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Abstract

We propose a three-phase matheuristic, combining an exact method with a Variable
Neighborhood Search local Branching (VNSB) to route a fleet of Electric Vehicles
(EVs). EVs are allowed stopping at the recharging stations along their routes to
(also partially) recharge their batteries. We hierarchically minimize the number of
EVs used and the total time spent by the EVs, i.e., travel times, charging times
and waiting times (due to the customer time windows). The first two phases are
based on Mixed Integer Linear Programs to generate feasible solutions, used in a
VNSB algorithm. Numerical results on benchmark instances show that the proposed
approach finds good quality solutions in reasonable amount of time.
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1 Introduction and literature review

One objective of the European Union is to decrease the harmful emissions
of about 95%, by 2050. To this end, the Electric Vehicles (EVs) have a key
role since they do not produce local greenhouse emissions. However, a poor
driving range, a scarce presence of Recharging Stations (RSs) in the territory
and high acquisition costs limit their diffusion. Therefore, optimizing their
routes becomes crucial to efficiently manage those factors.

Our aim is to efficiently route a fleet of EVs, based at a single depot, to serve
a set of customers. Each route has to start/end from/to the depot, respecting:
the customer Time Windows (TW), the limited battery capacity and the load
capacity. Two hierarchical objectives to minimize are considered. The first
one is the number of EVs used (µ), while the second one is the Total Time
(TT) spent by the EVs, i.e., travel times, charging times and waiting times
(due to the customer TWs). A time optimization is significant in distribution
networks operating in urban contexts and/or for in the last mile Logistics
and it has been already considered in the VRPTW [8]. Therefore, in this
paper, a time-effective Electric Vehicle Routing Problem with Time Windows
is addressed, making possible also Partial Recharges (PRs) at the RSs: we
refer to this problem as the E-VRPTW-PR.

The E-VRPTW, with only full recharges, is introduced in [9] where it is
addressed by both Mixed Integer Linear Programming (MILP) and a hybrid
meta-heuristic. Also in this work, two hierarchical objectives are minimized:
µ and then, the total travel distance. In [1], the E-VRPTW-PR is intro-
duced and modeled from a time effective perspective, making the battery
level, reached at each RS, a decision variable. For it, a Variable Neighborhood
Search Branching (VNSB) is designed. Variables and constraints of the MILP
model are decreased, expressing the TT as sum of the differences between the
ending and the starting time of each EV [2], cloning the depot into two sets.
The advantages of the PRs and of using different recharge technologies are
investigated in [4].

Our main contributions are: a Three-Phase Matheuristic (TPM) for the
E-VRPTW-PR; a novel initialization procedure; a methodology competitive
with the ones of the literature on small size benchmark instances and strongly
outperforming them on medium size ones.



2 Problem Description

The E-VRPTW-PR is modeled on a directed graph G = (V,A) where V
contains the set of customers N , the set of RSs F and the set of depots D0

and D0′ , used at the beginning and at the end of each route, respectively. The
set F contains the clones of the RSs for allowing passing through them more
than once. The depot (0) is cloned into D0 and D0′ for distinguishing the
starting and the ending time of each route. For simplicity, V ′ = V \D0′ and
V ′′ = V \ D0 are used. The set A contains the arcs between all the pairs of
nodes except the ones between two depots or the same clones of a RS. For each
of them, the kilometer distance dij and the travel time tij are known while, for
each i ∈ N , the pick-up demand qi ≥ 0, the time window [ei, li] and the service
time si ≥ 0 are given. The interval [e0, l0] specifies the earliest departure time
from 0 and the latest arrival time to 0 such that: ∀i ∈ D0, [e0,+∞], while
∀i ∈ D0′ , [0, l0]. The load capacity C and the battery capacity Q are known
for each EV as well as the battery consumption r and the recharging rate g.
Each EV: starts from a node in D0, ends to a node in D0′ and respects both
the cargo and battery capacity. Intermediate stops at RSs for a (eventually
partial) recharges are allowed. The recharging time ρ is linearly proportional
by g to the recharged level (as assumed in [9]). The goal is to minimize firstly
µ and then, TT, conveniently expressed as sum of the differences between the
arrival time to 0 and the departure time from 0 of each route. The constraints
are not exceeding the load capacity and that the routes have to take into
account the remaining battery level.

