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Abstract

The recent widespread application of optical coherence tomography (OCT) in interventional cardiology has improved patient-
specific modeling of stented coronary arteries for the investigation of local hemodynamics. In this review, the workflow for the
creation of fluid dynamics models of stented coronary arteries from OCT images is presented. The algorithms for lumen contours
and stent strut detection from OCT as well as the reconstruction methods of stented geometries are discussed. Furthermore, the
state of the art of studies that investigate the hemodynamics of OCT-based stented coronary artery geometries is reported.
Although those studies analyzed few patient-specific cases, the application of the current reconstruction methods of stented
geometries to large populations is possible. However, the improvement of these methods and the reduction of the time needed for
the entire modeling process are crucial for a widespread clinical use of the OCT-based models and future in silico clinical trials.
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Stent - Image segmentation - Image processing - Computer
simulations - Computational fluid dynamics - In silico clinical
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Introduction

Over the last years, the use of computer modeling as a tool for
new medical device development and pre-operative planning
has become more and more important in the biomedical field.
Both the Food and Drug Administration (FDA) in the USA
and the European Commission have recently started to sup-
port this technology, which is expected to dramatically cut the
cost of bringing a new device to the market in the near future
(from US$ 2.5bn to US$ 250m by 2025) [1]. In fact, it is
believed that in silico clinical trials, defined as “the use of
individualized computer simulation in the development or
regulatory evaluation of a medicinal product, medical device,
or medical intervention” [2], could help in reducing, refining,
and partially replacing real clinical trials, resulting in a signif-
icant reduction of their associated direct and indirect costs [1].

One of the key success factors of an in silico clinical trial is
the creation of anatomically accurate and validated patient-
specific models. The recent widespread application of optical
coherence tomography (OCT) in interventional cardiology
has improved patient-specific modeling of stented coronary
arteries. OCT is an intravascular catheter-based imaging mo-
dality that uses near-infrared light and acquires cross-sectional
vessel images by interferometry [3]. The high resolution of
OCT images (axial resolution of 12 & 15 um, lateral resolution
0of 20 +£40 pum, and penetration depth in the vessel wall of 1—
2.5 mm [4]) enables the detection of both lumen contours and
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stent struts. This paves the way for the reconstruction of de-
tailed three-dimensional (3D) geometrical models of coronary
arteries that include a high fidelity stent geometry. Such ge-
ometries are suitable for analyzing the local hemodynamics in
the proximity of the stent struts using computational fluid
dynamics (CFD) simulations. In particular, the high level of
geometrical detail enables the quantification of the altered
wall shear stress (WSS) pattern caused by the stent struts.

Cumulative evidence has highlighted that the altered local
hemodynamics is an important factor modulating the patho-
physiological mechanisms that can lead to thrombosis or in-
stent restenosis [5]. Briefly, regarding thrombosis, in vitro per-
fusion experiments in stented coronary artery phantoms have
quantified the impact of blood flow and high shear rate on clot
formation [6, 7]. Regarding restenosis, in vitro experiments
have demonstrated a direct action of WSS on endothelial cell
morphology, orientation, and function [8, 9]. Ata macro-level,
animal studies have shown that tissue regrowth in stented
arteries is prominent at sites of low and/or oscillatory WSS
[9-11]. Although limited by the small number of analyzed
cases, some patient studies have found a similar relationship
between neointimal regrowth and altered WSS pattern [12].
These evidences explain the recent research interest on the
accurate quantification of patient-specific stented artery hemo-
dynamics as a means to predict stent failure induced by throm-
bosis or in-stent restenosis in the clinical setting.

The present review focuses on the OCT-based patient-spe-
cific modeling of stented coronary arteries for the analysis of
the local hemodynamics. Particular attention is dedicated to
aspects such as the validation of the reconstruction methods,
the boundary conditions of the CFD models, and the duration of

A) Data collection B) OCT image segmentation

the entire modeling process, which are important to make these
computational models appropriate for a widespread and sus-
tainable clinical application and future in silico clinical trials.

As shown in Fig. 1, the main steps for the creation of a
patient-specific stented coronary artery model from OCT im-
ages are (1) the collection of a patient’s clinical data, including
OCT and angiography (or computed tomography—CT); (2)
the detection of lumen contours and stent struts from OCT
images using automatic segmentation algorithms; (3) the 3D
reconstruction of the stented geometry by combining OCT
and angiography (or CT); and (4) the execution of the CFD
simulation. The following sections describe these steps, focus-
ing in particular on the state of the art of the segmentation
methods of OCT images (step 2) and the CFD models (steps
3 and 4). Furthermore, the limitations of the current modeling
strategy and the future perspectives are discussed.

