
pends here on Ar and on the inverse of the diameters of the bulk subdomains. Com-
bining (45) and (46), and naming 8 the hidden constant, we conclude that

(47) |50 ]0.¢.n < Blanle.n.
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Finally, (44) together with the commuting property (17) of the local divergence re-
construction operator gives

(48) ™h(V -v) = mh(V-0) = DEIEor VT e Th.
Gathering all of the above properties, we infer that
lgnllB 1 = b(v,qn) = b(®, ) = br (L350, qn),

where we have used (43) together with the definition (7) of b in the first equality, (44)
in the second, and (48) along with the definition (30b) of by to conclude. Finally,
factoring |I}®|er ¢.n, using the linearity of by in its first argument, and denoting by
$ the supremum in (42), we get

lanli3.r. < 81L:0lw.en < B8lan]p.n,

where the conclusion follows from (47). This proves (42). |

We next recall the following Poincaré inequality, which is a special case of the
discrete Sobolev embeddings proved in [19, Proposition 5.4]: There exist a real number
Cp > 0 independent of h and of the problem data (but possibly depending on I" and
k) such that, for all ¢, = ((¢p) perr, (a1 )vev,) € Pr 00

—1
(49) lahlr < Co K g} Ir 1.
where ¢} is the piecewise polynomial function on I' such that (g} IF = g% for all
FeFl.
Using the Cauchy—Schwarz inequality together with the fact that )\% = (A%)‘ P>

Ar (% - %) for all F e F} (see (5) and and (6)) and the Poincaré inequality (49), we

can prove the following boundedness property for the bilinear form c;, defined by (28):
For all v, € QZ”O and all gl}: € B{i’h,o, it holds that

—1/
r —op (S 1
g, I, ne = Cp (2 4) :

—1
(50) len(wn, a0 < neAp e

We are now ready to prove Theorem 11.

Proof of Theorem 11. Let z;, = (wy,,r1,7},) € X . In the spirit of [27, Lemma 4.38] ]
the proof proceeds in three steps.

Step 1: Control of the fluz in the bulk and of the pressure in the fracture. Using
the coercivity (40) of the bilinear form ai and (41) of the bilinear form dj,, it is inferred
that

(51) A (zh,2)) = e w1 T e n + 17 rh 175

Step 2: Control of the pressure in the bulk. The inf-sup condition (42) on the
bilinear form b, gives the existence of v;, € Qﬁ,o such that

(52) Iallfs n = —bn(wn,m0) and v, lu.en < Blrals.n.
Using the definition (31) of Ai, it is readily inferred that

(53) A (2, (1,0,0)) = Iral®.n + aj,(wy,, v,) + cn (v, 1)

> rnln — laj, (wy, 04)] = len (g, o).
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Using the continuity of ai expressed by the second inequality in (40) followed by
Young’s inequality, we infer that it holds, for all ¢ > 0,

(naQB>2

€
(54) |ai(ﬂh7ﬂh)| < UaQBHMhHU,ﬁ,h |ﬂh||U’£,h < Z“yhngj,g,h HQhH?J,g,h-

Similarly, the boundedness (50) of ¢ followed by Young’s inequality gives
r =12 r € 2 e | 2
(55) len (g, )] < nedp 7 vpluenllrnlon < ZHQhHU,g,h + Y (A
Ap

Plugging (54) and (55) into (53), selecting ¢ = 872, and using the bound in (52), we
arrive at

1
(56) A (21, (©4,0,0)) > §H7“h\|213,h = Cillwplir e n — Caolri |,

with C1 = (n.fep)? and C3 = (1¢8)*/Ar.
Step 3: Conclusion. Setting a = (1 + C1n, + Cang)~1/2 and combining (51)
with (56), we infer that

A5 (2, (1 — )z, + a(v,,0,0))
« _ _
> §Hrh|\213,h +, (1= a1+ Cina)) w3 e + 17" (1= a1+ Cana)) o) [ 4-

Denoting by $ the supremum in the right-hand side of (35), we infer from the previous
inequality that

(57) CSHEhH%(,h < Ai(éhv (1—-a)z, +a(vy,0,0)) < $|(1 — a)z;, + a(v,,0,0)]x »

with C3 = min (o/2,7;1 (1 — (1 + C1n4)),m; " (1 — (1 + C2nq))) > 0. Finally, ob-
serving that, by the definition (34) of the |-|x n-norm together with (52), it holds
that [ (2,0,0)|x,n < Blrnlsn < Blzslx n, (57) gives (35) with v = C5' (1 + 5). O

7. Error analysis. This section contains the proof of Theorem 12 preceeded
by the required preliminary results. As in the previous section, we work under the
assumption that homogeneous Dirichlet boundary conditions are enforced on both the
bulk and the fracture pressures; see (33). In what follows, a < b means a < Cb with
real number C' > 0 independent of h and of the problem data, but possibly depending
on o, k, and on the problem geometry.