3 A Three-Phases Matheuristic

This section describes a matheuristic consisting of three phases, sequentially
applied, for solving the E-VRPTW-PR:

• Phase 1: A feasible solution S1, consisting of a set of routes, is found
by solving the MILP model of the Green Capacitated VRPTW (G-CVRP-
TW) that extends the one of [3], for the GVRP, including TWs and capacity
constraints. TT is minimized. Unlike the E-VRPTW-PR, µ is limited to M
by adding a constraint as well as TT that cannot exceed a maximum route
duration (l0). The advantage of solving a G-CVRP-TW is that, minimizing
TT, we do not need to explicitly express the starting and the arrival times
from/to the depot. The constraint on the route duration is satisfied by
calculating only the arrival times to the nodes (excluding 0), without cloning
the depot. The value of ρ does not depend on the residual battery level and



the G-CVRP-TW is extremely easier than our original problem. Moreover,
the following property holds: choosing a proper ρ, each feasible solution of
the G-CVRP-TW is feasible also for our problem. To properly set ρ, let
us consider the worst case, i.e., when the battery level is zero and a full
recharge is required. In such a case, ρ = Q

g
.

• Phase 2: S1 is an input of the model of the E-VRPTW-PR ([1]). To
maintain the same routes of S1, the arc variables xij are fixed to the values
in S1. The resulting model optimizes the starting time at the depot (then,
the arrival times at nodes) and the battery charge level reached at each RS
(then, the battery level at nodes).

• Phase 3: The solution S2 of Phase 2 is the starting point of the VNSB
(VNS and local Branching) of [2]. The VNS adds linear constraints to the
original problem for systematically changing the neighborhoods ([6], [7]).
A local branching can be performed by adding linear constraints to MILP
formulation, modeling the Hamming Distance (HD) based neighborhoods
([5]). The solutions of a neighborhood, within a radius rhs, are those with
HD ≤ rhs. By a Large Neighborhood Search (LNS), neighborhoods are
sequentially analyzed, with rhs ∈ [rhsLmin, rhs

L
max] and a step of kstepL.

Each neighborhood is defined by adding to the model a constraint stating
that the HD between a solution of the neighborhood and the current one
must be lower than or equal to rhs. This model is solved by CPLEX,
in a time limit TLL and keeping the best solution obtained. In case of
no improvement, rhs = rhs + kstepL; otherwise, the new solution found
is kept as the best and rhs = rhsLmin. In case of no improvement and
rhs = rhsLmax, LNS stops. Then, a shaking phase evaluates disjointed
neighborhoods, represented by a ring of rhsSmin + k < rhs < rhsSmin + k +
kstepS, with an initial k = 0. The resulting model is solved by CPLEX
within a time limit of TLS. The first feasible solution found is kept as
the new current one and from it, the LNS restarts. In case of no feasible
solution within TLS, k is incremented by kstepS and the procedure iterates
until rhsSmin + k + kstepS ≥ rhsSmax. The Phase 3, and thus the whole
matheuristic, ends when a given total CPU time limit is reached.

The MILP model of C-GVRP-TW (Phase 1) is formulated through binary
variables xij equal to 1 if arc is used, 0 otherwise, ∀(i, j) ∈ A and continuous
variables yj representing the battery level upon arrival at j, τj for the arrival
time at j and uj for the remaining cargo capacity at j, ∀j ∈ V .



min
∑
i∈V

∑
j∈V

tijxij(1)

∑
j∈V j ̸=i

xij = 1 ∀ i ∈ N(2)

∑
j∈V j ̸=i

xij ≤ 1 ∀ i ∈ F(3)

∑
i∈V i ̸=j

xji =
∑

i∈V i ̸=j

xij ∀ j ∈ N ∪ F(4)

∑
j∈V j ̸=0

x0j ≤ M(5)

∑
j∈V j ̸=0

xj0 ≤ M(6)

