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The application of composite materials to strengthen existing structural elements is a valid alternative to traditional strengthening techniques. Fiber reinforced 
cementitious matrix (FRCM) composites have been suc-cessfully employed to strengthen existing reinforced concrete (RC) and masonry structures in bending, shear, 
torsion, and to confine axially loaded elements. Although failure of FRCM strengthened elements depends on different parameters, such as the composite and 
substrate geometrical and mechanical properties, debonding at the matrix-fiber interface is generally the failure mechanism. Therefore, the study of the bond 
behavior of FRCM composites is a key topic to develop reliable design procedures. Numerous experimental campaigns were carried out recently to study the bond 
behavior of different FRCM composites. An analytical model is employed in this paper to describe the bond behavior of FRCM-concrete joints and different trilinear 
cohesive material laws are defined based on the experimental results. The experimental and corresponding analytical load response, strain profile, slip profile, and 
shear stress profile along the bonded length are compared. An analytical formulation of the bonded length needed to fully develop the stress-transfer mechanism at 
the matrix-fiber interface, i.e. the effective bond length, is provided for the trilinear cohesive material law employed.

1. Introduction

The increasing need for strengthening and rehabilitation of existing 
structures is pushing the civil engineering community toward the re-
search of innovative strengthening materials. Fiber reinforced compo-
site materials represent a valid solution for strengthening existing 
structural elements. In the last decades, fiber reinforced polymer (FRP) 
composites gained great popularity due to their high strength-to-weight 
ratio, resistance to corrosion, and ease of installation. FRP composites 
may be effectively employed for flexural strengthening [1], shear 
strengthening [2], torsional strengthening [3], and confinement of 
elements mainly subjected to axial load [4]. However, the use of or-
ganic binders, usually epoxy resins, is responsible for some drawbacks of 
this technique, e.g. low resistance to relatively high temperature [5], 
difficulty of application onto wet substrates, and poor compatibility with 
the substrate. In order to overcome these issues, the organic resin was 
replaced by inorganic matrices to form fiber reinforced cementi-tious 
matrix (FRCM) composites. FRCM composites, which are also referred to 
as textile reinforced matrix (TRM) composites [6], are comprised of one 
or more layers of a high strength fiber net embedded

within an inorganic matrix. FRCM composites were proven to be ef-
fective in flexural strengthening [7,8], shear strengthening [9,10], 
torsional strengthening [11], and confinement of reinforced concrete 
(RC) structures [12,13]. FRCM composites were also employed for 
strengthening of masonry elements [14], where they are particularly 
attractive due to their good compatibility with the substrate [15].

Failure of FRCM-concrete joints comprising one layer of reinforcing 
fibers is generally reported to be debonding of the fiber from the em-
bedding matrix [16–18]. Therefore, the study of the bond behavior of an 
FRCM composite applied to an existing structural element is of 
fundamental importance to understand the complex mechanism that 
leads to loss of composite action. Direct-shear tests, which are widely 
employed to study the bond behavior of FRP composites [19,20], can be 
used to investigate the bond behavior of FRCM-concrete [21] and FRCM-
masonry joints [22]. Debonding of FRP-concrete and FRP-ma-sonry 
joints is usually described as a Mode-II fracture mechanics pro-cess, and 
it is modeled by means of a cohesive material law (CML) associated with 
a zero-thickness interface [23]. Cohesive material laws have been 
extensively studied in the literature to describe debonding phenomena 
in layered materials [24–27]. In FRP-concrete and FRP-

⁎ Corresponding author.
E-mail address: tommaso.dantino@polimi.it (T. D'Antino).

T

©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at: https://doi.org/10.1016/j.compstruct.2018.03.005

https://doi.org/10.1016/j.compstruct.2018.03.005
https://doi.org/10.1016/j.compstruct.2018.03.005
mailto:tommaso.dantino@polimi.it
https://doi.org/10.1016/j.compstruct.2018.03.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2018.03.005&domain=pdf


masonry joints, the Mode-II CML is fully described by the relationship 
between the interfacial shear stress τzy and the corresponding slip s [28]
(axes are depicted in Fig. 1). The CML associated with the FRP-substrate 
interface is usually comprised of an ascending branch followed by a 
softening branch that approaches τzy = 0 when debonding occurs. The 
area under the τzy-s curve is the fracture energy GF associated with the 
interface [29]. Following the same approach adopted for FRP compo-
sites, debonding of FRCM-concrete joints was modeled assuming a 
Mode-II interfacial crack propagation at the matrix-fiber interface [30]. 
The CML adopted to describe the FRCM matrix-fiber bond behavior does 
not approach τzy = 0 when debonding occurs but accounts for the 
presence of friction (interlocking) at the debonding interface, which 
entails for a residual shear stress for s greater than a certain value. This 
residual stress, which is attributed to friction between fiber filaments 
and between matrix and fibers, was assumed to be constant for direct-
shear tests of FRCM composites [18]. This assumption was confirmed by 
analytical studies of the inherent eccentricity of single-lap direct-shear 
tests and by numerical modeling of FRCM composite debonding with 
mixed-mode behavior [31,32]. The presence of friction is a pe-culiarity 
of FRCM-substrate joints that fail due to debonding at the matrix-fiber 
interface and entails for an increase of the applied load after the onset of 
debonding [33].