For all T € T, we define the local elliptic projection pr € P**1(T) of the bulk
pressure p such that

(58) (K1V(pr — p), Vw)r = 0 for all w e P**Y(T) and (§r — p,1)r = 0.

Adapting the results of [24, Lemma 3], it can be proved that the following approxi-
mation properties hold for all T € T, provided that pjr € H*"2(T):

| KN (p = br)lr + b | K2V (pr — br)|lor

1 — - 1 1 - —1/
+ K]é?Tth Hp - pTHT + K}_%/?Th’T /ZHP\T - pTHGT < KB?Thlr}Jrl HpHHmz(T).

(59)

Note that we need to specify that the trace of p and of the corresponding flux are
taken from the side of T in boundary norms, since these quantities are possibly two-
valued on fracture faces. We also introduce the broken polynomial function p; such
that

(On)r =pr VT €Th.
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The following boundedness result for the bilinear form b, defined by (27) can be
<k
proved using (18): For all v;, e U,, and all g}, € Péf’h,

1/2 1/2
|bn (v, )| < <Z vTII?J,T> x (Z KBﬂL?I(JT%)

(60) TeTh TeTh

1/
< |vplm.n ( Z KB7ThT2|QT|%> )

TeTh

where, to obtain the second inequality, we have used the first bound in (21) and
summed over T € T}, to infer

20 el e < lonlin = D) lvrli -
TeTh TeTh

Finally, we note the following consistency property for the bilinear form dj, defined
by (29), which can be inferred from [24, Theorem 8]: For all ¢ € H}(I') such that
qe H*2(F) for all F e Fi,

sup ( Z (VT'(KFqu)aTE‘)F + dh(Il}CL(LTE))
THEPE ool Irn=1 FeF}
(61) v
S Z KFh?;v(kJrl)HqH?qur%F)
FeF}

We are now ready to prove the error estimate.

Proof of Theorem 12. The proof proceeds in five steps: in Step 1 we derive an
estimate for the discretization error measured by the left-hand side of (37) in terms
of a conformity error; in Step 2 we bound the different components of the conformity
error; in Step 3 we combine the previous results to obtain (37). Steps 4-5 contain
the proofs of technical results used in Step 2.

REMARK 16 (Role of Step 1). The discretization error in the left-hand side
of (37) can be clearly estimated in terms of a conformity error using the inf-sup
condition on Ai proved in Theorem 11. Proceeding this way, however, we would end
up with constants depending on the problem data (and, in particular, on the global
bulk anisotropy ratio op defined by (2)) in the right-hand side of (37). This is to be
avoided if one wants to have a sharp indication of the behaviour of the method for
strongly anisotropic bulk permeability tensors.

In what follows, we use the shortcut notation for the error components introduced
in (39).

Step 1: Basic error estimate. Recalling the definitions (31) of Ai and (40) of the
norm |-|q.¢n, and using the coercivity of dj, expressed by the first inequality in (41),
we have that

(62) llen|7entlenl?n < Af((ens ens i), (€ns ens €)= Enlen) +Enalen) +Ens(er),
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where the linear forms &,y : Ujy — R, & : Pk, — R, and &3 : Pf,, — R
correspond to the components of the conformity error and are defined such that

(63a) Eni(vy) = —aj, (T, v),) + bu(vy, Pr) — Ch(ﬂh@i%
(63b) Enalan) = . (frar)r — bu(Ty, qn),
TeTh
(63¢) Ena(@) = ) (Crfr.ah)r + culn.q") — duB . q").
FeF}

We next estimate the error e, on the bulk pressure. The inf-sup condition (42) yields
the existence of v;, € Qﬁ,o such that

(64) lenlBn = —bn(wy, en) and |v,lu.en < Blenls.n-

Hence,
”eh“%,h = b (Uh7ph) - bh(ghaﬁh)

i(uhvgh) + Ch(ﬂhvgg) - bh(ghaﬁh)
5

= aj,(en, ) + n(vy, €)= Ena(vy),
where we have used the linearity of b, in its second argument in the first line, (30a) in
the second line (recall that g5 = 0 owing to (33)), and we have inserted + (ai (@, v,)+
en(v h,@g)) to conclude. Using the Cauchy—Schwarz inequality together with (40) for
the first term, the boundedness (50) of the second, and the linearity of £ 1 together
with the second bound in (40) for the third, we get

aen + A0 b e + o Ena (v

1
< (ei’les laen)) 2w -

Using the inequality in (64) to bound the second factor, and naming x the hidden
constant, we arrive at