Automatic Segmentation Methods of OCT
Images

State of the Art

Recently, many segmentation algorithms for automatic detection
of lumen contours and stent struts from OCT images have been
proposed. Table 1 reports a list as comprehensive as possible of
the studies published on this topic. While several studies pre-
sented a detection algorithm of the lumen contours [13, 15, 18,
19, 22, 26, 30, 31, 35, 36, 39, 40] or the stent struts [20, 21, 23,
24,27, 29, 32] only, in other works both detection algorithms
were developed [14, 16, 17, 25, 28, 33, 34, 37, 38, 41, 42].

D) 3D reconstruction
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Fig. 1T Workflow for the creation of patient-specific stented coronary
artery models from OCT images: A) collection of patient’s clinical data,
B) detection of lumen contours and stent struts from OCT images using
automatic segmentation algorithms, C) extraction of vessel centerline

from angiography (or computed tomography), D) 3D reconstruction of
stented geometries by combining the detected lumen contours and stent
struts with the vessel centerline, E) execution of CFD simulations
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Lumen Contour Detection

The workflow for the detection of lumen contours usually
consists of three steps: (1) pre-processing, (2) contour extrac-
tion, and (3) contour refinement. An example of the entire
workflow is shown in Fig. 2.

During the pre-processing (Fig. 2a, b), the OCT catheter
cross section is removed. Image binarization is then performed
by setting a threshold to enhance the desired information in
the image. Different thresholds have been proposed in the
literature. For instance, in several studies [14, 16, 31, 41,
42], an appropriate percentile of the image intensity histogram
was chosen as threshold; in other studies [15, 17, 22, 26, 28,
30, 33-35, 40], Otsu’s thresholding method [43] was applied.
A smoothing filter (e.g., median filter) and/or morphological
operations are finally used to further enhance and smooth the
image by removing speckle noise and filling small gaps within
the vessel wall. When raw imaging data are not available, the
images processed by the OCT system, which are often com-
pressed, can be used as an alternative. In this case, the

previous operations have to be preceded by the cropping of
the lower part of each OCT frame, which represents the lon-
gitudinal vessel view (Fig. 2a), and the removal of all pixels
belonging to OCT visualization tools (e.g., line representing
the section plane of the longitudinal section and scale).
However, wherever possible, the imaging processing should
be always performed on the raw OCT images to guarantee the
best segmentation result.

Lumen contour extraction relies on the morphology of the
pre-processed image. In general, the OCT image pixels have
different intensity levels within the vessel wall thickness, from
higher values at the inner face of the vessel wall to lower
values at the outer vessel wall layers. In the majority of pro-
posed algorithms [19, 22, 25, 26, 28, 31, 33-35, 37-42], the
image is converted into polar coordinates to facilitate the de-
scription of local image regions in terms of their radial and
tangential characteristics (Fig. 2¢) [44]. The strategies pro-
posed for the lumen detection are various. One strategy
consisted of analyzing each A-scan (i.e., one-dimensional
depth profile, Fig. 2¢) by moving from the OCT catheter to

Fig. 2 Example of lumen detection algorithm. a Original grayscale OCT
image. b Pre-processed image without OCT catheter. ¢ Pre-processed
image in polar coordinates. The red line highlights an example of A-scan.
d Raw lumen contour detection (blue). e Lumen contour (blue) detected
after gap closing and smoothing. f Lumen contour (blue) after conversion
to Cartesian coordinates. The polar coordinate system (; ¢) or the

