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Abstract In cohesive crack propagation induced by
blade cutting, it is necessary to consider the blade ra-

dius of curvature as a characteristic length additional
to the shell thickness and to the cohesive process zone
length, which usually characterize crack propagation in

thin walled structures. When the finite element simu-
lation of a blade cutting process is considered, these
three lengths need to be properly resolved. The blade
radius of curvature can be orders of magnitude smaller

than the shell thickness and the cohesive process zone.
Furthermore, the transition from a continuous mesh to
a mesh containing a crack with a cohesive interface is

well known to be critical for solution accuracy. Nodal
equilibrium is in general violated during the transi-
tion, with subsequent generation of spurious stress os-

cillations that, in view of the non-reversible nature of
the problem, can lead to significant inaccuracies in the
stress response. The smallest length, i.e. the blade ra-
dius of curvature, is here resolved using the so called

directional cohesive element model as in Pagani and
Perego (CMAME, 285, 515-541, 2015), while the struc-
tural thickness is modeled using solid-shell elements.
The concept of directional cohesive elements is here ex-
tended for application to the case of cutting by scissors.
As for the cohesive process zone length, different model-
ing options are discussed in terms of their capability to

reduce the spurious oscillations and to provide an ac-
curate estimate of the cutting parameters. Numerical
tests are presented to validate the proposed modeling
strategies.
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1 Introduction

The simulation of crack propagation in shell structures
is a complex problem, still attracting considerable at-
tention in the computational mechanics community. A-
mong the most common approaches, one can list the

element deletion technique, whereby an element is elim-
inated from the mesh when a fracture criterion is sat-
isfied at that element (see e.g. Ortiz and Pandolfi [23]),

smeared approaches, such as those based on the phase
field method (see e.g. Ulmer et al. [36], Amiri et al. [4],
Ambati and De Lorenzis [3]), and techniques based on

the explicit introduction of a displacement discontinu-
ity in the finite element displacement model. This can
be done by either enriching the displacement field, as
e.g. in the extended finite element method (XFEM, see

e.g. Dolbow et al. [10] and Areias and Belytschko [5]),
or by allowing a crack to propagate along element edges
whose nodes have been duplicated (see e.g. Cirak et al.
[8] and Pagani and Perego [22]). In this latter case, a
node is duplicated when a fracture criterion is satis-
fied at its position and a crack is let to propagate by
separating adjacent elements along the previously com-
mon edge starting from that node. Cohesive interface
elements are usually interposed between the separat-
ing shell element faces, to account for the progressive
release of fracture energy. In blade cutting problems,
the main crack propagation direction is dictated by the
imposed blade trajectory, so that the mesh can be de-

signed to follow the main propagation path, which is
known in advance. For this reason, the node separa-
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tion method can be conveniently adopted for this type

of problems, without the need to use extremely refined

meshes. In view of the high nonlinearity of the problem,

the finite element simulation of cutting is here dealt

with in an explicit dynamics framework.

In the case of cohesive crack propagation through

thin shells promoted by blade cutting, the problem is

dominated by the existence of three small geometric

scales. The first one is the scale of the thickness of the

thin-walled structure, which is usually orders of magni-

tude smaller than the in-plane global dimensions. The

second small scale is dictated by the size of the cohesive

process zone and depends on the used material and on

the problem geometry. The smallest scale is determined

by the curvature radius of the cutting blade, which can

be of the order of microns, or even less, in the case of

a sharp blade. While the first scale is usually resolved

using shell elements, the resolution of the second scale

often requires extremely fine meshes, with high compu-

tational costs. As for the third scale, for sharp blades

and ductile materials the cutting blade is likely to inter-

fere with the correct transmission of the cohesive trac-

tions between the two separating crack flanks, leading

to possible severe underestimation of the dissipated en-

ergy [22], and needs a special treatment. Unfortunately,

the blade curvature radius turns out to be by far smaller

than the typical size of a computationally acceptable

in-plane discretization of the process zone, so that the

interaction cannot be properly resolved.

In the present work, the problem of the blade sharp-

ness is addressed by means of the Directional Cohesive

Elements (DCEs) introduced in Frangi et al. [11] and

further developed in Pagani and Perego [22] and Con-

falonieri et al. for layered shells [12]. According to this

technique, when a crack propagation criterion is met at

a node, the node is duplicated and cohesive directional

elements, i.e. a sort of cohesive string elements, which

have the purpose to simulate the interaction between

the blade and the deforming material in the process

zone and are endowed with a proper amount of cohesive

energy, are attached to the opening faces. During the

process of blade cutting, the sharp blade interacts with

the material in the deforming process zone and complex

nonlinear deformations take place ahead of the crack

tip. According to the cohesive model of fracture, the

three-dimensional process zone ahead of the crack tip

is collapsed onto a two-dimensional zero-thickness in-

terface. Upon interface opening, cohesive tractions are

transmitted between the separating crack flanks. From

the geometrical point of view, however, the interface

opening creates an empty space between the separat-

ing crack flanks that does not exist in reality, since

that space is occupied by the material in the deforming

process zone. When the crack is produced by a sharp

cutting blade, the blade can enter the space fictitiously

created by the opening of the cohesive interface, with-

out any interaction with the material in the process

zone. As shown in quantitative terms in Pagani and

Perego (2015) [22], this lack of interaction may lead to

a severe underestimation of the dissipated energy, unre-

alistically postponing crack propagation. The DCEs are

a sort of cohesive string elements, which have the pur-

pose to account for the interaction between the blade

and the deforming material in the process zone and are

endowed with a proper amount of cohesive energy. In

contrast to classical cohesive elements, the DCEs are

geometric entities and are able to detect contact with

the cutting blade. Because of contact with the blade,

the DCEs deform, transmitting cohesive forces to the

two crack flanks in the correct directions. The correct

amount of cohesive energy is then dissipated through

the string elongation (see figure 1), until the final rup-

ture of the string element is achieved. In the particu-

lar case of cutting by scissors, the interaction between

the scissors blades has to be taken into account. Using

simple arguments, the concept of directional cohesive

elements is here extended to include also the case of

cutting scissors.