(65) Xlenlen < lenlagn + lenlrn + Eni(wn/|vnlo.en)-

Step 2: Bound of the conformity error components. We proceed to bound the
conformity error components for a generic (vy,, g, ql}:) e X,

To bound &}, 1, we use the following reformulations of the first and second contri-
bution, whose proofs are given in Steps 4-5 below:

af @ w) = Y, (OfIulle - nr, [wde)e + Qe fule - ne, o ho)r)

FeF}
(66) + Z Z (KrV(Pr —pr) - nrp, Tpwr — mhwr) F
TeTn, FEFT
- Z (VpaF];j—lQT)T_ Z JT(@TaQT>T7
TeTs, TeTh

where, for all T € Ty, wr € P**1(T) is such that Fh'v, = K7-Vwr and

bn (v, Dn) = ba(wy,, 75 (0 — Dn)) Z Z — P, VTF)F + Ch(’vh,ph)
TeTn, FEFT
(©7) + 2 (OfTule e [e]le)r + Orlfule - ne. (o) r)r)
FeF},

— Z (Vp, Filv ) r.
TeTh
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Using (66) and (67) in (63a), we infer that

Enn(vy) = bu(p, mi(p—Pn)) + >, Y. (Br — pirsvre)F
TeTn, FEFT

- Z Z (KrV(Pr —pir) - nrp, TRwr — mwr) e + Z Jr(Ur, vr)r
TETh FE]:T Te7dh,

Using the boundedness (60) of b, together with the third bound in (59) to estimate the
first term, Cauchy—Schwarz inequalities together with the fourth bound in (59) and the

first bound in (21) to estimate the second term, Cauchy—Schwarz inequalities together
with the fact that by |7hwr — thwr|r < it jwr — thwrlr < Kg ZI1FS  op|r
(a consequence of the L?(F)-boundedness of 7% and (10b) with [ = k + 1, m = 0, and
s = 1) to estimate the third term, and (22) to estimate the fourth term, we infer that

12
(68) Ena(w),)] (2 onrKprhp |ka+2(T>> Ny
TeTh

For the second error component, using (1b), the definition (27) of the bilinear
form by, and the commuting property (17) of the local divergence reconstruction, we
get

(69) Ena(vy) = D) (V-u—mh(V-u),qr)r =0,
TeTh

where we have used the fact that g € P¥(T') and the definition (9) of 7% to conclude.

We next observe that, for all F' € ]-'; such that F' < 0T1 n 0T5 for distinct mesh
elements 17,15 € Ty,

(70a) [@,]F = 7f (wir, - nrie +wn, - nnr) = 75 ([u] - nr),
(100) (@ = b (g, e g ) = 7 ()] ).

For the third error component, we can then write

Enslqn) = Z (Cefr+ [wylr qp)r — dh@l,:,Q,S)
FeF}
= > (rfr+ [ulr - nr,qp)r — du(B,,q))
FeF}
= - Z (KpV.pr), qp)F — dh(pthh)
FeF}

where we have expanded the bilinear form ¢, according to its definition (28) in the first
line, we have used (70a) followed by (9) and the fact that ¢%. € P¥(F) to remove 7% in
the second line, and we have concluded invoking (3a). The consistency property (61)
then gives

2(k+1
(71) Enala)l < | D) Kehd Ve 2ceey | 1d Irn
Fe]—‘f
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Step 3: Conclusion. Using (68), (69), and (71) with (yh,qh,gZ) = (ep, €en,€:) to
estimate the right-hand side of (62), and recalling that |ey|lm.n < |€p]a.e.n, We infer
that

> 2(k+1
lenllaen + ek lrn < ( > onrKprhy pl3 e )

TeTh
(72)

12
2(k+1
+ Z KFhF( M )”pFﬁ{kw(F)) )
FeFf

which, in view of the first inequality in (40), gives the bounds on the first and second

term in the left-hand side of (37). Plugging (72) and (68) into (65), and recalling that

[vpllm,n < |vp]a.,n gives the estimate for the third term in the left-hand side of (37).
Step 4: Proof of (66). For every mesh element T € Tp, we have that