@ Springer

Cartesian coordinate system (; j) is indicated on the top left of each
image. The example refers to a post-operative OCT image of a patient
treated at the Institute of Cardiology, Catholic University of the Sacred
Heart (Rome, Italy), with a Xience Prime stent (Abbott Vascular, USA).
The image was processed using the algorithm described in [41, 42]
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the vessel wall (i.e., from top to bottom of the image) to search
for the pixel with the maximum intensity and by selecting the
pixel previous to that with maximum intensity for the defini-
tion of the lumen contour [25]. A similar intensity-based ap-
proach was followed by other studies [15, 22, 28, 34, 35, 40].
Wang et al. [19, 32] solved an optimization problem by
looking for the contour that maximizes the intensity difference
between the sum of gray values outside and inside the lumen.
Dubuisson et al. [33] used Dijkstra’s algorithm [45], based on
the graph theory, to find the lumen contour as the shortest path
from the left to the right of the polar image. Nam et al. [37]
extracted the lumen contour by detecting and modifying a
temporary lumen contour, which was obtained by connecting
inward points at 20% of the A-scans’ maximum intensity.
O’Brien et al. [38] first classified the A-scans of each OCT
frame as belonging to a lumen using features extracted from
the “scale-space signature” of the A-scan signal. This signa-
ture was generated by convolving the A-scan signal with a
specific mother wavelet. Then, similarly to the Canny edge
detector [46], the location of the lumen contour within each A-
scan was detected by convolving the A-scan signal with the
normalized first derivative of the Gaussian wavelet. Cao et al.
[39] implemented a level-set-based method, which iteratively
adapts an initial segmentation to the real lumen contour in
polar coordinates. Chiastra et al. [41] and Migliori et al. [42]
proposed a gradient-based approach that applies a Sobel edge
detection filter [47] to the pre-processed image and accepts the
first non-zero pixel in each A-scan as a valid point for lumen
contour (Fig. 2d). Differently from the previously reported
studies, which process the image in the polar domain, other
algorithms exclusively work in the Cartesian domain. In par-
ticular, a number of studies [14, 16, 17] proposed an active
contour-based method in which a Catmull-Rom spline was
initialized inside the lumen and propagated towards the lumen
contour until it reached the desired boundary; other studies
[18, 36] used a graph-cut-based segmentation method to ex-
tract the lumen contour; Sihan et al. [13] applied the Canny
edge detector [41] to find edges and then a heuristic method to
exclude some of them and link others into the lumen contour.

During the last step of the detection algorithm, the seg-
mented lumen contour is interpolated and smoothed to gener-
ate a continuous contour (Fig. 2e). In particular, the gap
caused by the OCT catheter shadow is filled. Finally, as
regards those algorithms that perform contour extraction in
the polar domain [19, 22, 25, 26, 28, 31, 33-35, 37-42], the
image is converted back to Cartesian coordinates to obtain the
final closed lumen contour (Fig. 2f).

Stent Strut Detection

The workflow for stent strut detection usually comprises three
steps: (1) pre-processing, (2) detection of stent strut

candidates, and (3) removal of false positives. An example
of this workflow is shown in Fig. 3a—f.

As with the lumen segmentation algorithms, pre-
processing is necessary to reduce the image noise and prepare
the image for the subsequent steps. Comparable procedures to
those described in the previous section are usually employed
during this step.

Until now, a number of different strategies have been pro-
posed for the detection of stent strut candidates and the remov-
al of false positives. Since metallic struts appear in OCT im-
ages as high-reflecting spots (i.e., high-intensity region)
followed by a trailing shadow behind them (i.e., low-
intensity region) (Fig. 3a), the majority of the algorithms
search for these features to detect the stent struts. For instance,
Gurmeric et al. [14] and Unal et al. [16] analyzed the angular
intensity distribution in Cartesian coordinates to localize the
shadows and detect the struts on the shadow rays as the max-
imum bright intensity pixel group and the most negative deep
gradient vectors following such a group. Bruining et al. [21]
defined a basic set of features (i.e., mean, maximum, sum of
intensity values above the mean) for each A-scan and detected
the stent struts by solving a feature-based classification prob-
lem with a K-nearest-neighbor method. Lu et al. [23] used a
machine learning, classification approach. A classifier was
trained with specific features of the images, such as intensity
statistics of the strut and trailing shadow regions, to identify
candidate pixels of stent struts. Tung et al. [24] first detected
the trailing shadows in polar coordinates by computing the
cumulative intensity histogram of each A-scan and then ap-
plied probability map and morphological operations to seg-
ment the stent struts. Ughi et al. [25] identified the A-scans
containing a strut candidate based on the presence of high
peak intensity, a very fast rise and fall of energy, a significant
drop in intensity, and the shadow length. Chiastra et al. [41]
and Migliori et al. [42] computed the slope of the line
connecting each high-intensity peak (e.g., above the 90th per-
centile of the intensity histogram of the frame) and the follow-
ing 30th pixel with low intensity (e.g., below the median of the
intensity histogram of the frame), as previously proposed [27].
Since strut pixels usually have a steeper slope than tissue
pixels, pixels that are associated with a high slope were clas-
sified as strut candidates (Fig. 3g—h). Finally, a probability
function that penalizes detection of structures far from the
lumen contour was applied to remove the false positives.