Despite the improved energy balance allowed by the

DCEs in the presence of a cutting blade, crack propaga-

tion in explicit dynamics is often accompanied by sig-

nificant spurious stress oscillations. The first reason is

that the cohesive characteristic length needs to be prop-

erly resolved with a sufficiently fine discretization to ac-

curately capture the cohesive stress distribution. This

requires the size of the cohesive zone to be estimated
for mesh design. When this zone is very small compared

to the structure size, the cohesive length turns out to

depend on material properties (Young modulus, peak

strength, toughness and adopted cohesive law) and on

the fracture mode. In the case of slender structures, as

in the case of laminates, the structure geometry (e.g.

the plies thickness) also plays a role. Several contribu-

tions are available in the literature with analytical esti-

mates of the size of the cohesive process zone (see Soto

et al. [31] for a recent review of the available estimates).

However, numerical verifications (see e.g. Harper and

Hallett [14] and Turon et al. [33]) have shown that these

analytical predictions overestimate the actual cohesive

length in most cases. A reduction factor of one half is

recommended in [14], while Soto et al. [31] propose new

empirical formulas to predict the cohesive zone length

in pure Mode I or Mode II. Once the cohesive length

has been estimated, the mesh has to be designed in such

a way that a sufficient number of finite elements is used

along its length.
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Fig. 1 Distribution of cohesive forces via the “directional cohesive element” concept.

A second source of spurious stress oscillations is due

to the fact that, when a node is duplicated to allow for

crack propagation, at the instant of the (either direc-

tional or classical) insertion of the cohesive element, the

nodal force balance may not be satisfied, since the co-

hesive tractions applied to the element side in general

do not match the nodal forces that were transmitted by

the elements sharing that node before it was duplicated.

These problems, which are present also with stan-

dard cohesive elements, are well known and have been

discussed extensively in the literature on finite element

cohesive models. Concerning the size of the cohesive
process zone, the specific shape of the adopted traction-

displacement curve has been shown to have a significant

effect on the computed cohesive zone length and on

the traction distribution along the cohesive zone (see

e.g. Planas and Elices [24], Smith [30], Volokh [37],

Shet and Chandra [28], Alfano [1], Harper and Hallet

[14]). However, when the geometric length scale of in-

terest is sufficiently large relative to the cohesive length

scale (Needleman [21]), and when only the global load-

displacement structural response is of interest, details of

the cohesive law play a minor role and the results are

only slightly affected by the exact shape of the cohe-

sive curve provided that the material fracture energy is

correctly accounted for (Yang and Cox [38]). Based on

this consideration, it is possible to adjust the cohesive

strength, which is anyway difficult to measure experi-

mentally, and the critical opening with the purpose to

increase the cohesive zone length and to relax the con-

straint on the mesh density in the process zone. In par-

ticular, it has been shown (Planas and Elices [24], Smith

[30]) that increasing the critical opening displacement

at constant toughness (at the cost of a reduction of the

cohesive strength) can lead to a significant increase in

the cohesive length. The adaptive definition of these

latter parameters has also been proposed as a system-

atic technique to improve accuracy in the presence of

coarse finite element discretizations of the process zone

(Turon et al. [34,32]). A similar technique has also been

used by Hu et al. [15], who gradually reduced the peak

stress and the initial stiffness of the cohesive law in the

pre-softening regime, depending on the effective open-

ing displacement. The approach is shown to produce

more accurate results with a lower computational cost.

However, recent studies (Blackman et al., Harper and

Hallet) have shown that excessively low values of cohe-

sive peak strength can lead to inaccurate results.

Another possible approach to reduce stress oscilla-

tions, consists of improving the integration rule, so as

to obtain a more accurate description of the stress dis-

tribution along the crack edge, without increasing the

number of finite elements in the process zone. Shellekens

and De Borst [26] found that the Newton-Cotes inte-

gration (NCI) rule performed better than Gauss Inte-

gration (GI) for both linear and quadratic cohesive ele-

ments. In the latter case, they ascribed the merit to the

integration point located at the face centroid. Alfano

and Crisfield [2], however, showed that a higher order

of the numerical integration is not sufficient to allow for

a coarser mesh discretization. Recently, Gilormini and

Diani [13] discussed the effect of the numerical integra-

tion rule in the case of finite strains. Their numerical

peeling experiment showed no sensible differences be-
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tween NCI and GI rules in nonlinear regimes, while a

less precise result has been observed for NCI in the

elastic part of the cohesive law. The possibility to ex-

ploit numerical integration to improve the cohesive el-

ement computational efficiency has been investigated

also by Yang et al. [39], who introduced a cohesive el-

ement featuring a multiple subdomain integration: the

numerical integration for each cohesive finite element is

subdivided in zones, whose dimensions are smaller than

the cohesive zone size, inside which GI or NCI schemes

are employed. This approach makes it possible to in-

crease the mesh size from a fraction (typically 1
3 ÷

1
5 ) of

the cohesive zone to a size comparable and even slightly

larger of the cohesive zone. Moreover, the modifications

in a standard finite element implementation are quite

limited, see [25].

To mitigate the oscillations due to unbalanced nodal

forces upon the insertion of a new cohesive segment in

an extended finite elements implementation (XFEM),

Menouillard and Belytschko [18,19] proposed to add

an artificial correction of nodal forces. In their correc-

tion method, fictitious forces are added to the interested

nodes to re-establish nodal equilibrium. These forces

are then progressively scaled down when the crack tip

reaches the next element edge in the propagation path.

The same technique has been used, e.g., by Mostofizadeh

et al. [20] for the simulation of dynamic crack propaga-

tion in thin shells.

In view of these considerations, a correction simi-

lar to the one proposed in [18,19] is considered in this

work. The required correction force is calculated at the

node in correspondence of the newly separating element

crack tip, so as to compensate the missing force contri-

bution coming from the adjacent element before sepa-

ration. The additional contribution is however provided

by a modification of the maximum traction and critical

opening in the cohesive law, while preserving the cohe-

sive energy. It should be emphasized that a numerical

manipulation of the cohesive behavior of this kind is

acceptable only when global responses are of primary

concern, since the modification will obviously affect the

local response in the crack tip region.