(K%IF@H@T, F]%HQT)T = (FZ}H@T, Vwr)r

—(D}ap, wr)r + Z (Urp,wr)F
feFr

73) = —(mp(V - u),wr)r + f;TT(W’z?(U “MTFR), W) F

= —(V-uﬂr?wT)T—i- Z (u~nTF,7T’fwa)F
feFr

= (u, VTF%U)T)T + Z (’LL . nTF,w’;wa — W:’ﬁwT)F,
feFr

where we have used the fact that F?HQT = KrVwr in the first line, the defini-
tion (19) of FA& @, in the second line, the commuting property (17) together with
the definition (25) of I} in the third line, the definition (9) of the L?-orthogonal pro-
jectors 7% and 7% to pass to the fourth line, and an integration by parts to conclude.

On the other hand, recalling again that F?*lgT = KrVwr and using the defi-
nition (58) of the local elliptic projection, we have that

(Vp, Fit v, e = (K- Vp, Vur)r = (K+Vir, Vwr)r
= —(V - (K7Vpr),wr)r + Z (KrVpr - nrp, wr)r

FGJ:T
(74) = —(V - (K7Vpr), thwr)r + Z (KrVir - nrp, mpwr)r
FE]“T
= (K7Vp,Vrhwr)r + Z (K7Vpr - nrp, Thwr — hor)p,
FE]‘_T

where we have used an integration by parts to pass to the second line, the definition (9)
of the L2-orthogonal projectors 7% and 7% together with the fact that V- (K1 Vpr) €
P*=1(T) < P*(T) and (K1Vpr)|p - nrp € PF(F) for all F € Fr (since wr € PFT(T)
and K1 € P°(T)?*?) in the second line, and again an integration by parts together
with the definition (58) to replace pr by p in the first term and conclude.

Summing (73) and (74), using (1a) to replace u by —K Vp, and rearranging the
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terms, we finally obtain

(K:FIF?FH@%F,’}HQT)T = —(Vp, F?FHQT)T
(75) + Z (KN (pr —p) - nrp, Thwr — mhwr) p.
FE]:T

Using (75) for the consistency term in mq (tp, vy) (see (20)), plugging the result-
ing relation into the expression of a,{l (wy,,v;,) (see (26)), and accounting for (70) in
the fracture terms of ai(@h, v,,) (where 7% can be cancelled using (9) after observing
that A5 [v, ] r € P*(F) and Ap[[v, ] € PF(F) for all F e FF) gives (66).

Step 5: Proof of (67). We have that

br(vy,Dn) = bh(ﬂhaﬁﬁ@ —Pn)) + bh(ﬂhvﬂfliﬁh)
= by (v, 7wk (p — Pn)) + Y. (Br, Dywr)r

TeTy
(76) = bh(Qh7WZ(p —Dn)) +Z ( Z (pr,vrr)rF — (VﬁTaF§“+1UT)T>
TeTh FeFr
b - )+ D) Gr - ppveee - (9 F5 o)
TeTy FeFr TeTh,
+2 2 (p|TavTF)F7

TeTn FeFr

where we have inserted iﬂﬁ;ﬁh into the second argument of b, and used its linearity
in the first line, expanded the second term according to its definition (27) and can-
celled the projector since DXwv;, € PH(T) for all T € T, in the second line, used the
definition (19) of FAMwv, (with wy = Pr) in the third line, and we have inserted
* Yrer, 2orer, (PiT,vTF)F to pass to the fourth line, where (58) was also used to
write p instead of pr in the third term.

Let us consider the last term in (76). Rearranging the sums and using the fact
that p = 0 on every boundary face F' € .7-',‘3 owing to (33), it is inferred that

Z Z (p|T7UTF)F = Z Z (p|TaUTF)F = Z L* (p|T1'UT1F +p\T2UT2F)-

TeTy, FeFr FeF, TeTr FeF},
FC(‘)Tl ﬁaTQ

If F e Fi\F., the integrand vanishes since vr, p + v, = 0 (see the definition (24)
of U lfbyo) and pip, — pi, = 0 since the jumps of the bulk pressure vanish across
interfaces in the bulk region. If, on the other hand, F € F, ,1; , assuming without loss of
generality that T; < Qg ; for i € {1,2}, it can be checked that pjp, vr, r + P, V1P =
[plrf{v, B r + {pirlv,]F- In conclusion, we have that

(77)

f (p O+ Db ) 0 if Fe F\F.,

U F T,V F) = .
PR (Iplr, e Be)r + (b, [vallr)r i F e FL.

Plugging (77) into (76), and using (4) to replace [p]lr and {p}}r, (67) follows. 0
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