While in the previous algorithms the stent strut detection
was based only on the intensity profiles of the OCT frames,
other studies applied also image filters, such as the gradient or
the Laplacian filter. In particular, Kauffmann et al. [17] detect-
ed the shadow zones by analyzing the gradient component of
the image in polar coordinates and localized the strut position
by seeking a rapid decrease in gray intensity beyond the strut.
Han et al. [28, 34] applied the Laplacian filter to the image in
polar coordinates to extract edges and corners and then

@ Springer
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Intensity value

Fig. 3 Example of stent strut detection algorithm (a—f): a Original
grayscale OCT image. b Pre-processed image without OCT catheter. ¢
Pre-processed image in polar coordinates. d Detected struts (red) after raw
detection. e Detected struts (red) after removal of false positives. f
Detected struts (red) after conversion to Cartesian coordinates. Example
of strut detection (g, h): g Two A-scans are analyzed. A-scan 1 includes a
stent strut while A-scan 2 is only the vessel wall. h Corresponding inten-
sity profiles of A-scans 1 and 2. The strut is detected because of the higher
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the Cartesian coordinate system (7; j) is indicated on the top left of the
images. The example refers to a post-operative OCT frame of a patient
treated at the Institute of Cardiology, Catholic University of the Sacred
Heart (Rome, Italy), with a Xience Prime stent (Abbott Vascular, USA).
The image was processed using the algorithm described in [41, 42]
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identified stent struts by selecting only the pixels with an
intensity value greater than a specified threshold. Dubuisson
et al. [33] detected the shadows as regions with low intensity
close to the lumen contour and the strut positions by combin-
ing information of the intensity profile and its gradient with
the positions of the shadow zone. Nam et al. [37] built a stent
candidate set based on the detection of local maxima along the
A-scans and then performed a feature selection process to
select the subset of features that generates the best results.
During this process, geometrical features (e.g., slope, strut
length, mean and variance of the shadow region) and statisti-
cal features of the intensity image (e.g., maximum, median,
mean intensity) and the second gradient image (e.g., maxi-
mum, median, mean amplitude) were taken into account.
Alternative approaches for stent strut detection follow. Xu
et al. [20] applied a steerable ridge filter for identifying the
struts, which appear like ridge structures in follow-up OCT
images with severe in-stent restenosis. Wang et al. [32] pro-
posed an algorithm characterized by the following phases: (1)
the probability of stent strut appearance in each A-scan was
computed using a Bayesian network; (2) the strut position
within the A-scan was reinforced using stent mesh information
from adjacent frames; (3) the exact strut depth positions were
simultaneously located in the OCT pullback using a graph cut
algorithm. O’Brien et al. [38] relied on a method previously
developed for OCT images of stented femoral arteries [48],
which detects the stent struts by introducing each strut wavelet
response into a feature extraction and classification scheme.
All previously reported algorithms work with metallic stent
struts only and cannot detect polymeric struts, which are char-
acterized by the absence of trailing shadows in the OCT im-
ages (Fig. 4) [49]. Currently, only one study has proposed a
detection algorithm for polymeric stent struts, specific for the
Absorb BVS (Abbott Vascular, USA) [29]. This algorithm
detects the black core of the Absorb BVS struts by analyzing
the intensity profile and the gradient profile of each A-scan.

General Observations

The strategies proposed for the detection of lumen contours
and stent struts are numerous and various. Many metrics and
indexes have been used to assure the reliability of the detec-
tion algorithms. However, a direct comparison between the
results obtained by the different methods is difficult because
a standard validation procedure as well as a common valida-
tion dataset were not used [50]. Indeed, the standardization of
the validation procedure would enable an easier comparison
of the algorithms’ performance between different research
groups and the selection of the optimal detection methods.

With a few exceptions (Table 1), the detection algorithms
were validated against manual segmentation performed by
independent expert image readers, which was accepted as
ground truth. Different metrics and indexes were analyzed
by using standard statistical analysis methodologies. In partic-
ular, to evaluate the lumen contour detection algorithms, the
similarity indexes (i.e., sensitivity, specificity, Jaccard index,
Dice index) and other metrics were calculated, such as the
lumen area and the distance between the lumen contours ob-
tained with the automatic and manual segmentations. To as-
sess the reliability of the strut detection algorithms, the simi-
larity indexes, the distance between each automatically seg-
mented strut and the closest manually detected, and the length
of apposition (i.e., radial distance between a strut and the
lumen border) were computed. Only in one study, the valida-
tion of the strut detection algorithm was performed against
both manual segmentation and micro-computed tomography
(micro-CT) 3D reconstructions [41]. More in detail, a coro-
nary stent was deployed in two silicon bifurcation phantoms
by an interventional cardiologist (Fig. 5a). The phantoms were
scanned with both OCT and micro-CT. Finally, the stent point
clouds obtained by applying the stent strut detection algorithm
were compared in 3D against the centerline points of the same
stent reconstructed from micro-CT (Fig. 5b).