The correction has been implemented in an explicit

dynamics solid-shell finite element code together with

the DCE technique. The effect on accuracy of the num-

ber of introduced string elements and of the proposed

correction is investigated by application to test cases

taken from the literature. In the next section 2 the ba-

sics of the DCEs, the rules for the numerical integration

in the case of multiple DCEs along an element face and

the adopted correction scheme are briefly summarized,

while validation tests are presented in section 3. Con-

clusions are drawn in section 4. In all the paper, bold

characters are reserved for vectors or matrices.

2 Formulation

2.1 Governing equations

Let us consider a thin-walled structure, modelled as a

deformable body undergoing large deformations. The

deformation mapping χ(X, t), t ∈ [0, T ] (being X the

initial position vector and T the overall analysis time)

is introduced to describe the motion of the body from

its initial configuration B0, characterized by volume Ω0

with boundary ∂Ω0, to the current one B , in which it

occupies the volume Ω with boundary ∂Ω. The body

is crossed by a cohesive crack propagating through its

thickness: because of the deformation process, the zero

thickness interface Γ0 in the reference configuration trans-

forms into the interface Γ in the current configura-

tion. The discontinuity across the interface Γ is de-

scribed by the relative displacement vector, defined as

δ = x+ − x−, being x+ and x− the spatial coordinates

of two corresponding points belonging to the separating

flanks of the cracks, denoted as Γ± respectively.

In the absence of damping, the dynamical behaviour

of the deformable body can be described by means of

the following variational balance:

δΠe
kin + δΠe

int − δΠe
ext = 0 (1)

where Πe
kin is the kinetic energy, while Πe

int and Πe
ext

are the internal and external works respectively. The

kinetic contribution is expressed as:

δΠe
kin =

[∫
Ω

ρ ü · δudΩ

]
(2)

being ρ the mass density, u the nodal displacements

vector and ü the nodal accelerations vector. The inter-

nal work variation is given by two distinct contributions

δΠe
B and δΠe

C, related to the bulk material and to the

cohesive interface respectively, i.e.

δΠe
int = δΠe

B + δΠe
C (3)

with:

δΠe
B =

∫
Ω0\Γ0

S : δEdΩ0 (4)

δΠe
C =

∫
Γ

T · δδ dΓ (5)
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where S is the second Piola-Kirchhoff stress tensor, E
the Green-Lagrange strain tensor, T the Cauchy trac-

tion vector in the current configuration, defined as:

T = σn (6)

being σ the Cauchy stress tensor and n the normal to

the crack flank.

Starting from the virtual balance of eqn. 1, the fol-

lowing set of semi-discretized global equations can be

written for the deformable body as:

MÜ + Fint + Fcoh − Fext = 0 (7)

being M the mass matrix, Ü the global acceleration

vector, Fint the vector of internal forces due to the bulk

contribution, Fcoh the vector of cohesive forces and Fext
the external load vector.

As in [22], the deformable body is discretized by

means of solid-shell elements, while the blade is mod-

eled as a rigid body, whose surface is meshed with tri-

angular elements. The solid-shell formulation developed

in [27] has been adopted. This 8-node element makes

use of 24 displacement degrees of freedom, one integra-

tion point in the in-plane direction, with five integra-

tions points along the thickness, and its formulation is

based on reduced integration with hourglass stabiliza-

tion, enhanced assumed strain (EAS) and assumed nat-

ural strain (ANS) to prevent locking. Figure 2 depicts

a generic solid-shell element, i.e. a 8-node brick, whose

node numbering is sorted so that nodes 1-4 belong to

the lower surface, while nodes 5-8 are on the upper sur-

face. The identification of the brick’s lower and upper

surface is straightforward, given the small thickness of
the element. In the following, the nodes of the solid-

shell elements will be denoted as vertex nodes. Let us

define the corner fiber as the edge connecting two corre-

sponding vertex nodes belonging to the lower and upper

surfaces, respectively, and the corner nodes as the mid-

dle surface nodes, i.e. the midpoints of each of the four

corner fibers. The coordinates of the corner nodes in

the undeformed configuration and their displacements

are defined as:

Xm
i =

Xup
i + Xlow

i

2
(8)

umi =
uupi + ulowi

2
(9)

where the subscript m refers to the corner node, while

the superscripts up and low denote quantities related to

the vertex nodes sharing the same fiber and belonging

to the upper and lower surfaces respectively. Xm,up,low
i

and um,up,lowi are the vectors collecting the material

coordinates and the displacements of the nodes, being

i the corner fiber number.

Fig. 2 8-node solid-shell element. Black circles: vertex nodes;
red circles: corner nodes; red dashed lines: edges of the ele-
ment middle surface; vertical dark green lines: corner fibers.

2.2 Directional Cohesive Elements (DCEs)

The fracture propagation is handled making use of an

inter-element cohesive approach, justified by the pres-

ence of a dominant crack path driven by the blade tra-

jectory: the interface elements are interposed on the fly

between two adjacent, previously connected solid-shell

elements, where an activation test is satisfied. The Di-

rectional Cohesive Elements (DCEs) proposed in [11,

22], i.e. massless string elements able to detect contact

with the blade on the basis of purely geometric consid-

erations, are adopted to properly describe the interac-

tion between the blade and the cohesive process zone.

The activation test is performed considering princi-

pal stresses or strains at the corner nodes, depending

on the adopted bulk constitutive behaviour. If the ac-

tivation criterion is satisfied at a corner node, the cor-

responding corner fiber is duplicated and a new face is

created. In [11] and [22] only one DCE per fiber con-

necting the pair of separating corner nodes was intro-

duced. In this work, an increased number of DCEs per

element face is considered to provide a better represen-

tation of the cutting forces when the blade crosses the

cohesive process zone. The cohesive strings are attached

to the Gauss points lying on the crack faces, at the level

of the solid-shell element middle surface (i.e. only one

DCE is inserted through the thickness in view of the

small thickness of the body), as shown in Figure 3. Since

the solid-shell elements are always thin compared to the

in-plane dimensions, the energy dissipated (in the ab-

sence of contact with the blade) with one or more DCEs

along the face thickness is almost the same. A better

resolution of crack propagation along the thickness can

be achieved by using more solid-shell elements in thick-

ness direction, each with one DCE along the thickness,

as discussed in [12] for layered shells.