An analytical model is used in this paper to describe the bond be-
havior of FRCM-concrete joints that failed due to debonding at the 
matrix-fiber interface. The approach proposed is intended to provide an 
analytical solution of FRCM-concrete joints load responses up to the 
peak stress. Although an analytical post-peak behavior that respects the 
equilibrium and compatibility conditions is provided by the analytical 
model and discussed in the paper, it does not reproduce the post-peak 
behavior observed in the experimental tests. However, since FRCM 
strengthened elements do not generally show a post-peak behavior 
[7,34], the analytical model proposed can be employed to accurately 
obtain the behavior of FRCM strengthened structural members.

The analytical model is based on a trilinear CML that takes into 
account the presence of friction between fiber filaments and between 
matrix and fibers. The trilinear CML does not require complex cali-
bration procedures but is simply computed using different assumptions,

as explained in Section 5. Results of different non-linear CMLs, obtained 
using an indirect calibration method applied to FRCM-composites, can 
be found in [35].

In this paper, different trilinear CMLs are calibrated starting from the 
results obtained by single-lap direct-shear tests on poly-paraphenylene 
benzo-bisoxazole (PBO) FRCM-concrete joints, which were used to 
compute a non-linear CML employing a fracture mechanics approach. 
Experimental and analytical results obtained from the trilinear CML are 
compared in terms of load response, strain profile, slip profile, and shear 
stress profile along the bonded length. A closed-form expression of the 
effective bond length of FRCM composites, i.e. the minimum length 
needed to fully develop the stress-transfer mechanism [36], associated 
with the trilinear CML is provided and employed to obtain the 
parameters of different trilinear CMLs that provide the same effective 
bond length.

2. Experimental results

The experimental results of PBO FRCM-concrete joints tested using a 
push-pull single-lap direct-shear test set-up described in [18] are 
compared in this paper with the analytical provisions obtained by the 
model proposed in [37]. The composite strip had different bonded 
lengths ℓ and different bonded widths b1 and was applied on the surface 
of a concrete prism with 125 × 125 mm cross-section and length of 
either 375 mm or 510 mm [18]. The composite strip was comprised of 
one layer of a PBO fiber net with n longitudinal bundles spaced at 10 
mm on center and transversal bundles, all placed on one side of the net, 
spaced at 20 mm on center. Fiber bundles are assumed to have a 
rectangular cross-section with width b∗ = 5 mm and thickness t∗ = 
0.092 mm. The PBO fiber net was embedded between two 4 mm thick 
layers of a cementitious matrix specifically designed to achieve good 
adhesion with PBO fibers. The concrete prism was restrained whereas 
the fiber net, which was left bare outside the bonded area, was pulled.

Specimens were named following the notation DS_X_Y(S or D)_ZT, 
where X = bonded length (in mm), Y = bonded width (in mm), S (if 
present) indicates that strain gauges were mounted on the fiber central

Fig. 1. a) Photo of specimen DS_330_80_4 before testing. b) Sketch of the test-set-up indicating the restraints assumed.



= + +

+
−y ky

e
ε ( ) ε α

1
yy y y0 0

β (1)

where ε0, α, β, and y0 were determined using a non-linear regression
analysis, whereas k depends on the matrix-fiber interfacial friction [18].
Employing a fracture mechanics approach, differentiation and in-
tegration of the fitted strain profiles allowed for obtaining the shear
stress τzy and corresponding slip s, respectively, where s is the slip be-
tween points of the fibers and matrix in contact at the beginning of the
test, and τzy is the corresponding interfacial shear stress. It should be
noted that the global slip g coincides with s for points located at the
loaded end (y= ℓ). Combining τzy and s provided the shear stress τzy –
slip s relationship, i.e. the CML, associated with the matrix-fiber

interface. Further details on the derivation of the CML can be found in 
[18,33].

The CML obtained for each specimen equipped with strain gauges is 
reported in Fig. 2b. Although specimens DS_450_60_S_1 and 
DS_450_60_S_2 had bonded length ℓ = 450 mm and were not considered 
for comparison purposes in this paper, their CMLs were included in Fig. 
2b and Table 1 because the CML is fully defined for any bonded length 
greater than the effective bond length, which was estimated equal to 260 
mm for the PBO FRCM composite considered in this paper 
[18]. Differences observed between the CML obtained from each spe-
cimen are caused by the randomly distributed matrix-fiber bond 
properties, which are also responsible for the differences between load 
responses of specimens with the same characteristics. An average CML, 
named CML_0 in the remainder of the paper, was obtained by averaging 
values of the shear stress corresponding to the same slip value of the 
CMLs obtained from each specimen equipped with strain gauges. In this 
paper, CML_0, which is depicted with a red line in Fig. 2b, is considered 
to be representative of the average matrix-fiber bond behavior and, in 
turn, to provide an average load response representative of the ex-
perimental load responses analyzed.

The maximum value of the shear stress and the corresponding slip of 
CML_0 are τzy = τmax = 0.77 MPa and s0 = 0.18 mm, respectively, 
whereas the shear stress due to friction and the corresponding slip are 
τzy = τf = 0.06 MPa and sf = 1.57 mm, respectively. The fracture en-
ergy of the matrix-fiber interface obtained from CML_0 is:

∫= =G s dsτ ( ) 0.481 N/mmF
s

zy0

f

(2)

The load response depicted in Fig. 2a shows an approximately linear 
behavior up to point A, which corresponds to the linear ascending branch 
of the associated CML. When micro-cracking starts to occur at the matrix-
fiber interface, the P-g response becomes non-linear and the interface 
shear stress decreases. The interface shear stress continues to decrease 
until attaining the value associated with friction only, τf, at  which point 
debonding initiates and the applied load attains Pdeb (Fig. 2a). As the 
global slip g increases, the applied load P further in-creases due to the 
presence of friction between fiber filaments and between the matrix and 
fibers. The peak load value P∗ is attained after the stress transfer zone 
(STZ), which is defined as the zone in which the stress is transferred from 
the matrix to the fiber by bond only, reaches the composite free end. The 
location and extension of the STZ at P∗ depends on the shape of the CML 
and on the value of τf [32]. After P∗ is attained, the applied load decreases 
with increasing global slip until a constant applied load Pf, which is 
provided by friction only, is reached.

