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This paper investigates the analysis of transients in three-phase systems by means of the Clarke 
transformation. Under the commonly accepted assumption of phase symmetry (i.e., three-phase 
basic elements with symmetrical parameters), the alpha and beta dynamic circuits are 
independent and characterized by the same circuit parameters. Thus, since the space vector is 
defined as the combination of alpha and beta variables, the state equation approach based on 
space vector variables results in an effective tool for three-phase transient analysis. In fact, the 
space vector approach presented in this work exploits the system symmetry providing state 
equations with reduced dynamic order. Moreover, it is shown that the space vector shape on the 
complex plane provides a concise and rich representation of the transients of the three phase 
variables. Indeed, despite the assumption of system symmetry, it is shown that the transient 
behavior of the three phase variables is not symmetrical. In particular, maximum over voltages 
and over currents can be easily detected from the space vector shape. Numerical examples are 
presented in order to show the effectiveness and adequacy of the general methodology presented 
in this work for the analysis of three-phase dynamic circuits  
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1. Introduction 
 

Circuit analysis of three-phase power systems under steady-state conditions is usually 

performed by resorting to the symmetrical component transformation (SCT). In fact, it is well 

known that, thanks to the assumption of phase symmetry, the use of SCT results in three 

uncoupled single-phase circuits. As far as transient analysis is concerned, however, such an 

approach is no longer effective since a direct time-domain analysis would be more suited [1]-

[5]. To this aim, power system engineers usually perform transient analysis by resorting to 

numerical methods through commercial simulation tools like ElectroMagnetic Transients 

Program [5]. The numerical approach is attractive because it can handle even large and 

complex power networks. As a general principle, however, a numerical approach to a 

problem prevents theoretical and physical insight into the phenomenon under analysis. For 

this reason an analytical tool similar to SCT but working in the time domain would be very 

useful in order to provide analytical solutions to transients in three-phase circuits. To this 

aim, the Clarke transformation is a proper candidate since it works in the time domain and 

provides uncoupled modal circuits under the assumption of phase symmetry. Traditionally, 

the Clarke transformation and the related space vector is widespread in the dynamics and 

control of rotating electrical machines, and power electronics engineering. Its use in power 

system analysis, however, is still uncommon [4]-[11].  

Indeed, three-phase power systems are conventionally analysed by resorting to single-

phase equivalent circuits under sinusoidal steady state conditions by means of the standard 
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phasor approach. However, the space vector approach is a more rigorous approach for a 

formal analysis of three-phase systems. In fact, it leads to the conventional standard phasors 

in the special case of sinusoidal steady state, whereas it is a suitable tool for proper analysis 

under distorted steady state and dynamic conditions. In particular, the main objective of this 

work is showing the powerful and complete features of the space vector when three-phase 

transients are considered. 

In this paper the use of the Clarke transformation and space vectors for the analytical 

solution of transients in symmetrical three-phase circuits is presented. Several interesting 

properties and advantages of the space vector approach will be pointed out. More specifically, 

the paper is organized as follows. In Section 2 the space vector definition and its relationship 

with the SCT are briefly recalled. In Section 3 the space-vector state-equation approach is 

introduced for general Nth-order three-phase circuits. Some transient analyses of a specific 

second-order circuit are shown in Section 4, where the results are presented in terms of the 

shape of the space vector on the complex plane. Such concise and effective representation of 

three-phase transients will be explained and discussed. Concluding remarks are drawn in 

Section 5. 

 

2. Space vector and zero component under transient and steady state conditions 

 

Space vector is an effective tool for analyzing three-phase power systems in time domain 

under both transient and steady-state conditions. Definition of space vector is based on the 

Clarke transformation (in rational form) given by the following orthogonal matrix [4]-[10]: 

 

 �� = ��� �
1 −1 2⁄ −1 2⁄0 √3 2⁄ −√3 2⁄1 √2⁄ 1 √2⁄ 1 √2⁄ � (1) 

 

Let us consider three phase currents in time domain ia, ib, and ic (similar derivations hold 

for phase voltages). The transformed currents according to the Clarke transformation are 

given by: 

 �� = �������� = �� �������� = ��� (2) 

 