As long as there is no contact with the blade, the

DCE works as a classical cohesive element, connecting

along a straight line two originally coincident Gauss

points, so that the string length measures their rela-

tive displacement. The cohesive forces T+ and T− are

transmitted along the direction of the string and their

magnitude T depends on the adopted cohesive model.
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Consequently, the DCE provides co-linear relative dis-

placements and tractions.

Fig. 3 Directional cohesive elements attached to points lying
on the elements middle surfaces.

Once contact with the blade is detected, the origi-

nal cable element is subdivided into two branches sep-

arated by the contact point, as shown in Figure 4. This

point is assumed to remain in contact with the same

element of the blade throughout all the analysis, un-

der the hypothesis of high friction. The directions of

the two cohesive traction vectors are determined by the

inclinations of the two branches of the string element

and, thus, are influenced by the position of the contact

point. The tractions T+ and T− transmitted by the

string branches to the crack flanks are assumed to have

the same magnitude T . This depends on the total string

length l, which plays the role of an effective interface

opening, different from the relative displacement, and

is given by the sum of the lengths of the two branches

of the string l = l+ + l−.

In this work, the magnitude of the cohesive force

transmitted by the string element at the two opening

faces is ruled by the linear softening law depicted in

Figure 5, although any other functional form of the

softening branch is feasible. The cohesive traction T

is a function of the overall cable length l and of the

maximum elongation l̄, which works as the historical

variable and allows to distinguish between the loading

and the unloading phases. The cohesive law is described

by the following set of equations:

T = T0
lc−l
lc

for l ≥ l̄ loading (10)

T = T0
lc−l̄
lc

l
l̄

for l < l̄ unloading (11)

T = 0 for l ≥ lc complete decohesion (12)

Fig. 4 Directional cohesive element after contact detection.

Fig. 5 Linear softening law adopted for the DCE.

being T0 the peak cohesive traction and lc the criti-

cal cable length corresponding to the ultimate opening.

The area beneath the curve represents the fracture en-

ergy Gc = 1
2T0lc. The cohesive tractions transmitted to

the crack flanks by a single DCE are, thus, given by:

T+ = Tm+ T− = Tm− (13)

If there is no contact between the DCE and the blade,

the unit vectors m+ and m− are defined as:

m+ = −m− =
x+ − x−

‖x+ − x−‖
=

l

‖x+ − x−‖
(14)

being x+ and x− the spatial coordinates of the two

string nodes attached to the crack flanks Γ+ and Γ−

respectively. In the case of contact between the DCE

and the blade, the unit vectors m+ and m− are defined

by:

m+ =
xc − x+

‖xc − x+‖
=

l+

‖xc − x+‖
(15)

m− =
xc − x−

‖xc − x−‖
=

l−

‖xc − x−‖
(16)
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being xc the coordinates in the current configuration of

the contact point between the string and the blade.

Let us now focus on a single 4-node interface element

e, with an intrinsic reference system θ − ζ, coinciding

with the solid-shell face on the crack flank, as shown

in Figure 6. More precisely, the intrinsic coordinates

θ and ζ are mapped onto the middle plane and the

thickness directions of the physical interface element,

respectively. The relative displacement model is given

by:

δ =

 4∑
j=1

Nj(θ, ζ) δj

e (17)

where Nj(θ, ζ) and δj represent the shape function and

the relative displacement vector of node j. By substi-

tuting eqn. 17 into eqn. 5, the elemental cohesive con-

tribution δΠe
C can be written as:

δΠe
C =

∫ +1

−1

∫ +1

−1

Te · δ

 4∑
j=1

Nj(θ, ζ)δj

e JeΓdθdζ (18)

being Te the elemental cohesive traction vector and JeΓ
the mapping jacobian.

Fig. 6 Master element reference system for the DCEs in-
serted at the opening surfaces.

A Gaussian quadrature rule with a varying number

of Gauss points over θ, placed at ζ = 0, is considered

(see Table 1). As an example, the case of two Gauss

points is depicted in Figure 6. By introducing the inte-

gration scheme in eqn. 18, one has:

δΠe
C =

4∑
j=1

NGP∑
k=1

2wkJ
e
Γk
Te
kNj(θk, ζ = 0) · δδej (19)

Table 1 Details of the adopted Gaussian integration rule:
NGP is the number of Gauss points; θk, k = 1, NGP are
their θ coordinates in the local reference system; wk are the
weights.

NGP θk wk

1 0 2
2 ±0.577350269 1,1
3 ±0.774596669,0 5/9, 8/9, 5/9

being Te
k the contribution of the k-th DCE to the over-

all cohesive traction, NGP the total number of Gauss

points (coinciding with the number of DCEs per ele-

ment), (θk, ζ = 0) the local coordinates of the k-th in-

tegration point and wk its weight. The coefficient 2 that

multiplies wk is the weight of the one-point integration

in direction ζ.

Upon integration, the elemental cohesive contribu-

tion is given by:

δΠe
C =

4∑
j=1

fej · δδ
e
j (20)

being

fej =

NGP∑
k=1

2wkJ
e
Γk
Te
kNjk (21)

the equivalent cohesive force of the interface element e

at node j in the global reference frame. Assembling the

nodal contributions of the interface elements sharing

node i, the global cohesive force vector Fcoh,i at node i

can be computed as:

Fcoh,i = ANi
e=1 f

e
i (22)

being A the assembly operator and Ni the number of

interface elements in the node support.

2.3 Spurious stress oscillations control

When a corner fiber is duplicated, the same coordi-

nates, displacements, velocities and accelerations of the

original vertex nodes are assigned to the newly created

ones. Consequently, at the time instant of the interface

element insertion tnd, the initial length of the newly

inserted DCEs is exactly zero and the nodal cohesive

forces are proportional to the peak value of the cohe-

sive traction T0 and aligned with the local normal to

the crack flanks. The vectors of equivalent nodal forces

at the corner node i, according to the definition of the
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corner node displacements in eqn. 9 are given by:

fmcoh,i =
Fupcoh,i + Flowcoh,i

2

fmint,i =
Fupint,i + Flowint,i

2

fmext,i =
Fupext,i + Flowext,i

2

fmin,i =
Fupin,i + Flowin,i

2

(23)

where the subscripts coh, int, ext and in identify the co-

hesive, internal, external and inertia forces respectively.