3. Analytical model

The analytical model presented in [37] is employed in this paper to

Table 1
Results of the experimental single-lap direct-shear tests.

Name b1 [mm] (n) P* [kN] σ* [MPa] Name b1 [mm] (n) P* [kN] σ* [MPa]

DS_330_43_2T 43(5) 5.25 2280 DS_330_60_D_4 60(7) 5.24 1630
DS_330_43_3 43(5) 5.27 2290 DS_330_60_D_5 60(7) 6.69 2080
DS_330_43_6 43(5) 5.09 2210 DS_330_60_S_2 60(7) 7.31 2270
DS_330_43_S_2T 43(5) 5.12 2230 DS_330_60_S_3 60(7) 6.55 2034
DS_330_43_S_3T 34(4) 3.03 1320 DS_330_80_1 80(9) 8.47 2050
DS_330_60_1T+ 60(7) 7.05 2190 DS_330_80_3 80(9) 8.28 2000
DS_330_60_2T 60(7) 6.56 2040 DS_330_80_D_1 80(9) 8.90 2150
DS_330_60_3T 60(7) 6.06 1880 DS_330_80_D_2 80(9) 8.68 2100
DS_330_60_4T 60(7) 6.50 2020 DS_330_80_D_4 80(9) 8.42 2030
DS_330_60_5T+ 60(7) 6.28 1950 DS_330_80_D_5 80(9) 8.58 2070
DS_330_60_D_1 60(7) 8.29 2570 DS_450_60_S_1++ 60(7) 6.63 2060
DS_330_60_D_2+ 60(7) 7.12 2210 DS_450_60_S_2++ 60(7) 6.86 2030
DS_330_60_D_3 60(7) 6.56 2040

+Not considered in the envelope curve. ++Not considered for comparison.

bundle, D (if present) indicates that the test was conducted until a 
constant load was attained, Z = specimen number, and superscript T (if 
present) indicates that the transversal bundles were placed toward the 
concrete substrate. A photo of the test set-up is shown in Fig. 1a and a 
sketch indicating the restraints assumed in this paper is provided in 
Fig. 1b [32].

Concrete and matrix cylinders were cast from the same batches used 
to cast the concrete prisms and composite strips, respectively, and were 
tested to obtain their main mechanical properties. The concrete had an 
average compressive and splitting tensile strength of 42.5 MPa and 3.4 
MPa, respectively, whereas the matrix had an average compressive and 
splitting tensile strength of 28.4 MPa and 3.5 MPa, respectively [33]. 
The tensile strength and elastic modulus of the PBO fiber were obtained 
by means of tensile tests on textile specimens with different widths. The 
tensile strength and elastic modulus obtained were 3015 MPa and 206 
GPa, respectively [30,38].

In this paper, only the results of specimens with bonded length ℓ = 
330 mm and bonded width b1 = 43 mm, 60 mm, and 80 mm were 
considered. Furthermore, specimens with ℓ = 330 mm that did not re-
port an even distribution of the applied load across the composite width 
were disregarded [33]. Specimens considered in this paper are reported 
in Table 1.

The applied load P – global slip g response of specimen 
DS_330_80_D_4, which is representative of the load responses obtained, 
is depicted in Fig. 2a. In this paper g is defined as the relative dis-
placement between the fiber and the concrete support at the loaded end. 
The global slip g was experimentally evaluated by averaging the 
displacement acquired by two LVDTs attached to the concrete support 
on the sides of the composite strip and reacting off of a thin aluminum 
Ω-shaped plate attached to the bare fiber just outside the bonded length 
[38].

Strain gauges were applied to the central fiber bundle along the 
bonded length for certain specimens (Table 1). The strain profiles εyy(y) 
obtained (axes are depicted in Fig. 1) were fitted using a non-linear 
equation:



study the load response of PBO FRCM-concrete joints using different 
matrix-fiber CMLs (the different CMLs are described in Section 5). It 
should be noted that the reference system adopted in [37] is different 
from that adopted in this paper. In fact, the reference system adopted in 
this paper is consistent with that used in the experimental work con-
sidered [18,33,38]. The analytical model assumes: i) pure Mode-II 
failure at the matrix-fiber interface; ii) rigid concrete and matrix (i.e. 
negligible deformation); iii) no width effect across the width of the 
composite; iv) linear elastic behavior of the fiber until failure. It should 
be noted that assumption (iii) is supported by experimental data [18], 
whereas assumption (ii), although proven acceptable to study the stress-
transfer mechanism of FRCM composites [37,39,40] would need further 
study [33].

In this paper, a trilinear shape of the CML is assumed. The trilinear 
CML, which is shown in Fig. 3a, is comprised of an elastic branch with 
slope k1 that ends when τzy = τmax, a softening branch with slope k2 that 
ends when s = sf, and a horizontal friction branch with τzy = τf. 
According to load responses obtained from direct-shear and pull-out 
tests of inorganic-matrix composites [37,18,39,40], a minimum of three 
branches are needed in the CML to describe the entire bond behavior. 
The CML ascending branch is associated with the load response linear 
ascending branch, whereas the CML descending (softening) branch is 
associated with the load response ascending non-linear behavior. The 
third branch, which is assumed constant in this paper, accounts for the 
matrix-fiber friction observed experimentally and is responsible for the 
applied load increase after the onset of debonding for bonded lengths 
greater than the effective bond length [33].