The current space vector is defined as a complex valued time-domain function with real 

and imaginary parts given by the α and β components, respectively: 

 

 � = �� + ��� (3) 

 

It can be readily proven that the straightforward formula to obtain the space vector from 

phase variables can be written as: 

 

 � = ��� ��� + ��� + ����� (4a) 

where � = exp�� 2" 3⁄ �.  
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Similarly, the zero component is defined as: 

 

 �# = $%&$'&$(√�  (4b) 

The phase variables can be readily recovered from the space vector and from the zero 

component �� as 

 

 ���)� = ���Re�+,�)�� + -√� ���)� (5a) 

 

 ���)� = ���Re.��+,�)�/ + -√� ���)� (5b) 

 

 ���)� = ���Re.�+,�)�/ + -√� ���)� (5c) 

 

Notice that from (5), in case of null zero-sequence current �� (i.e., a pure three-phase 

system), the instantaneous phase currents ���)�, ���)�, ���)� can be recovered by taking the 

orthogonal components of the space vector + ,�)� on three axes with geometrical phase 

displacement 2" 3⁄  each other (see Fig. 1).   

 

 
Figure 1. The phase currents ia, ib, and ic can be recovered from the components of the space 

vector + , on the axes a, b, and c. 

 

Under steady-state sinusoidal conditions, the space vector can be put into relation with 

positive and negative sequence variables obtained from the symmetrical component 

transformation (SCT) operating on phasor variables as [11]-[12]: 

 

 �01020�� = 3 �0�0�0�� (6) 

 

where S (in rational form) is the unitary matrix: 
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 3 = -√� �1 � ��1 �� �1 1 1 � (7) 

 

The relationship between the space vector (4a) and the sequence currents (6) can be written 

as [4], [10]: 

 

 + ,�)� = 014567 + 02∗49567 (8) 

 

where asterisk denotes complex conjugate, and ω = 2πf is the angular frequency. Eq. (8) 

provides the fundamental relationship between space vector and conventional phasors under 

sinusoidal steady state. The space vector (8) follows an ellipse shape on the complex plane, 

with semi-major axis R = |Ip| + |In|, semi-minor axis r = ||Ip| − |In||, and inclination angle φ = 

(φp − φn)/2, where φp and φn are the angles of Ip and In, respectively [8]-[9]. Under ideal 

conditions the negative-sequence current In is equal to zero and therefore the space vector 

follows a circle shape with radius |Ip| on the complex plane. 

In sinusoidal steady-state, the zero component (4b) is a sinusoidal waveform since it is 

defined as a combination of sinusoids with the same frequency. Therefore, by using the 

conventional phasor representation of sinusoids we obtain: 

 

 ���)� = √2Re:0�4567; (9) 

 

where I0 is the zero-sequence phasor.  

 

3. Space vector analysis of three-phase transients 

 

3.1. First-order circuits 

 

Let us consider first a single-phase RL circuit branch with impressed total voltage e(t) 

such that: 

 

 4�)� = <��)� + = >>7 ��)� (10) 

 

The solution of (10) can be written as: 

 

 ��)� = ?49@A + �B�)� (11) 

 

where C = = <⁄  is the time constant of the transient, �B�)� is the steady-state solution of (10) 

(depending on the forcing term 4�)�), and ? = ��0� − �B�0�. The best approach to obtain the 

explicit solution of the form given in (11) is to obtain first the steady-state solution �B�)� 

through a simple phasor analysis (assuming sinusoidal impressed voltage 4�)�), and second 

to evaluate in ) = 0 such steady-state solution to obtain the constant A (assuming known 

initial condition ��0�). 

The simple approach shortly outlined above can be readily applied to space vectors [4]. 

Let us consider a three-phase balanced star-connected RL branch with resistances R, self-
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inductances Lp, and mutual inductances Lm (see Fig. 2). A sinusoidal three-phase star-

connected voltage source is applied to the RL branch at ) = 0 by closing a three-phase switch. 