When a corner node is duplicated, the nodal forces are

released because of the separation of two previously ad-

jacent elements. As noticed also in [18,19], the cohesive

forces transmitted by the newly created interface ele-

ments are, in general, not able to restore the force bal-

ance. As a consequence of this lack of nodal equilibrium,

a spurious stress wave starts to propagate, affecting the

numerical solution. Noting that, in the present case of a

solid-shell discretization, the equivalent nodal internal

force vector consists of the sum of a stabilization term

fhgint,i, introduced to avoid the development of hourglass

modes [27], and a physically relevant term fsint,i deriv-

ing from the element tangent stiffness, a two-step nodal

correction procedure is introduced to reduce these spu-

rious stress oscillations.

Nodal equilibrium is first imposed at the time tnd
of node duplication, considering only the physically rel-

evant part of the internal force vector (neglecting the

contribution of the hourglass forces), by adjusting the

peak cohesive traction T0 to a value T ∗0 , so that nodal

equilibrium is restored and the spurious acceleration

jump at the moment of node duplication is avoided.

The equilibrium at the original corner node i belonging

to the i-th fiber, in the direction of the normal ni to

the crack flanks in the deformed configuration at the

i-th corner node, writes as:

(
fmin,i + fs,mint,i − fmext,i

)
·ni = −

(
fm,∗coh,i + fm,oldcoh,i

)
·ni (24)

where fm,oldcoh,i is the contribution to the nodal cohesive

forces due to the already existent cohesive elements,

while fm,∗coh,i is the contribution of the newly inserted in-

terface elements with the adjusted peak cohesive trac-

tion, defined as

fm,∗coh,i =
Fup,∗coh,i + Flow,∗coh,i

2
(25)

with

Fup,∗coh,i = AN
up
i

e=1

(
NGP∑
k=1

2wkJΓk
T∗0,kN

up
ik

)e

Flow,∗coh,i = AN
low
i

e=1

(
NGP∑
k=1

2wkJΓk
T∗0,kN

low
ik

)e (26)

where T∗,e0,k = T ∗,e0 nek, being T ∗,e0 the unknown peak co-

hesive traction for the newly inserted interface element

e, assumed to be equal at all Gauss points of the ele-

ment. After computing the new peak value T ∗,e0 from

eq. 24, the string critical length is rescaled to main-

tain the same fracture energy Gc, i.e. l∗,ec = 2Gc/T ∗,e0 .

The modification of the maximum cohesive traction has

been shown [2,34,32,38] to not significantly alter the

overall mechanical response, since the dissipative pro-

cess is mainly governed by the fracture energy. All the

DCEs of the same interface element are hence assigned

the same adjusted cohesive properties.

Following the approach proposed in [18], additional

fictitious nodal forces are then introduced to compen-

sate only the part of the equivalent nodal internal forces

due to the hourglass control. This second nodal correc-

tion is assumed to linearly decrease from its initial value

to zero during a fixed number of time steps, determined

on the basis of the size of the inserted interface element.

3 Numerical examples

Four numerical examples are considered in this section.

The effect of the proposed correction procedure is as-

sessed in the first two cases, where two fracture propa-

gation problems are simulated. The last two examples

concern the simulation of blade cutting problems to in-

vestigate the effect of increasing the number of DCEs

per interface element to better describe the interaction

between the blade and the process zone. All the tests

are carried out in an explicit dynamics framework.

3.1 Three point bending specimen

A three point bending specimen [7,9] is first considered

(Figure 7) with dimensions L = 600 mm and H = 150

mm in the vertical plane, and an out-of-plane thick-

ness B = 5 mm. Several discretizations are adopted,

each one characterized by a different element size in the

vertical direction he = 7.5, 10, 15, 25, 30 mm, constant

along the beam height, while the element width is al-

ways fixed to 10 mm. The case he = 30 mm is depicted

in Figure 7. The material properties, taken from [9],

are the following: Young’s modulus E = 36, 500 MPa,
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Poisson’s ratio ν = 0.1, cohesive strength T0 = 3.19

MPa and mode I fracture toughness Gc = 0.05 N/mm.

The resulting cohesive length `c = E Gc/T 2
0 =179 mm

is larger than the beam height, thus an appropriate,

minimum number of integration points in the cohesive

process zone, e.g. a minimum of 3-5 interface elements,

is easily guaranteed for each of the five simulation cases.

The simulation is carried out imposing that the down-

ward vertical displacement v(t) of the top middle point

of the beam (see Figure 7) is linearly increasing with a

constant velocity of 2 mm/s. A Rayleigh damping with

coefficients α = 10−3 (multiplying the mass matrix)

and β = 1 · 10−7 (multiplying the stiffness matrix) is

introduced to approximate a quasi-static response and

to limit dynamic oscillations. The Rayleigh damping co-

efficients have been selected through a sensitivity study

so as to obtain a quasi-static response in the initial elas-

tic phase, i.e. guaranteeing that the contribution of the

inertia forces to the overall balance is small enough,

without overdamping the structural response.

Fig. 7 Three point bending specimen, (coarser) mesh size
he=30 mm.

The influence of the mesh size is assessed by fix-

ing the number of DCEs per interface element to one,

and by varying he. The comparison in terms of non-

dimensional load-middle point displacement and crack-

mouth acceleration-displacement curves is shown in Fig-

ure 8. Because of the displacement control, the (ac-

tual) snap-back behaviour results in a sudden load de-

crease, compensated by the growth of inertia forces

(Figure 8b); after this drop, two different follow-up are

observed: the simulations with mesh sizes he = 7.5, 10, 15

show responses decreasing with continuity, while those

with mesh sizes he = 25, 30 evidence a pathological

behaviour in the post-peak regime. The choice of the

space-time discretization influences the outcome also

in terms of the acceleration behaviour. Focusing on the

acceleration vs displacement plot, three distinct phases

can be appreciated. In the first one, preceding the load

drop, the first opening of the element faces and DCE

insertion produce steep but isolated acceleration peaks,

resulting in a progressive slope reduction on the load-

displacement response; the second set of acceleration

peaks corresponds to the load drop event, when the

snap-back produces, despite damping, rather strong os-

cillations that tend to vanish only after a not negligible

time interval; in the third set, observed in the post-peak

regime, the acceleration increases due to the duplica-

tion of the last but one node along the ligament. It is

worthwhile to emphasize that no disturbance is intro-

duced by the vanishing DCEs, since the exchanged co-

hesive forces are almost zero when they approach their

critical length and then disappear.
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Fig. 8 Three point bending specimen. Comparison in terms
of load-displacement response and acceleration at the crack
mouth between different meshes (one DCE per element case).