Enforcing the equilibrium condition of an infinitesimal segment of 
fiber, shown in Fig. 3b, yields:

= ∗y Et
d y

dy
τ ( ) 1

2
ε ( )

zy
yy

(3)

Applying the compatibility condition:

=y ds y
dy

ε ( ) ( )
yy

(4)

the following differential equation can be obtained:

− =∗
d s
dy Et

2 τ 0zy
2

2 (5)

where E is the elastic modulus of the fibers. The longitudinal stress 
applied in the fibers at the loaded end, σ, with component along the 
bonded length σyy(y) depicted in Fig. 3b, is the ratio between the ap-
plied load P and the cross-sectional area of the longitudinal fibers in the 
FRCM composite. Eq. (5) can be solved by assuming a CML and im-
posing the boundary conditions. The solution of Eq. (5) with the tri-
linear CML depicted in Fig. 3a requires certain assumptions and ap-
proximations. In particular, the trilinear CML adopted requires an 
infinite bonded length to fully develop the elastic stress-transfer me-
chanism. Therefore, a proper approximation of the stress-transfer me-
chanism should be assumed, as discussed in Section 4. Although these 
assumptions may be considered arbitrary, they were proved to lead to 
results sufficiently accurate for FRP-concrete [41] and FRCM-masonry
[37] joints.

By adopting the trilinear CML of Fig. 3a, Eqs. (3)–(5) provide the 
interfacial shear stress τzy(y), fiber strain εyy(y), and slip s(y), respec-
tively, for each point of the resulting load response. With the boundary 
conditions in Eq. (6), when 0 ≤ s ≤ s0 for points of the matrix-fiber 
interface, the load response is linear, the matrix-fiber interfacial slip is 
given by Eq. (7), and the corresponding strain and shear stress can be 
obtained by Eqs. (8) and (9), respectively:

Fig. 2. a) Load response of specimen DS_330_80_D_4. b) Shear stress τzy – slip s curves obtained from specimens equipped with strain gauges.

Fig. 3. a) Trilinear CML. b) Segment of fiber with infinitesimal length dy embedded within the matrix.
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where λ =     12 /k E(  ∗t ) . It should be noted that since the fiber bundle 
thickness is negligible with respect to its width, it was disregarded when 
computing the matrix-fiber contact interface, i.e. the matrix-fiber 
contact interface was assumed equal to 2b∗.

Eqs. (7)–(9) entail for an infinite length of the STZ associated with 
the elastic part of the CML. Defining an elastic effective bond length le,eff 

as the length over which the shear stress transferred provides 97% of the 
applied stress corresponding to the end of the elastic behavior (point A 
in Fig. 2a) of a joint with infinite bonded length [41], Eqs.(7)–(9) 
provide:

=l 2/λe eff, (10)

When the matrix-fiber interface slip attains s0, microcracking occurs 
and the load response becomes non-linear until the onset of debonding, 
which corresponds to g = sf and σ = σdeb. During this phase, points of 
the interface where 0 ≤ s ≤ s0 are associated with the linear ascending 
response of the CML [Eqs. (7)–(9)], whereas points where s0 ≤ s ≤ sf are 
associated with the descending branch of the CML. Imposing the 
boundary conditions (11), Eq. (5) provides the interfacial slip, fiber 
strain, and interfacial shear stress associated with the descending branch 
[Eqs. (12)–(14)]:
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where =ω 2 2k E/( ∗t ,) and l is the length of the matrix-fiber interface 
where s0 ≤ s ≤ sf.

When s ≥ sf the shear stress τzy is equal to τf, which implies that the 
matrix-fiber interface along which debonding has occurred is still able 
to sustain an axial stress equal to 2τfd/t∗, where d is the length of the 
debonded interface. For FRCM-concrete joints with relatively long 
bonded lengths, the presence of a horizontal friction branch in the CML 
results in an increase of the applied stress after σdeb until the peak stress 
σ∗ is attained. During this phase, for points where s ≥ sf, Eqs. (5) with 
the boundary conditions (15) yields:
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When s ≥ s0 for all points of the matrix-fiber interface, i.e. no point 
of the interface is associated with the linear ascending response of the 
CML, Eq. (5) can be solved with the boundary conditions (19), pro-
viding the solution for points where s0 ≤ s ≤ sf [Eqs. (20)–(22)]:
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In the case of FRP composites, the softening zone length, i.e. the zone 
where s0 ≤ s ≤ sf, remains constant as the STZ translates toward the free 
end [41]. For FRCM composites, the presence of friction de-termines a 
variation of the softening zone length as the STZ translates toward the 
free end, which in turns determines a non-linear decrease of the global 
slip as the applied stress reduces.