Fig. 4 Differences between strut appearance of metallic and polymeric
stents in OCT images: a post-operative OCT image of a patient treated at
the Institute of Cardiology, Catholic University of the Sacred Heart
(Rome, Italy), with a Magmaris stent (Biotronik, Germany)

(bioresorbable metallic stent). b Post-operative OCT image of a patient
treated with an Absorb BVS (Abbott Vascular, USA) (bioresorbable poly-
meric stent). OPTIS™ Stent Optimization Software (St. Jude Medical,
USA). Image provided courtesy of St. Jude Medical, Inc.

@ Springer
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Fig. 5 Validation of the stent strut detection algorithm using micro-
computed tomography (micro-CT) [41]. a Details of Resolute Integrity
(Medtronic, USA) (top) and Xience Prime (Abbott Vascular, USA)
(bottom) stents deployed in 40° coronary bifurcation phantoms. b

Until now, all proposed stent strut detection algorithms were
developed for metallic stents. As highlighted in Table 1, the
only exception is the algorithm by Wang et al. [29] for the
detection of the Absorb BVS polymeric struts. Although the
implant of this bioresorbable scaffold is currently not recom-
mended because of recent clinical findings of high thrombosis
risk [51], the need of detection algorithms for polymeric stents
will probably become more important as a result of the exten-
sive development of this technology [52].

The calculation time needed to process OCT images is not
a problem for the entire workflow of 3D reconstruction of
stented coronary artery models. The calculation time needed
to segment each OCT frame ranges between 0.1 s and a few
seconds depending on the programming language used for the
codes (Table 1). The majority of the algorithms have been
developed using Matlab (Mathworks, USA). The conversion
of the codes to lower-level languages (e.g., C++) and the use

@ Springer

Superimposition of the stent point clouds obtained using the automatic
detection algorithm and micro-CT for the Resolute Integrity (left) and
Xience Prime (right) cases. Adapted with permission from [41]

of graphics processing units for the calculation can dramati-
cally reduce the calculation time [34], thus allowing for real-
time segmentation of entire OCT pullbacks.

Table 1 also highlights that all the published detection al-
gorithms have been applied to OCT datasets acquired with the
LightLab Imaging/St. Jude Medical (USA) OCT imaging sys-
tem. It is not clear whether those algorithms can process OCT
pullbacks obtained with other OCT imaging systems, such as
the one of Terumo Corp. (Japan), with the same accuracy.

Finally, it is worth mentioning that most of the commercial
OCT systems’ software currently includes semi-automated
segmentation algorithms for the detection of lumen contours
and stent struts. However, this software has been developed
for clinical purposes only. The export of the segmented data
(i.e., point clouds of the segmented lumen contours and stent
struts), which is necessary for the subsequent 3D reconstruc-
tion of the stented vessel, is usually not allowed or restricted to
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specific clinical centers by the OCT system manufacturer. As
opposed to the detection algorithms of the commercial OCT
systems, the methods listed in Table 1 are usually more flex-
ible as all the algorithm parameters can be adjusted by the user
and the segmentation results can be exported for executing the
subsequent steps of the 3D reconstruction process.

OCT-Based Coronary Artery Models for Fluid
Dynamics Analyses

State of the Art of 3D Geometrical Reconstructions

Since OCT only generates cross-sectional vessel images or-
thogonal to the OCT catheter, the 3D reconstruction of coro-
nary artery models requires the fusion of OCT data with an-
other imaging technique (i.e., angiography or CT) that allows
the extraction of the vessel centerline or the OCT guide-wire
pathway (Fig. 1). The different approaches proposed in the
literature to reconstruct stented coronary artery models for
CFD analyses are described hereinafter.

Two studies [53, 54] combined OCT and CT to create the
3D vessel lumen model. In particular, in Ellwein et al. [53], a
preliminary 3D vessel reconstruction from post-operative CT
was used to estimate the guide-wire pathway by applying a
shortest path algorithm to a graph representation of the artery
and assuming that the guide-wire adopts the straightest con-
figuration inside a tortuous artery. Lumen contours extracted
from post-operative OCT were then positioned orthogonal to
the guide-wire pathway and smoothly connected to obtain the
final lumen model. The stent was drawn inside the artery by
following a methodology that creates an idealized model of a
thick stent matching the vessel geometry and generates the
fluid domain by subtracting the stent from the vessel lumen
solid model. Chiastra et al. [54] adopted the previously de-
scribed method to reconstruct the pre-operative vessel lumen
model and then performed finite element analyses of stent
deployment to obtain the post-operative stented geometry.