The effectiveness of the correction procedure, dis-

cussed in section 2, is assessed in Figure 9, where the

load-displacements curves, obtained with and without

the correction, are compared for the cases he = 15

mm and he = 30 mm. The correction method produces

smoother load-displacement curves, while the responses

obtained without the correction method show non phys-

ical jumps, by-products of the spurious wave oscilla-

tions propagating because of the lack of nodal equi-

librium. Table 2 reports the maximum of the elemen-

tal values of the corrected cohesive strengths T ∗,max
0 =

max{T ∗,e0 } for the five adopted discretizations. The ra-

tio between the maximum adjusted cohesive strengths

T ∗,max
0 and the initial cohesive strength T0 in all the

considered cases is between 1.28 and 1.75 times and

decreases with decreasing element size.

The sensitivity of the load-displacement response

with respect to the two Rayleigh damping parameters,

in the case he = 15 mm, is shown in Figures 10a and

10b, in which α and β are varied once at a time. Reduc-

ing either the mass-related parameter α or the stiffness-
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Fig. 9 Three point bending specimen. Effect of the correc-
tion procedure, he = 15 − 30 mm.

Table 2 Three point bending specimen. Peak cohesive trac-
tions after the correction procedure

he T∗,max
0 =maxe

{
T∗,e
0

} T ∗,max
0

T0

7.5 4.08 MPa 1.28
10 4.15 MPa 1.30
15 4.34 MPa 1.36
25 5.10 MPa 1.60
30 5.58 MPa 1.75

related one β by an order of magnitude produces a clear

oscillatory behavior (gray solid lines) already in the ini-

tial part of the elastic response, while the selected pa-

rameters guarantee a quasi-static response. It should

also be noted that the peak value and the post-peak

behavior, except that for the reduced oscillations, are

not significantly affected.

Finally, the comparison between the numerical re-

sults obtained with one and two DCEs per interface el-

ement is shown in Figure 11 for the intermediate mesh

with he = 15 mm, in combination with the correction

method of section 2. The load drop is correctly repro-

duced; however, doubling the number of DCEs does not

visibly improve the numerical result. This is due to the

fact that the element size is far smaller than the cohe-

sive length. In view of the linear edge kinematics, the

configuration change at the crack tip depends only on

the displacements of the nodes of the opening element

edges, so that in this case no advantage comes from

adding more cohesive strings between linearly opening

faces

3.2 Coarse regular mesh with a rectilinear crack

The example considered in [19] to assess the effective-

ness of their smoothing procedure in the case of brittle

fracture propagation modeled with the X-FEM method

Fig. 10 Three point bending specimen. Sensitivity of struc-
tural response to Rayleigh damping parameters for he =
15mm: a) effect of reducing α for β = 1 · 10−7; b) effect
of reducing β for α = 1 · 10−3.

Fig. 11 Three point bending specimen. Comparison of load
displacement curves for different number of DCEs, he = 15
mm.

is here reproduced and adapted to the case of cohesive

behavior. A rectilinear crack is propagated in a rect-

angular domain discretized with the coarse and regular

mesh shown in Figure 12a by prescribing an advanc-

ing crack tip velocity of 1 m/s. The bottom edge of

the sample is fully constrained, while a uniform stress

σ = 10 kPa is applied at the top edge. Dimensions are

the following: length L = 0.2 m, height H = 0.1 m,
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initial crack length ai = 0.04 m. The material is linear

elastic, with Young’s modulus E = 1 MPa, Poisson’s

ratio ν = 0.3, and mass density ρ = 1 kg/m3. The

reference cohesive strength is T0 = 10 kPa, to be ad-

justed with the correction procedure, while the fracture

energy is Gc = 0.05 N/mm. A Rayleigh damping with

coefficients α = 10−3 and β = 10−7 is adopted.

����

�

�

(a)

(b)

Fig. 12 Rectilinear crack propagation. (a) geometry, load
and boundary conditions and (b) deformed shape.

The simulation is performed with and without the

correction procedure described in section 2 and the ver-

tical displacement and velocity of the top left corner

node of the sample are recorded. The comparison be-

tween the two numerical results is shown in Figures 13a

and b. The displacement vs time response is smoother

when the nodal force correction is activated; it is instead

strongly discontinuous without the correction. The ef-

fect of the correction becomes more evident as the time

increases and the the crack propagates rightward. More-

over, the correction procedure also decreases the peaks

and reduces the oscillations in the velocity response. As

pointed out in [19], the velocity of the top left corner

point obtained without any correction is completely not

physical, while its values turn out to be more realistic

when the correction is applied.
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Fig. 13 Rectilinear crack propagation. Comparisons be-
tween corrected and not corrected responses in terms of (a)
vertical displacement and (b) velocity at the top left corner.