When debonding occurs along the entire bonded length, i.e. s 
(0) = sf, Eq. (5) with the boundary conditions in Eq. (23) gives Eqs.
(24)–(26):
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4. Effective bond length

The effective bond length leff of FRP composites can be defined as the 
minimum length needed to fully establish the composite-substrate 
stress-transfer mechanism [42,43]. Additionally, leff can be defined as 
the length of the active bond zone where bond stresses are transferred 
effectively [44]. Analogously, the effective bond length of FRCM 
composites can be defined as the length needed to fully establish the 
matrix-fiber stress-transfer mechanism, i.e. as the length of the active 
bond zone [18,36]. In the case of FRP composites, provided that the STZ 
is fully established, leff can be computed as the minimum distance 
between points in the direction of the fibers where the strain is zero and 
where it reaches a constant value. In the case of FRCM composites, after 
the onset of debonding the presence of friction between matrix and 
fibers and between fiber filaments results in an increase of the fiber 
strain, which never reaches a constant value. However, since the effect 
of friction should not be taken into account if a cohesive interface is 
considered [29], leff of FRCM composites should be computed, provided 
that the STZ is fully established, as the minimum distance between 
points where the strain along the direction of the fiber is zero and where 
its derivative reaches a constant value. Alternatively, provided that the 
STZ is fully established, leff of FRCM composites could be computed as 
the distance between points in the direction of the fiber where the shear 
stress is zero and where it attains a constant value. It should be noted 
that, for FRCM composites, leff can be computed for points of the load 
response between Pdeb and P∗, provided that the contribution of friction 
is clearly identified [36].
     When points of the matrix-fiber interface are associated with slips in 
the range 0 ≤ s ≤ sf, the slip at the loaded end can be obtained by



setting y = ℓ in Eq. (12):
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Analogously, setting y= ℓ in Eq. (13) and employing the fiber
constitutive relationship, the applied stress at the loaded end can be
obtained:
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Since debonding of the fibers from the matrix initiates at the loaded 
end when the interface slip attains sf, imposing s(ℓ)= sf in Eq. (27) gives:

− = ⎡
⎣⎢

− ⎤
⎦⎥

l
l

ltanh[λ(ℓ )] λ
ωsin(ω )

cos(ω )
τ

τ
f

max (29)

The debonding stress can now be computed by substituting the 
expression of tanh[λ(ℓ−l)] provided in Eq. (29) into Eq. (28):

= ⎡
⎣⎢

− ⎤
⎦⎥∗t l

lσ 2τ
ω

1
sin(ω )

τ
τ

cot(ω )deb
max f

max (30)

It can be proven that, for an infinite bonded length, the debonding 
stress is computed as [33]:

= ∗t
σ 2τ

ξ·deb
max

(31)

= ∗G Et
ξ
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F

2
2

(32)

The effective bond length leff can be obtained by solving Eq. (29):

= +
+ −
− −

l l
l l
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1
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f max

f max (33)

where l is computed by equating Eq. (30) with Eq. (31), which gives:
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(34)

where α is a parameter that defines the percentage of debonding stress 
provided by Eq. (31) and associated with leff. In other words, the ef-
fective bond length computed by Eq. (33) is the length over which the 
shear stress transferred provides an applied stress equal to α·σdeb, where 
σdeb is the applied stress associated with an infinite bonded length. It 
should be noted that α is needed because any CML for which τ(0) = 0 
and dτzy(0)/ds ≠∞  provides an infinite value of the effective bond 
length when employed to solve Eq. (5) [45,46]. Eqs. (10) and (34) 
provide an approximation of the elastic effective bond length le,eff and 
the length l of the matrix-fiber interface where s0 ≤ s ≤ sf, respectively. 
The effective bond length obtained by adding the results of Eqs. (10) and 
(34), which approximate individually le,eff and l, is  different from that 
provided by Eq. (33), which is based on the approximation of the entire 
effective bond length.

When σdeb and σ∗ are known and the contribution of friction τf is 
clearly identified, the effective bond length could be estimated also 
using Eq. (35) [33]:

= − −
∗

∗l tℓ
2τ

(σ σ )eff
f

deb
(35)

Eq. (35) does not depend on the shape of the CML but only on the 
debonding and peak stress values obtained. In fact, Eq. (35) implies that 
the peak stress is attained when the stress transfer zone reaches the free 
end. However, the shape of the CML plays an important role in the 
interface stress transfer. Thus, the results obtained with Eq. (35) should 
not be always considered accurate and reliable. The accuracy of Eq.
(35) depends, in particular, on the shear stress associated with friction

5. Results

Eight different trilinear CMLs are employed in this section to model 
the behavior of PBO FRCM-concrete joints using the analytical model 
described in Section 3. All trilinear CMLs were obtained from CML_0 
(Fig. 2b), which is assumed to provide an average load response re-
presentative of the analyzed experimental load responses (Section 2), 
considering different assumptions. Four of them, named CML_1, 2, 3, 
and 4, were determined without enforcing the value of the effective 
bond length leff, whereas the remaining four, named CML_1L, 2L, 3L, and 
4L were determined enforcing the value of leff.

It should be noted that the experimental applied stress σ = P/(nt∗b∗) 
is assumed to be parallel to the longitudinal fiber. This assumption is 
justified by the experimental results in [32], which showed that the 
applied stress out-of-plane component caused by the inherent eccen-
tricity of the single-lap direct-shear test set-up employed is negligible for 
the FRCM composites studied in this paper.

5.1. Estimation of trilinear CMLs without enforcing leff

Each trilinear CML is completely defined by enforcing four condi-
tions. The shear stress τf and the fracture energy GF of CML_1-4 were 
kept equal to those of CML_0, i.e. τf = 0.06 MPa and GF = 0.481 N/mm. 
These two conditions assure that all CMLs considered provide the same 
debonding stress and the same stress due to friction. Furthermore, 
CML_1-4 were defined by enforcing:

• CML_1: the slope k1 and maximum shear stress τmax were kept equal
to those of CML_0 to provide the same slope of the linear ascending
branch and applied stress associated with the end of the linear as-
cending branch of the load response provided by CML_0;

• CML_2: the slope k1 and slip s0 corresponding to the maximum shear 
stress were kept equal to those of CML_0 to provide the same slope 
of the linear ascending branch and same global slip associated with 
the onset of non-linear behavior of the load response provided by 
CML_0;

• CML_3: the maximum shear stress τmax and corresponding slip s0 

were kept equal to those of CML_0 to provide the same applied stress 
and corresponding global slip associated with the end of the linear 
ascending branch of the load response provided by CML_0;

• CML_4: the slope k1 and slip sf corresponding to the end of the 
softening branch were kept equal to those of CML_0 to provide the 
same slope of the linear ascending branch and global slip associated 
with the onset of debonding of the load response provided by 
CML_0.
CML_0-4 are shown in Fig. 4a, whereas parameters defining the

trilinear CMLs are summarized in Table 2 together with the corre-
sponding parameters of CML_0.