In several works [55-63], the stented vessel geometry was
generated directly from OCT without the need of virtual stent
implantation. The following method was used: (1) lumen con-
tours accounting for the stent strut presence were manually
delineated in each OCT frame; (2) the centroid of each stented
lumen contour was calculated and used to place the OCT
frames orthogonal to vessel centerline extracted from two an-
giographic projections; the side branches were chosen as land-
marks for estimation of the relative axial twist of OCT frames
to properly orient each contour; (3) the contours were connect-
ed by creating a non-uniform rational B-spline surface
representing the stented artery. Although the resultant stent
geometries were corrugated and hardly continuous, this pro-
cedure allowed the reproduction of the real, overall stent shape
within the artery, unlike the previous two studies [53, 54].

Further works proposed advanced methods for patient-
specific 3D stent reconstruction. Gogas and colleagues [64,
65] developed a method for the reconstruction of the Absorb
BVS based on an interactive scaffold pattern interpretation al-
gorithm and the fusion of OCT and angiographic data. More in
detail, an operator classified the strut points detected from OCT
as belonging to the rings and the links of the bioresorbable
scaffold using an in-house Matlab application for pattern inter-
pretation. Subsequently, the strut points of each ring/link were
positioned along the vessel centerline extracted from angiogra-
phy and interpolated using cubic splines in order to obtain a
continuous 3D scaffold skeleton. Finally, a series of rectangles
representing the scaffold cross sections were automatically
placed along each skeleton line and connected to create the final
scaffold model. Differently, O’Brien et al. [38] and Migliori
et al. [42] used prior stent design knowledge to create the
patient-specific stent model. For instance, in Migliori et al.
[42], the deployed stent geometry was reconstructed starting
from the OCT strut point cloud using the following morphing
procedure (Fig. 6): (1) the stent skeleton in its straight free-
expanded configuration was created; (2) the skeleton lines were
morphed on points that belong to the stent point cloud so that
their distance was minimized; (3) the morphed skeleton was
used to generate the 3D patient-specific stent geometry by
connecting cross-section curves placed along the skeleton lines.

State of the Art of CFD Simulations

Table 2 summarizes the recent studies on fluid dynamics of
stented coronary artery models reconstructed from OCT, in-
cluding information on the simulation settings (i.e., blood de-
scription and boundary conditions) and the main findings.
While some of them are proof-of-concept studies that demon-
strate the feasibility of using these models to perform CFD
simulations [64, 65] or present a novel modeling strategy in
detail [38, 42, 53, 66], others [55-57] investigated the rela-
tionships between WSS and neointimal hyperplasia in patients
treated with Absorb BVS. Although the number of investigat-
ed patients was small, an inverse correlation between the log-
arithmic transformed WSS and the neointimal thickness at 6-
months follow-up was found, showing that low WSS seems to
be one of the factors promoting in-stent restenosis in patients
treated with Absorb BVS. Serruys’ group also investigated the
local hemodynamic microenvironment in porcine coronary
segments with Absorb BVS [58], the hemodynamic changes
between baseline and a 5-year follow-up in a patient treated
with the Absorb BVS [62], and the impact of underexpanded
and overexpanded bioresorbable scaffolds on hemodynamics
in the long term [63]. Furthermore, they used CFD simula-
tions as a preclinical assessment tool by comparing different
bioresorbable scaffolds implanted in porcine coronary arter-
ies, such as the Absorb BVS, the AterioSorb (Arterious, UK),
and the Mirage BMRS (Manli Cardiology Ltd., Singapore),
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OCT stent point cloud

Straight stent centerline
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geometry

Fig. 6 Example of morphing procedure for the creation of a patient-
specific stent model from OCT data. a The stent skeleton in straight
expanded configuration (i.e., the straight stent centerline) is morphed on
the OCT stent point cloud to generate the deployed configuration of the
stent centerline (i.e., morphed stent centerline) and subsequently the 3D
stent geometry. b Morphing of the centerline by using handles to

from the fluid dynamics viewpoint [S9—61]. Finally, Chiastra
et al. [48] developed an OCT-based sequential modeling strat-
egy (i.e., structural simulations of stent deployment followed
by CFD analyses) that can be applied as a virtual bench testing
tool to compare different stent designs, deployment locations,
and stenting techniques in patient-specific anatomies. In par-
ticular, the biomechanical effects (e.g., malapposition rate and
stented lumen areas exposed to low WSS) of different stent
designs and stent deployment locations were analyzed in two
patient-specific coronary bifurcations.