3.3 Cutting of a steel plate by a wedge

The simulation of the cutting of a steel plate by a

wedge, as in the experiments performed by Lu and

Calladine [16], is considered. The plate is kept slightly

inclined w.r.t. the horizontal plane, as shown in our

model, depicted in Figure 14, where α = 10° is as-

sumed. Nominal dimensions of the specimen are also

included in the same picture. A pre-cut has been in-

troduced into the model to facilitate the cutting ini-

tiation by the rigid wedge, which is made to advance

steadily in a rectilinear direction along the horizontal

plane. An elastic, perfectly plastic constitutive behav-

ior has been assumed for the steel, with the following

material parameters: Young’s modulus E = 210 GPa,

Poisson’s ratio ν = 0.3, yield stress σy = 272 MPa,

density ρ = 7, 800 kg/m3, fracture energy Gc = 353

kJ/m2. A critical equivalent plastic strain εp = 0.15

is considered for the activation criterion, while a lin-
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Fig. 14 Cutting of a steel plate by a wedge. Isometric and lateral views of square-shaped steel plate and wedge (from
experiment in [16]).

ear softening law, with peak cohesive traction T0 = 408

MPa, describes the cohesive behavior. The peak value

T0 is set equal to 1.5 times the yield stress σy, so that

a plastic zone can develop ahead of the crack tip. The

effect on crack propagation of the ratio T0/σy has been

systematically studied by Tvergaard and Hutchinson
(1992) [35] for ductile materials in plane strain. They

have shown how this ratio should not be excessively low

to allow for a complete formation of the plastic zone

ahead of the crack tip. In the present case of a plate

made of a ductile material, the criterion used for the ac-

tivation of node separation is based on the equivalent

plastic strain accumulated in the bulk, so that cohe-

sive crack propagation is initiated when the prescribed

threshold on the equivalent plastic strain is exceeded,

irrespective of the cohesive strength. On the other hand,

solid-shell finite elements, with only one solid-shell el-

ement and five integration points through the thick-

ness, have been used for the plate discretization. The

stress state at the Gauss points is three-dimensional,

with a small, but non-zero normal stress in the thick-

ness direction, so that plane stress conditions cannot

be exactly assumed. As in Tvergaard and Hutchinson

(1992), preliminary tests have been conducted with dif-

ferent T0/σy ratios and good results have been obtained

with a value of 1.5. The typical in-plane size of the fi-

nite elements in the cutting region is 1 mm, which has

to be compared to a cohesive process zone character-

istic length `c = E Gc/T 2
0 = 1, 002 mm, longer than

the plate in-plane size. A Rayleigh damping with coef-

ficients α = 10−3 and β = 10−8 is adopted.

Contours of the equivalent plastic strain are shown

on the deformed configuration in Figure 15 at different

steps of the wedge advancement.

Experimental data include friction between the wedge

and the plate, while this is not taken into account in

the numerical simulation. For this reason, the outcome

of the numerical solution is compared with the ana-

lytical formula, based on a kinematic approach, pro-

posed by Simonsen and Wierzbicki (1997) in [29] for

estimating an upper bound to the cutting force Fan,

in which the frictional contribution is also neglected.

Figure 16 shows the numerical non-dimensional force-

displacement curves and the analytical estimate Fan =

623 N (horizontal red line). After an initial transition

with a steady increase, the three numerical solutions,

computed with a different number of DCEs per element

face, oscillate around the analytical estimate, with no

noticeable improvement brought by the increased num-

ber of DCEs. This can be explained by noting that in
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(a) (b)

(c) (d)

(e) (f)

Fig. 15 Cutting of a steel plate by a wedge. Equivalent plas-
tic strain contours at different stages of wedge advancement:
a) U=8 mm, b) U=20 mm, c) U=32 mm, d) U= 40 mm, e)
U=48 mm, f) U=60 mm, being U the blade displacement.

this case the reaction force on the wedge is determined

to a large extent by the contact against the plastically

deforming sides of the cut. The forces due to the de-

formation of the process zone play only a minor role,

making it difficult to notice the effect of the number

of DCEs. The strong oscillatory behavior of the nu-

merical solution is mainly due to the dynamic contact

between the blade and the progressively opening crack

faces that induces high frequency stress waves. This dy-

namic effect, which is not considered in the analytical

solution of Simonsen and Wierzbicki [29], could be par-

tially mitigated adopting a finer spatial discretization

and reducing the advancement speed of the blade, at

the cost, however, of a significant increase of the com-

putational burden.

3.4 Thin plate cut by scissors

As a final example, the simulation of the cutting pro-

cess of a thin plate by a pair of scissors is consid-

ered. This problem is of particular interest in the field

of virtual and/or robotized surgery, since obtaining a

physically-based, reliable haptic feedback is mandatory

to provide an effective tool for medical training and for

robotized, remotely controlled interventions. The ex-

perimental setup proposed in [17] to characterize the

scissoring force necessary to cut samples of different

materials is here considered. Two instrumented Met-

zenbaum scissors blades rotate around their pivot un-

der the action of a robot arm and a rectangular spec-

imen, kept fixed at the two edges parallel to the cut

direction, is progressively cut along its medial axis (see

Figure 17). The pivot position remains fixed during the

experiment. A force sensor measures the force F ap-

plied to the scissors arm in a direction normal to the

arm, so that the applied torque is linearly proportional

to the force. The arm rotation angle θ is obtained by

monitoring the angular velocity. The distance between

the pivot and the force sensor is equal to 98 mm.

Among the different materials cut in the experi-

ments reported in [17], the case of chicken skin sam-

ples, of slightly different and irregular thicknesses, is

here considered. The dimensions of the specimen are:

L = 100 mm, B = 23 mm, t = 1.0 mm (see Figure

18); the thickness t used for the simulation is the av-

erage of the nominal thicknesses of the three samples

tested by the authors. The material properties are the

following: Young’s modulus E = 8 GPa, Poisson’s ra-

tio ν = 0.4, cohesive strength T0 = 0.2 MPa, density

ρ = 1, 800 kg/m3, fracture energy Gc = 2.8 kJ/m2.

Three different simulations are carried out considering

an increasing number of DCE per element face, namely

1,2 and 3.

Taking into account the symmetry with respect to

the middle surface of the specimen, only the upper half

of the plate and a single blade of the scissors are mod-

eled, as shown in Figure 18. Hence, the out-of-plane

displacements of the nodes belonging to the symmetry

plane are fully restrained. A rigid rotation around the

pivot, with θ increasing in time with a constant angular

velocity of 300 degrees/s (i.e. 100 times the experimen-

tal value), is imposed to the blade. A Rayleigh damping

with coefficients α = 10−3 and β = 10−8 is adopted to

reduce the oscillations in the mechanical response.

A finite element mesh (see Figure 19) with only one

solid-shell element through the thickness is used. The

typical in-plane size of the finite elements in the cutting

region is 0.5 mm, which has to be compared to a cohe-

sive process zone characteristic length `c = GGc/T 2
0 =

2 · 105 mm (G being the shear modulus), significantly

longer than the sample width.