An iterative procedure was employed to obtain the applied stress σ 
= σyy(ℓ) – global slip g = s(ℓ) curves from Eqs. (7)–(26) for each CML 
considered. In Fig. 4b, the analytical σ–g curves are compared with the 
envelope of the experimental curves obtained for specimens reported in 
Table 1. Specimens DS_330_60_1T, DS_330_60_5T, and DS_330_60_D_2, 
indicated in Table 1 with a superscript + at the end of the name, were 
not considered in the envelope because the former two reported values 
of the global slip along the softening branch significantly lower than 
those of other specimens with the same geometry, whereas the latter 
reported sudden drops in the load response. It should be noted that the 
load response associated with CML_0 is not depicted in Fig. 4b because 
the analytical procedure proposed is based on a trilinear shape of the 
CML. Load responses obtained numerically that employed the CML_0

only, τf. Provided that τf is small with respect to the shear stress asso-
ciated with the matrix-fiber bond capacity, Eq. (35) can be used to 
obtain a close approximation of the effective bond length.



showed good agreement with the experimental results [31].
Although the experimental results show a wide scatter, which was 

also observed for different FRCM composites [15], the ascending branch 
of analytical and experimental curves depicted in Fig. 4b are in good 
agreement. The post-peak behavior observed in the experimental tests, 
which is characterized by increasing global slip g, is different from the 
post-peak behavior observed in the analytical curves, where snap-back 
can be observed. The snap-back observed is caused by the elastic energy 
release of the unbonded fibers that occurs when the applied load 
decreases after the peak load is attained. The same snap-back phe-
nomenon was observed in direct-shear tests on FRP-concrete joints that 
were tested by controlling the displacement at different points along the 
bonded length [47,48] and was correctly captured by analytical and 
numerical analysis on FRCM-concrete joints [31,35]. The analytical 
procedure proposed in this paper provided a post-peak behavior char-
acterized by a snap-back phenomenon, which respects the equilibrium 
and compatibility conditions. The snap-back could not be obtained 
experimentally because tests were carried out by controlling the loaded 
end displacement. This control mode prevented the global slip from 
decreasing after the peak load was attained. A similar phenomenon of 
snap-back is typically observed in notched concrete beams tested in 
three-point bending. If the point-load deflection is used to control, the 
tests would be unstable after the peak of the load because of snap-back. 
If a clip-on gauge is used to control the CMOD (crack mouth opening 
displacement), the plot of the load versus point-load deflection would 
present snap-back [29].

Since for all CMLs considered the shear stress corresponding to 
friction only is equal to that of CML_0 (τf = 0.06 MPa), the applied stress 
when the fiber debonded along the entire bonded area, σf, is the same for 
all analytical curves in Fig. 4b and can be computed as:

= ∗tσ 2τ ℓ/f f (36)

The stress corresponding to the end of the elastic branch, named the 
elastic limit stress σA, the debonding stress σdeb, and the peak stress σ∗ 

obtained for each trilinear CML considered are listed in Table 3.

Table 3 also reports values of σA and σdeb obtained for CML_0 ap-
plying the fracture mechanics approach proposed by [18,33]:

∫
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The peak stress associated with CML_0 was obtained rearranging Eq.
(35):

= + −∗
∗t

lσ σ
2τ

(ℓ )deb
f

eff (39)

As previously observed (Section 4), Eq. (39) gives only an approx-
imation of σ∗. However, comparison between results of experimental 
tests and of Eq. (39) showed that σ∗ can be estimated with sufficient 
accuracy for the FRCM composite studied in this paper [32].

As shown by Eq. (37), σA depends on the area under the ascending 
branch of the CML. Values of σA obtained for CML_1, 3, and 4 are sig-
nificantly smaller than the corresponding values of σdeb, whereas CML_2, 
which is characterized by a high value of τmax, provided a value of σA 

approximately equal to half of the corresponding σdeb (Table 3). The 
global slip g corresponding to σA and associated with CML_2 and 3 is 
equal to 0.18 mm, whereas it is equal to 0.08 mm and 0.06 mm for 
CML_1 and CML_4, respectively. By solving Eq. (5), the slope of the 
linear ascending branch of the σ-g response can be obtained:

= ∗k k
t

2
λ

tanh(λℓ)e
1

(40)

Values of ke obtained are reported in Table 3 for CML_0-4. ke cor-
responding to CML_0-2 and 4 are equal whereas ke corresponding to 
CML_3 is lower with respect to ke of the other CMLs considered. Since 
the debonding stress depends on the fracture energy GF but not on the

Fig. 4. a) Comparison between CML_1-4 and CML_0. b) Comparison between applied stress σ - global slip g curves obtained with CML_1-4 and the envelope of experimental results of
Table 1.

Table 2
Parameters defining CML_0-4.