By applying the Clarke transformation, and by taking into account that for the space vectors 

the central point of star connections can be treated as short circuits [12], the space-vector 

differential equation describing the circuit is given by: 

 

 4,�)� = <+,�)� + = >>7 + ,�)� (12) 

 

where = = =1 − =D. Notice that (12) is a first-order equation, whereas the circuit in Fig. 2 is 

a second order circuit (two independent inductive meshes). However, due to system 

symmetry, the circuit would show one repeated (i.e., multiple) eigenvalue. The space vector 

approach is able to exploit this feature, leading to a state equation with order one instead of 

two. 

Clearly, (12) is similar to (10). According to the procedure outlined above, in order to 

obtain the solution of (12) the steady-state solution should be calculated first. The forcing 

term 4,�)� is formed in general (see (8)), by the sum of two terms, i.e., the positive and 

negative (conjugated) sequence components rotating in positive and negative directions with 

angular frequency ω: 

 

 4,�)� = E14567 + E2∗49567  (13) 

 

Since the forcing term has the form given in (13), it is expected that also the steady-state 

solution can be written in the form: 

 

 +BF�)� = 0-4567 + 0�49567 (14) 

 

By substituting (13) and (14) into (12) we obtain: 

 

 0- = GHI&56J ,      0� = GM∗I956J (15) 

 

According to (11) the complete solution of (12) is given by: 

 

 +,�)� = ?49@A + +BF�)� (16) 

 

where ? = +,�0� − +BF�0�. Notice that in this case (switches closing at ) = 0) we have + ,�0� =0. Moreover, +BF�0� = 0- + 0�. Thus, from (14)-(16) we obtain the following expression for 

the complete solution: 

 

 +,�)� = EN<+�O= P4�O) − 4−)CQ + ER∗<−�O= P4−�O) − 4−)CQ (17) 

 

Notice that the dynamics of the current appears as superposition of the transients related 

to positive and negative sequences. The same approach is suitable to other circuit topologies 

and to first-order RC circuits. 
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Finally, it should be observed that in case of a four-wire system, the transient involving 

the zero components must be also evaluated to obtain a complete description of the transient. 

A conventional approach can be readily used for zero component transients. 

 

 
Figure 2. Three-phase RL circuit described by (12). The switches close at t = 0. 

 

3.2. Nth-order circuits 

 

The approach outlined above for a first-order circuit can be generalized to the case of an 

arbitrary number of three-phase dynamic components by resorting to the conventional state-

equation approach. 

The general methodology can be described as follows. The basic assumption of the 

proposed approach is the phase symmetry of the three-phase system. It means that for each 

three-phase basic element (i.e., resistive, inductive, or capacitive element) the self-parameters 

take the same value, and the mutual parameters (if any) take the same value. This is the 

common assumption underlying all the mathematical methods for three-phase system 

analysis. Thus, the parameter matrix (R, L, or C) for each three-phase basic element can be 

written in the following form: 

 

 S = � N ND NDND N NDND ND N � (18) 

 

It should be stressed that the symmetry assumption is related only to the element 

parameters, whereas no assumption is made on the sources (i.e., arbitrary three-phase sources 

can be assumed). 

By applying the Clarke transformation matrix (1) to all the voltage/current variables of 

the three-phase system, each three-phase basic element (18) is transformed as: 

 

 S� = ��S��9- = �N − ND 0 00 N − ND 00 0 N + 2ND
� = �N� 0 00 N� 00 0 N�

� (19) 

 

Therefore, since PT is a diagonal matrix, according to (2) the Clarke transformation results 

in decoupled differential equations for the α, β, and 0 variables. Notice that (19) is formally 

the same as the SCT in the phasor domain. 
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Notice that the star connections in the three-phase system result in short circuits for the α 

and β variables, whereas for the zero component the equivalent circuit depends on the 

connection of the star centre: open circuit for an isolated star centre, and an ideal transformer 

with ratio √3 in case the star centre is connected to a single phase network. Such single phase 

network can be reported on the three-phase side according to the conventional properties of 

ideal transformers. These results are similar to the SCT properties already derived and 

discussed in [12].   