Since only a single blade is considered, it is neces-

sary to adapt the DCE concept to the particular case of

the scissoring process, in which the mechanical response

is governed by the interaction between the two scissors

blades. As explained in section 2.2, when the contact

between a single DCE and the blade is detected, the
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Fig. 16 Cutting of a steel plate by a wedge. Non-dimensional reaction force vs wedge displacement. Numerical solutions with
increasing number of DCEs per element face. Horizontal solid line denotes analytical estimate.

Fig. 17 Thin plate cut by scissors. Problem definition.

string is split into two branches. During its rigid rota-

tion, the blade drags the contact point xc downwards

(if the upper part of the specimen is considered). It is

assumed that the two cutting blades of the scissors meet

when the contact point crosses the symmetry plane of

the specimen. When this condition is met, contact with

the second blade is accounted for by considering a third

branch in the string, as shown in Figure 20, which con-

nects the contact point xc to its symmetrical x′c on

the other side of the symmetry plane. The directions

of the cohesive forces transmitted to the crack flanks

are modified according to the position of both xc and

x′c, so that the action of the two blades is accounted

for. Moreover, the string length is given by the sum of

the lengths of the three branches, providing a higher

dissipation when the two blades are overlapping.

The force recorded during the experiment includes

both the force necessary to cut the sample and the

Fig. 18 Thin plate cut by scissors. Adopted model.

friction. The adopted numerical model is not able to

simulate the frictional contribution. Anyway, the au-

thors provide the force vs rotation curve of the scissors

alone (Figure 21). As pointed out in [6], the cutting

force recorded by closing the scissors over the air can

be assumed to be representative of the overall frictional

contribution, since the friction is mainly due to the in-

teraction between the two blades. In comparing the out-

come of the simulations to the experimental response,
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Fig. 19 Thin plate cut by scissors. Adopted discretization.

Fig. 20 Thin plate cut by scissors. Directional cohesive ele-
ments in case of scissor blades interaction.

the provided friction force, depicted in Figure 21 as a

function of the angle, is then added to the resulting

numerical cutting force.

Figure 22 shows the comparison between the simu-

lation and the experimental results. The overall cutting

force is determined by imposing the rotational equilib-

rium around the scissors pivot of all the forces acting on

the blade. These are the cohesive contributions coming

from all the DCEs for which contact with the blade has

been detected and the contact forces between the rigid

body and the solid-shell elements.

The angle shown in Figure 22 is the relative angle

between the blades, i.e. twice the absolute angle be-

tween the blade and the horizontal axis; therefore, the

cutting process starts at about 20° and decreases to 0°

Fig. 21 Thin plate cut by scissors. Frictional force between
scissors blades.

as the blade rotates towards the plate. In other words,

the curves are walked through from right to left, as

in the original work [17]. Following the numbering se-

quence in Figure 22, from (circled) points 0 to 1 the

blade is initially rotating rigidly, with no contact with

the plate; from point 1 to point 2 the blade starts its

interaction by deforming but still not cutting the plate;

from point 2 to point 3 the actual cut occurs with se-

vere oscillations in the response; finally, from point 3 to

point 4 the plate has been completely cut by the blades.

Despite a rather coarse mesh, the numerical simula-

tion captures the deformation phase 1-2 and the cutting

phase 2-3 reasonably well. The entity of the oscillations

in the experimental curve during the latter phase 2-3

of the cut depends also on local effects (such as thick-

ness variation), which are also most likely responsible

for the dispersion in the experimental results shown by

the three measured curves reproduced in Figure 22. Un-

like in the work in [17], where the force rapidly drops at

the end, some fluctuations in the numerical results can

be observed in the phase 3-4, due to the DCEs not yet

completely cut during the last instants of the cutting

process.

It should be noticed that the accuracy of the nu-

merical results improves as the number of DCEs per el-

ement increases. The simulation carried out with only

one DCE per element underestimates the initial stiff-

ness during phase 1-2 and anticipates the final phase

w.r.t. the 2-DCEs and 3 DCEs cases. The 1-DCE case

also underestimates the plateau-like (with fluctuations)

behavior during the phase 2-3, which instead is better

reproduced by the 2-DCEs and 3-DCEs simulations.

The differences between the 2-DCEs and 3-DCEs cases
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are rather small: the addition of one more cable in-

creases slightly the entity of fluctuations during the first

part of the cut and it also affects the last phase 3-4, be-

cause of the higher number of still interacting strings.

The energy dissipated (proportional to the area un-

derneath the force-rotation curve) by the simulations

with 2 and 3-DCEs compares well to the energy dissi-

pated in two of the experimental tests, while it is signif-

icantly smaller than in the third test that exhibits an

anomalous peak force.
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Fig. 22 Thin plate cut by scissors. Cutting of a chicken
skin specimen: cutting force vs rotation angle. Comparison
of experimental and numerical response for increasing num-
ber of DCEs. Experimental curves refer to specimens of non-
uniform, irregular thicknesses.

4 Conclusions

This work is focused on the discussion of some compu-

tational issues concerning the simulation of blade cut-

ting of thin walled structures. The adopted numerical

strategy is based on the use of the directional cohesive

elements proposed in [11,22]. These elements allow to

resolve the scale of the blade radius without adopting

an extremely refined discretization. The concept of di-

rectional cohesive elements has here been extended for

application to the cutting by scissors, accounting for

the interaction within the blade pair and the effect of

an increased number of directional cohesive elements

per opening face has been elucidated.

The second aspect investigated in this contribution

is the presence of unphysical acceleration jumps in the

numerical response due to the lack of nodal equilibrium

at the moment of node duplication and insertion of an

interface element. The unbalanced nodal forces induce

the propagation of spurious stress waves than can lead

to significant deviations in the local stress field and af-

fect the accuracy of the simulation. A correction proce-

dure, based on the ri-definition of the maximum cohe-

sive traction in order to guarantee the nodal equilibrium

is proposed. The computational techniques studied in

this work have been shown to play a beneficial role in

the development of a robust numerical tool, able to sim-

ulate the complex mechanical behavior involved in the

cutting process.
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