τj ≥ τi + (tij + sj)xij − l0(1− xij) ∀ i ∈ V, j ∈ N ∪ F, i ≠ j(7)

yj ≤ yi − r · dij +Q(1− xij) ∀j ∈ N, i ∈ N ∪ F, i ̸= j(8)

yj = Q ∀j ∈ F ∪D0(9)

yi ≥ r · tijxi0 ∀i, j ∈ N ∪ F(10)

ei ≤ τi ≤ li ∀j ∈ V \ {F}(11)

uj ≤ ui − qixij + C(1− xij) ∀j ∈ V, i ∈ V, i ̸= j(12)

xij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V(13)

yj ≥ 0 ∀i ∈ N ∪ F(14)

Function (1) is the minimization of TT. Each customer is visited exactly
once (2) while a RS may be visited only once (3). Route continuity is ensured
by (4) while the number of routes is limited by (5)-(6). Arrival time at a
node is tracked by (7) and the battery charge level, upon arrival at a node,
is ruled by (8). Sub-tours are excluded by time (7) and battery charge level
(8) tracking constraints. Battery charge is Q at the departure from the depot
and reset up to Q upon each visit to a RS (9). After visiting the last node
in a route, remaining battery charge level allows returning to 0 (10). Each
time windows is respected and an EV returns before the depot closure (11).
Capacity and variable domain constraints are in (12-13-14).

4 Numerical Results

Both the MILP models (of the G-CVRP-TW and of the E-VRPTW-PR) have
been implemented in AMPL and solved by the state of the art solver CPLEX



12.6 on a PC Intel Core i7, 3.20 GHz, 6GB RAM. Some benchmark instances
of [9], with 5, 10, 15 customers, have been tested. In the G-CVRP-TW, M
has been set to the ceiling of 1.2 times the number of vehicles used in the
best solution known for the E-VRPTW-PR. In fact, it is worth noting that
a low value of M may lead to a harder problem, while a high value, to a
poor quality initial solution. In the Phase 3, the parameters have been tuned
in the following way: rhsLmin = rhsSmin = 1, rhsLmax = 10, rhsSmax = 20,
kstepL = kstepS = 1, TLL = 60 seconds, TLS = 300 seconds.

The table shows the comparisons among the MILP model of the E-VRPTW-
PR, VNSB and TPM. Since they find the same value of µ, we report only one
column for it. The columns TTMILP , TTV NSB and TTTPM display their total
TT, respectively; CPUMILP , CPUV NSB and CPUTPM show the CPU time,
in seconds, when each method finds its best solution. The stopping crite-
rion of both, the VNSB and the TPM, given by the CPU time limit, is set
to 7, 200 seconds as for Cplex. In particular, the cases in which it has been
reached by CPLEX obtaining or not a feasible solution are marked by “†” and
“−”, respectively. The relative percentage gap (∆TT%) between TTV NSB and
TTTPM is computed as TTTPM−TTV NSB

TTV NSB
· 100. The best results are in boldface.

Both TPM and VNSB give the same TT on instances with 5 customers,
corresponding to the optimum found by MILP. On instances with 10 cus-
tomers, in 3 cases, TPM outperforms VNSB with even a case with percentage
improvement of 1.66%. While, in one case VNSB outperforms TPM with a
percentage improvement of 0.56%, with an average of 0.10%. TPM obtains
always solutions better or equal than the MILP and in 8 cases strictly better.
On instances with 15 customers, TPM outperforms VNSB in 5 cases vs 4 with
a higher average percentage improvement (25.44%). On 6 over 12 instances,
MILP is not able to find even a feasible solution within the CPU time limit,
remarking the challenging nature of our problem. Overall, both TPM and
VNSB give results by far better than those of the MILP. On average, TPM
is more time consuming than VNSB, but it is rewarded by a better solution
quality. However, they are by far faster than the MILP.

5 Conclusions and Future Works

The efficient routing of a fleet of Electric Vehicles (EVs) was addressed as time-
effective Electric Vehicle Routing Problem with Time Windows and Partial
Recharges with the aim of firstly minimizing the total number of EVs used
and then, the total Time spent by EVs outside the depot. Such a problem
was solved by a Three-Phases Matheuristic (TPM).