From the above assumptions and the outlined procedure we obtain three independent 

dynamic circuits: 

 

 
>>7 T� = UT� + VW� (20a) 

 

 
>>7 T� = UT� + VW� (20b) 

 

 
>>7 T� = U�T� + V�W� (20c) 

 

where T�,�,� are the vectors of the state variables (in the Clarke domain), X�,�,� are the input 

vectors, F is the state matrix and B is the input matrix. A key point is that for Y and β circuits 

we have the same matrices F and B. This is a consequence of (19) where N� = N� for all the 

three-phase basic elements. On the contrary, for the zero component circuit in general we 

obtain different matrices F0 and B0 because in this case we have different parameters N� and 

the contribution of possible single phase networks connected to the three-phase system. 

As a fundamental result, the Y and β circuits have the same eigenvalues. This is the reason 

explaining why the analysis of a three-phase system in terms of space vectors (i.e., by 

combining the Y and β variables according to (3)) results in a dynamic system with reduced 

order N (e.g., first-order space-vector system for the second-order three-phase system in Fig. 

2). Thus, in terms of space vectors we obtain: 

 

 
>>7 TZ = UTZ + VXF (21) 

 

where TZ is the N×1 state vector (i.e., the vector consisting of the N space vectors of 

independent inductor currents and capacitor voltages), F is the N×N state matrix, B is the 

N×M input matrix (where M is the number of space vector sources), and XF is the M×1 vector 

of the input space vectors. Notice that (21) is the generalization of (12) to a Nth-order space-

vector circuit. 

Actually, the space vector exploits the system symmetry by combining the repeated 

eigenvalues resulting from such assumption. The total number of eigenvalues in the Clarke 

domain must be the same as in the original system. If the zero component is also present, the 

eigenvalues of the zero component circuit contribute to the total number of eigenvalues. 

Indeed, the Clarke transformation cannot change the number of state variables nor the number 

and values of the system eigenvalues. Thus, the proposed space-vector approach is capable 

of reducing the apparent dynamic order of the system by exploiting the system symmetry 

resulting in repeated eigenvalues. In case of a system with null zero components, the apparent 

space-vector dynamic order is half the actual dynamic order. 
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The steady-state solution to an input of the form XF = [exp�\)� (where \ can denote either +�O or – �O) can be readily obtained by substituting XF into (21) and searching a solution of 

the form TZ = ^exp�\)�: 

 

 TZB�)� = ^_4`7 = �\a − U�9-V[4`7 (22) 

The complete solution of (21) can be written as the sum of the general solution of the 

homogeneous form of (21) (i.e., assuming V = 0) and the steady-state solution (22). Thus, 

for the kth space-vector state variable the complete solution can be written in the form: 

 

 b,c�)� = ∑ ec24fM7g2h- + b,Bc�)� (23) 

 

where :i2;2h-g  is the set of the eigenvalues of the state matrix F (under the assumption of N 

distinct eigenvalues), and the set of constants :ec2;2h-g  can be obtained by imposing initial 

values T� = TZ�0� − TZB�0� [13]: 

 

 j = kT�    UT�   …   Ug9-T�m
no
oo
p1 i- i-� ⋯ i-g9-1 i� i�� ⋯ i�g9-1 i� i�� ⋯ i�g9-⋮ ⋮ ⋮ ⋯ ⋮1 ig ig� ⋯ igg9-st

tt
u9-

 (24) 

 

4. Numerical example 

 

The general approach outlined in Subsection 3.2 was applied to the three-phase circuit 

shown in Fig. 3. The circuit presents two dynamic three-phase elements, i.e., three star-

connected coupled inductors and three star-connected capacitors. The space-vector 

equivalent circuit is shown in Fig. 4 where it was taken into account that Clarke 

transformation results in short-circuit connections between star centers. The second-order 

space-vector circuit in Fig. 4 can be modeled through the state equation (21) where: 

 

 TZ = v +,w,x,   U = �− IyJ -J− -z − -I{z
�,   V = | 0-I{z},   XF = 4, (25) 

 

Notice again that the circuit in Fig. 3 when solved by means of conventional state-equation 

techniques would result in a fifth-order circuit. However, due to system symmetry, the circuit 

shows two repeated eigenvalues, resulting in the second-order model (25). The fifth 

eigenvalue is related to a capacitor in the zero component circuit, where, however, due to the 

open star connections, the state variable has no time evolution. 