General Observations

Among the different strategies proposed for the 3D recon-
struction of stented coronary artery models, that based on prior
stent design knowledge [38, 42] seems to be the most prom-
ising. This procedure allows the creation of stent geometries
with higher accuracy as compared to the 3D reconstruction
method applied in [55-63]. In particular, the strategy based on
prior stent design knowledge is able to generate continuous
stent geometries and to reproduce the exact stent strut cross-
sectional shape. These stent geometry characteristics, which
cannot be obtained with other 3D reconstruction methods
[55-63], are crucial for getting reliable hemodynamic results
in the microenvironment of the stent struts. Indeed, the WSS

@ Springer

minimize its distance with the OCT stent point cloud. The example refers
to a post-operative OCT dataset of a patient treated at the Institute of
Cardiology, Catholic University of the Sacred Heart (Rome, Italy), with
a Xience Prime stent (Abbott Vascular, USA). The morphing procedure is
based on the method described in [42]

calculation is highly dependent on the local geometry as the
WSS is defined as the tangential force per unit area generated
by blood flow along the vessel lumen. Small geometrical dif-
ferences at the stent strut level can lead to important differ-
ences on the local WSS distribution. Furthermore, this stent
reconstruction method is not limited to the Absorb BVS as in
[64, 65] but can be applied to all types of coronary stents
regardless of the stent design and strut cross-sectional shape
(i.e., rectangular or circular).

Only Migliori et al. [42] validated their reconstruction
method. In their work, a 3D-printed coronary artery phantom
with a deployed stent was imaged with both OCT and micro-
CT. The stented geometry reconstructed from OCT was com-
pared against that obtained from micro-CT, chosen as ground
truth. An agreement between the two geometries was found.
The results highlighted the importance of using side branches
as landmarks for the correct orientation of the stent struts and
lumen point clouds along the vessel centerline. The more the
landmarks, the less the twist angle error between stent and
lumen contours. Additionally, the side branches can be used
to define the correct axial position of the contours along the
vessel centerline. The recent introduction into the market of
OCT imaging systems able to co-register the OCT pullback to
angiography [50] will be decisive to improve the contours’
axial positioning.
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Boundary conditions Notes

Blood description

(analysis type)

Software

reconstruction

Follow-up 3D model

Number of cases
(stent type)

Table 2 (continued)
First author, year

[reference]

@ Springer

Lumen exposure to low WSS

ND

ND (pulsatile) Non-Newtonian fluid

2 angio + OCT

Month 60

1 patient (Absorb BVS)

Thondapu et al.,

decreases after 5 years post-

implantation
WSS is different in the case of

(model ND), p ND

2017 [62]

Inlet: flat velocity profile

ANSYS Fluent Newtonian fluid

2 angio + OCT

Month 60

2 patients (Absorb BVS)

Torii et al., 2017 [63]

underexpanded or overexpanded

stent
Validated method to reconstruct

(FCM)
Outlet: 0 Pa

=0.0035 Pa-s),
1050 kg/m®
Non-Newtonian

(u
p

(steady state)

Inlet: flat velocity profile

2 angio + OCT + ANSYS Fluent

No

1 coronary artery

Migliori et al.,

high-fidelity stented geometries

(Omean =45.15 ml/min)
Outlet: 0 Pa for CFD analyses

1060 kg/m*

fluid (Carreau model),

p

(pulsatile)

stent morphing

phantom (BMS)

2017 [42]

BMS bare metal stent, DES drug-eluting stent, Absorb BVS Absorb bioresorbable vascular scaffold (Abbott Vascular), Mirage BMRS Mirage bioresorbable micro-fiber scaffold (Manli Cardiology Ltd.,

Singapore), ArterioSorb bioresorbable scaffold (Arterius), angio angiography, FCM frame count method, Oy, inlet flow rate, N/H neointimal hyperplasia, /VUS intravascular ultrasound, ND not declared

To exclude the influence of the heart motion on the valida-
tion process, Migliori et al. [42] fabricated a rigid coronary
artery phantom. However, heart motion artifacts can affect
in vivo OCT pullbacks, resulting in 3D reconstructions with
vessel segments longer or shorter than the real ones (i.e., elon-
gated or compressed segments). This issue has not been faced
so far.