Instance µ TTMILP TTV NSB TTTPM ∆TT% CPUMILP CPUV NSB CPUTPM

C101-5 2 1,262.84 1,262.84 1,262.84 0 3.06 0.70 0.81

C103-5 1 987.87 987.87 987.87 0 0.16 0.29 0.28

C206-5 1 1,296.82 1,296.82 1,296.82 0 94.94 14.16 0.56

C208-5 1 984.80 984.80 984.80 0 4.15 1.31 1.42

R104-5 2 196.17 196.17 196.17 0 20.68 2.43 0.07

R105-5 2 231.59 231.59 231.59 0 2.09 0.33 0.09

R202-5 1 234.16 234.16 234.16 0 19.30 1.62 0.34

R203-5 1 287.09 287.09 287.09 0 736.64 1.81 0.31

RC105-5 2 314.31 314.31 314.31 0 58.31 94.01 215.55

RC108-5 2 342.32 342.32 342.32 0 156.92 1.75 0.39

RC204-5 1 264.86 264.86 264.86 0 † 49.16 0.44

RC208-5 1 253.17 253.17 253.17 0 146.10 8.00 0.42

Average 554.67 554.67 554.67 0 703.53 14.63 18.39

C101-10 3 2,411.08 2,335.20 2,335.20 0 † 183.43 545.76

C104-10 2 1,805.67 1,611.72 1,584.90 -1.66 † 73.43 252.95

C202-10 1 2,949.77 2,949.77 2,949.77 0 † 5.62 3.83

C205-10 2 2,525.77 2,525.77 2,539.88 0.56 619.28 0.79 1.45

R102-10 3 443.62 443.62 443.62 0 6,563.57 33.96 0.35

R103-10 2 351.90 347.70 347.70 0 † 93.49 12.19

R201-10 1 536.29 536.38 536.05 -0.06 † 21.70 76.03

R203-10 1 540.29 527.68 527.68 0 † 4.62 9.10

RC102-10 4 571.26 571.26 571.26 0 † 59.01 24.76

RC108-10 3 515.11 493.23 493.23 0 † 143.71 12.73

RC201-10 1 793.52 793.52 793.33 -0.02 3,535.97 40.46 9.25

RC205-10 2 618.44 611.66 611.66 0 † 37.51 4.70

Average 1,171.89 1,145.62 1,144.52 -0.10 6,293.24 58.14 79.42

C103-15 3 – 5,254.93 2,446.99 -53.43 † 240.46 178.86

C106-15 3 2,356.91 2,173.09 2,173.09 0 † 106.30 213.12

C202-15 2 3,936.32 3,664.12 3,599.80 -1.76 † 139.83 61.15

C208-15 2 3,305.25 2,819.47 2,819.47 0 † 591.57 72.26

R102-15 5 – 1,241.80 656.37 -47.14 † 559.52 113.75

R105-15 4 697.13 567.82 567.82 0 † 487.02 2.23

R202-15 2 999.72 839.74 840.99 0.15 † 349.29 58.96

R209-15 1 771.94 621.79 640.64 3.03 † 330.38 5,718.31

RC103-15 4 – 1,074.90 614.13 -42.87 † 251.55 31.81

RC108-15 3 – 974.88 596.17 -38.85 † 756.61 288.01

RC202-15 2 – 3,222.49 1,611.29 50 † 444.54 71.87

RC204-15 1 – 685.61 685.86 0.04 † 617.22 4,119.53

Average 2,011.21 2,099.79 1,437.72 -25.44 7,200.00 406.19 910.82

Table 1
Comparisons among MILP, VNSB and TPM



Numerical results, on some benchmark instances, showed that on average
TPM outperforms a Variable Neighborhood Search Branching (VNSB), pre-
viously proposed. Although on average the computational times are higher,
they are justified by a higher solution quality, especially on the bigger size in-
stances. Indeed on the instances with 15 customers TPM outperforms VNSB
in 5 cases vs 4 with an average percentage improvement of 25.44%.

Future work may concern the extension of E-VRPTW to include the “re-
generative braking”, allowing the recuperation of a percentage of the battery
consumption during the braking (e.g., in the descents).
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