A 50Hz - voltage source was considered consisting of only the positive sequence 

component E1 = 100 ~. Thus, according to (13), the input in (22) consists only of the term 

corresponding to \ = +�O. Initial values of state variables are assumed zero. Passive 

components are given as <- = 10 Ω, <� = 1 Ω, =1 = 30 ��, =D = 25 �� (i.e., = = =1 −=D = 5 ��), and e = 10 ��. The corresponding complex conjugated eigenvalues are 

given by i-,� = −60 ± �135.65 �9-.  
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Figure 3. Three-phase RLC circuit. The switches close at t = 0. 

 

 
Figure 4. Space-vector equivalent circuit for the three-phase circuit shown in Fig. 3. 

 

Fig. 5a shows the behavior on the complex plane of the current space vector + ,�)� provided 

by the complete solution (23). The steady-state shape is a counterclockwise circle since the 

negative sequence component is zero. Fig. 5b shows the time behavior of the three phase 

currents according to (5). Figs. 6a and 6b refer to the capacitor voltage w,�)� and the related 

phase voltages, respectively. 

Notice that the transient behavior of each phase variable can be readily related to the 

components of the space vector on the a, b, c axes in Figs. 5a and 6a. Therefore, the space 

vector approach is well suited to provide a rich and concise description of three-phase 

transients. 

Moreover, a crucial point can be stressed from the transients shown in Figs. 5b and 6b, 

i.e., the three phase transients show asymmetrical time behavior. For example, the peaks of 

currents and voltages take different values for phases a, b and c. Therefore, despite the 

symmetry of the three-phase system and of the short circuit, the three phase variables show 

asymmetrical behavior. This point prevents the use of any single-phase equivalent circuit for 

a proper analysis of transients even in symmetrical systems. 

A further key-point highlighting the suitability of the space-vector approach is related to 

the straightforward evaluation of the actual worst-case in terms of maximum 

overcurrent/overvoltage. In fact, such worst case is given by the maximum space-vector 

magnitude. Since the phase variables are given by the space-vector components on the a, b, 

c axes, the actual worst case can be observed on a phase variable only in case the maximum 

space-vector magnitude is reached exactly at one of the a, b, c axes. Otherwise, the peaks of 

the phase variables correspond to the components of the maximum space-vector magnitude, 

leading to an underestimate of the possible worst case. Notice that a change in the initial 

phase (usually unknown) of the forcing term would result in a simple angular displacement 
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in the graphs in Figs. 5a and 6a. This feature is a further point showing the space-vector 

capability to provide a synthetic representation of three-phase transients. 

 
(a)                                                            (b) 

Figure 5. Space vector shape (a) and phase currents (b) in the three-phase inductor in Fig. 4 

 

 

 
(a)                                                              (b) 

Figure 6. Space vector shape (a) and phase voltages (b) across the three-phase capacitor in 

Fig. 4. 

 

5. Conclusion 

 

The well-known conventional state-equation approach for the analysis of dynamic circuits 

has been extended to space vector variables resulting from the Clarke transformation applied 

to three-phase systems. The only assumption was the phase symmetry of system parameters. 

Two main results have been obtained and discussed.  

First, the space vector approach exploits the intrinsic system symmetry resulting in 

repeated eigenvalues. Thus, the apparent dynamic order of the system in terms of space 

vectors is lower than the order of the original three-phase system. This is an important result 

leading to a simplified and complete representation of three-phase dynamic systems. On the 
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contrary, considering a three-phase dynamic system in terms of its natural variables would 

result in redundant information due to the symmetry assumption. 

Second, the shape of the space vector on the complex plane provides concise and rich 

information about the transient of the corresponding three variables. This is a major point 

since, despite the system symmetry, the time behaviour of the three phase variables is not 

symmetrical. Indeed, overvoltages/overcurrents can be different for the three phases. The 

maximum magnitude of the space vector provides the estimate of the worst case for the peak 

variables. A change in the starting time of the transient corresponds to a simple rotation of 

the space vector shape on the complex plane. 

Thus, the space vector approach has proven to be a powerful and effective tool for the 

analysis of symmetrical three-phase transients even if its use is not common in power system 

analysis. 
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