As regards the CFD simulations, the definition of patient-
specific boundary conditions is a critical aspect. In vivo mea-
surement of pressure and velocity at different locations of the
coronary tree is feasible by using dual-sensor pressure and
Doppler velocity wires. Nevertheless, this procedure is barely
performed in the clinical routine because it is highly invasive.
Alternatively, the inlet boundary condition can be defined by
means of the frame count method [55-58, 60]. This technique
consists of estimating the inlet flow rate by counting in the
angiographic projections the number of frames required for
the contrast agent to pass from the inlet to the outlet of a
coronary segment free of side branches. The main limitation
of the method is the low frequency of the angiographic acqui-
sitions (e.g., 15 frame/s), which results in a low number of
frames usable for the flow-rate estimation. In the absence of
in vivo measurements, the following strategies can be adopted
to define the outlet boundary conditions [67]: (1) traction-free
(i.e., zero pressure) boundary condition when side branches are
not present; (2) scaling law, which allows computing the flow
split between the different branches; (3) coupling of the 3D
domain with a lumped-parameter model (i.e., 0D model)
representing the downstream vasculature. By applying the zero
pressure outlet boundary condition, the WSS results along the
lumen can substantially deviate from the true values because
the flow division between the vessel branches and the resultant
velocity field depend only on the intrinsic resistances from the
main vessel geometry and its branches. Conversely, the other
two strategies can lead to a more correct estimation of WSS
patterns as a more realistic flow division is prescribed at the
outlets of the coronary artery model. Several scaling laws (e.g.,
Murray’s law, HK model, etc.) have been proposed until now
[68]. While Murray’s law (Qp, /Op, = (D>/Dy) *, where O,
and O, are the flow rates and D, and D, the diameters of the
bifurcation branches) is based on the principle of minimum
energy, the HK model [69] (O, /Op, = (D2/Dy )7/3 ) is based
on the assumption of a fractal-like branching pattern in a tree
structure. Another common scaling law is that proposed by van
der Giessen etal. [70] (Qp,/Op, = (D2/Dy) **"), which was
derived from the fitting of blood flow measurements in human
coronary arteries. A recent study demonstrated in ten coronary
bifurcations that the normalized WSS pattern was well cap-
tured when van der Giessen’s scaling law was applied as com-
pared to an outflow boundary condition based on myocardial
flow measurement derived from computed tomography perfu-
sion imaging [71]. The use of 3D-0D coupled models allows
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investigating the entire circulation (closed-loop 3D-0D model),
including the heart and coronary circulation (e.g. [72, 73]), or
the coronary artery segment of interest with its downstream
vasculature (open-loop 3D-0D model) (e.g. [54, 74, 75]). The
recent software advancements and continued increase of com-
putation power have made possible a wider use of these
models. However, the estimation of the lumped parameters
(i.e., resistances, compliances, and inductances) remains the
main issue when in vivo measurements are not available [76].

In all the CFD simulations of Table 2, the lumen and stent
surfaces were considered as rigid walls and the coronary artery
motion caused by the heart contraction was neglected.
Chiastra et al. [77] demonstrated that the rigid-wall assump-
tion is acceptable for the stented segment by comparing an
idealized fluid-structure interaction stented model against the
corresponding rigid-wall one. Conversely, the impact of the
heart contraction on the hemodynamics is still under debate
[67] and it is unclear whether a fixed model is reliable enough
for the calculation of time-averaged WSS.

The time required for 3D reconstruction and subsequent
CFD simulation is an important issue, which currently limit
the use of OCT-based fluid dynamics models in large popula-
tion studies. In particular, the 3D reconstruction methods are
highly time demanding. For instance, the method by Migliori
et al. [34] requires more than one day for each reconstruction.
This time might be dramatically reduced by automating the
stent morphing procedure, which is the most time-consuming
step. The simulation time is a less critical point because CFD
simulations can be efficiently performed on supercomputers.
Indeed, commercial software such as Fluent or CFX (ANSYS
Inc., USA) are highly scalable and allow transient analyses in
few hours on hundred computing cores.

Conclusions and Future Perspectives

This review analyzed the workflow for the creation of CFD
models of stented coronary arteries starting from patient-
specific OCT images. The available algorithms for lumen con-
tour and stent strut detection from OCT as well as the 3D
reconstruction methods of stented geometries were discussed.
Furthermore, the current CFD studies that investigate the local
hemodynamics of OCT-based stented coronary artery geome-
tries were reported.

The current methodologies have been applied to few ani-
mal or human coronary artery cases as tools for better
understating in-stent restenosis and its relationship with ab-
normal hemodynamics, and comparing different stent designs,
stent positions, or stenting techniques from the fluid dynamic
viewpoint. The application of these methodologies to large
population studies is possible. However, efforts of the scien-
tific community are still requested to improve some steps of
the 3D reconstruction, in particular the stent reconstruction,

which is mainly manual and time-consuming. Moreover, the
definition of standards for the validation of the detection algo-
rithms and the reconstruction methods will be crucial for a
widespread clinical use of the OCT-based models for possible
future in silico clinical trials.
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