CML k1 [N/
mm3]

k2 [N/
mm3]

τmax

[MPa]
s0 [mm] τf [MPa] sf [mm] GF [N/

mm]

CML_0 9.853 – 0.77 0.18 0.06 1.57 0.481
CML_1 9.853 0.661 0.77 0.08 0.06 1.16 0.481
CML_2 9.853 4.666 1.75 0.18 0.06 0.54 0.481
CML_3 4.369 0.722 0.77 0.18 0.06 1.17 0.481
CML_4 9.853 0.326 0.55 0.06 0.06 1.57 0.481

Table 3
Results obtained with CML_0-4.

CML σA [MPa] σdeb [MPa] ke [N/
mm3]

σ* [MPa] leff,i [mm]

Fig. 5a Eq. (33) Eq. (35)

CML_0 204+ 2076+ 6643 2167 260 – 260
CML_1 522 2076 6643 2237 220 211 207
CML_2 1177 2076 6643 2345 140 139 123
CML_3 784 2076 4423 2217 250 238 222
CML_4 373 2076 6643 2156 280 270 269

+Computed from the fracture mechanics approach proposed by [18,33].



shape of the CML [see Eq. (38)], all trilinear CMLs considered provided 
the same value of σdeb (Table 3). Provided that the fracture energy is the 
same, a higher shear stress τmax and slope k1 would correspond to a 
lower value of the global slip corresponding to the onset of debonding, 
gdeb. Therefore, for CML_2 debonding occurred at a value of gdeb lower 
than those corresponding to CML_1, 3, and 4.

The peak stress obtained with an FRCM-concrete joint depends on its 
bonded length and effective bond length. Although the fracture energy 
associated with the trilinear CMLs is the same, differences in parameters 
defining each CML determine a different effective bond length and, 
therefore, a different peak stress σ∗. Values of σ∗ obtained by CML_1-4 
are reported in Table 3. Fig. 4b and Table 3 show that, for the CMLs 
employed, the corresponding peak stress increases with de-creasing slip 
associated with the onset of debonding sf (Table 2).

Fig. 5 shows the slip s(y), strain εyy(y), and shear stress τzy(y) along 
the bonded length obtained through Eqs. (7)–(18) for CML_1-4. The 
shear stress and slip curves obtained by derivation and integration of 
CML_0 according to Eqs. (3) and (4), respectively, are included in Fig. 5 
for comparison. Fig. 5a shows results for σ = σdeb, whereas Fig. 5b shows 
results for σ = σ∗. The effective bond length determined from the strain 
profiles εyy(y) is depicted in Fig. 5a for each CML considered and it is 
indicated as leff,i, where i is the number of the corresponding CML. leff,i 
was estimated in Fig. 5a as the distance between the loaded end, where 
the derivative of the strain and the shear stress start to be con-stant, and 
the point where the strain is approximately equal to 3% of the strain 
attained at the loaded end. A similar approximation was previously 
employed for the analytical evaluation of the effective bond length of 
FRP-concrete joints, where the STZ was assumed to be associated with 
97% of the applied load of a joint with infinite bonded

length [41].
Values of leff,i indicated in Fig. 5a are reported in Table 3 for 

CML_0-4. Values of leff,i obtained are different and, therefore, the peak 
stress associated with each CML is different. Since, given a relatively 
long bonded length, the applied stress increases after the onset of 
debonding due to the presence of friction, short effective bond lengths 
determine higher peak stresses with respect to long effective bond 
lengths. The increase in the peak stress can be observed also in terms of 
strain. Since the fracture energy was not varied between different CMLs, 
the strain in the fibers at the loaded end is equal for all CMLs at the onset 
of de-bonding (Fig. 5a), whereas it increases with decreasing effective 
bond length at the peak stress (Fig. 5b). The rate of increase of the fiber 
strain after the onset of debonding, dε/dy, depends only on the value of 
τf and on the characteristics of the fibers and, therefore, it is equal for all 
CML (Fig. 5b):

=
d yε ( ) 2τyy f

dy         Et∗               (41) 

Values of the effective bond length computed with Eqs. (33) and
(34) are reported in Table 3 for CML_1-4. α = 0.97 was employed to 
estimate the effective bond length of FRP-concrete joints using a bi-
linear CML [41]. Similar values of α were used to obtain a reasonable 
estimation of leff in the case of FRP composites employing different 
formulations of the CML [44]. However, for the FRCM-concrete joints 
and trilinear CML_1-4 considered in the present study, α = 0.97 pro-
vided values of the effective bond length lower than those measured 
from the strain profile (Fig. 5a), with differences ranging between
−17% and −36%. Therefore, α was increased to 0.999 to obtain a 
better estimation of leff. Values of leff obtained with α = 0.999 (Table 3)

Fig. 5. Slip s(y), strain εyy(y), and shear stress τzy(y) along the bonded length at the debonding stress σdeb (a) and at the peak stress σ* (b).



−12% with respect to leff measured from the strain profile).

5.2. Estimation of trilinear CMLs with constant leff

Although the fracture energy was kept constant, CML_1-4 are as-
sociated with different values of the effective bond length and, as a 
consequence, lead to different peak stress values σ∗ (Fig. 4b). In order to 
keep the same effective bond length and attain a similar peak stress, Eq.
(33) can be solved numerically to obtain the relationship between λ and 
ω for a given value of leff.

Enforcing leff = 260 mm in Eq. (33) and assuming the same fracture 
energy GF = 0.481 N/mm and friction shear stress τf = 0.06 MPa of 
CML_0, the trilinear cohesive materials laws CML_1L, 2L, 3L, and 4L 
were computed. In addition to these assumptions, the same slope of the 
ascending branch k1, slip corresponding to the maximum shear stress s0, 
maximum shear stress τmax, and debonding slip sf of CML_0 were en-
forced for CML_1L-4L, respectively. These conditions were enforced to 
obtain the same slope of the linear ascending branch (CML_1L), global 
slip associated with the onset of non-linear behavior (CML_2L), applied 
stress at the end on the linear ascending branch (CML_3L), and global 
slip associated with the onset of debonding (CML_4L) of the load re-
sponse obtained with CML_0. CML_1L-4L are depicted in Fig. 6a, 
whereas parameters defining them are listed in Table 4. It should be 
noted that, since the conditions enforced to obtain CML_2 and CML_3 led 
to approximately the same parameters (Table 4), CML_2L = 3L is 
reported in Fig. 6.

The applied stress σ - global slip g curves obtained with CML_1L-4L 
are compared with the envelope of experimental results considered 
(Table 1) in Fig. 6b. The curves obtained are in good agreement with 
the experimental envelope and are very similar to each other. There-
fore, provided that GF, leff, and τf are the same, the assumption of a 
different k1, s0, τmax, or sf does not provide significant variations of the 
stress transferred at the matrix-fiber interface. Similar results were 
obtained with bi-, tri-, and quadri-linear CMLs with the same fracture 
energy and effective bond length employed to describe the stress-
transfer mechanism in FRP-masonry joints [49].

The stress corresponding to the onset of non-linear behavior of σ-g 
curves, σA, and the corresponding slope ke are reported in Table 5 for 
CML_1L-4L. ke depends on the slope k1 [see Eq. (40)], and increasing ke 

determines a decrease of σA, which in turn determines an increase of the 
extent of the non-linear branch. However, these differences caused

limited discrepancies between the σ-g curves obtained. The use of the 
same effective bond length and friction shear stress allowed for ob-
taining peak stress values very similar to that corresponding to CML_0 
(Table 3), with a maximum difference of 2.25% associated with CML_2L 
= 3L (Table 5). The effective bond length leff,iL obtained by Eqs.(33) and 
(35) is reported in Table 5 for each CML_iL. Due to the con-dition 
enforced, leff,iL obtained by Eq. (33) is equal to 260 mm for all CML_iL, 
whereas it varies when computed with Eq. (35). These differ-ences are 
due to the different shape of the CMLs employed that de-termines a 
slightly different peak stress value.

Results obtained showed that CML_1L-4L can be employed to pro-
vide good approximations of experimental load responses.

6. Conclusion

The bond behavior of FRCM-concrete joints comprised of one layer
of PBO fiber net embedded within a cementitious matrix is described in
this paper by means of an analytical model. A trilinear cohesive ma-
terial law (CML) is adopted to describe the matrix-fiber bond re-
lationship, and a closed-form expression of the effective bond length is
provided. Different assumptions were adopted to define the trilinear
CML starting from the results obtained experimentally. Analytical and
experimental results are compared in terms of load response, strain
profile, slip profile, and shear stress profile along the bonded length.
Based on the results obtained, the following conclusions can be drawn:

Fig. 6. a) Comparison between CML_1L-4L and CML_0. b) Comparison between applied stress σ - global slip g curves obtained with CML_1L-4L and the envelope of experimental results of 
Table 1.

Table 4
Parameters defining CML_1L-4L.

CML k1 [N/
mm3]

k2 [N/
mm3]

τmax

[MPa]
s0 [mm] τf [MPa] sf [mm] GF [N/

mm]

CML_1L 9.853 0.420 0.63 0.06 0.06 1.41 0.481
CML_2L 4.352 0.716 0.77 0.18 0.06 1.17 0.481
CML_3L 4.309 0.724 0.77 0.18 0.06 1.17 0.481
CML_4L 40.359 0.316 0.55 0.01 0.06 1.57 0.481

Table 5
Results obtained with CML_1L-4L.

CML σA [MPa] σdeb [MPa] ke [N/mm3] σ* [MPa] leff,iL [mm]

Eq. (33) Eq. (35)

CML_1L 421 2076 6643 2188 260 244
CML_2L 782 2076 4414 2216 260 223
CML_3L 782 2076 4393 2216 260 223
CML_4L 184 2076 13,444 2170 260 258

reported a maximum difference of −4% with respect to those measured 
from the strain profiles.

Finally, values of leff obtained with Eq. (35) are reported in Table 3 
for each trilinear CML. The results obtained are sufficiently accurate, 
with the least accurate result corresponding to CML_2 (difference of



1. The use of a trilinear CML allows for describing the load response of
PBO FRCM-concrete joints up to the peak stress with adequate ac-
curacy. The displacement control mode adopted during the experi-
mental tests did not allow for capturing the snap-back response that
is provided by the analytical solution.

2. When the experimental fracture energy and shear stress corre-
sponding to friction are enforced in the trilinear CMLs, the de-
bonding stress is accurately estimated. However, since the effective
bond length is different for each trilinear CML, the corresponding
peak stress values are different.

3. By enforcing the experimental fracture energy, shear stress corre-
sponding to friction, and effective bond length in the trilinear CMLs,
the peak stress σ∗ associated with the CML obtained experimentally
(CML_0) can be accurately estimated (maximum difference of
2.25%).

4. Provided that the fracture energy, shear stress corresponding to
friction, and effective bond length are the same, different shapes of
the trilinear CML do not lead to significant variations of the corre-
sponding load responses.

The proposed model can be employed to study FRCM strengthened
structural members, which do not generally show a post-peak behavior.
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