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Abstract

In this paper insights are provided into the implementation and use of the Ritz method

for free vibration and buckling analysis of composite plates. Focus is given on the choice of

the trial functions in relation to the degree and the kind of anisotropy exhibited by the plates.

The Ritz approximation is applied to models based both on the classical lamination theory and

a more advanced variable-kinematic formulation, capable of dealing with several higher order

plate theories within an unified framework. A very efficient computation of the Ritz integrals

is proposed, which allows to handle hundreds of admissible functions. In this way, accurate

upper bound solutions can be obtained even for problems where the convergence rate of the

Ritz method is low due to extreme levels of anisotropy. The effect of different forms of elastic

couplings, boundary conditions and amount of material anisotropy on the convergence and

accuracy of the solution is investigated when different sets of admissible functions – Legendre

and Chebyshev polynomials, as well as of trigonometric type – are adopted. Important remarks

about the completeness and numerical efficiency of the selected basis are also provided.

Keywords: Ritz method; anisotropic plates; variable-kinematic; free-vibrations; buckling.

∗Corresponding author. Email address: riccardo.vescovini@polimi.it (Lorenzo Dozio)

1



1 Introduction

Since its original formulation in 1909 [1], the Ritz method has been largely employed to obtain ap-

proximate yet reliable solutions of various structural problems, including plates of different shapes,

material properties and boundary conditions.

The ease of formulation, which is especially true for structures characterized by relatively simple

domains, in conjunction with the favorable balance of accuracy and number of degrees of freedom,

make the method of Ritz an interesting strategy even for this day and age, in particular when

extensive parametric and optimization studies are performed during the preliminary stages of the

design process. One of the most important steps in the development of Ritz-based models con-

sists of choosing a the set of admissible functions when approximating the problem’s unknowns.

In the past, several different strategies have been proposed in this regard. Following the seminal

work of Ritz [1], who presented the free vibration solution of a completely free rectangular plate

using a series of multiplications of free-free beam vibration mode shapes, beam eigenfunctions have

been used in many cases to obtain frequency parameters and buckling loads of rectangular plates

involving various combinations of boundary constraints [2–4]. However, this procedure may be

inappropriate for handling one or more free edges, as observed by Bassily and Dickinson [5], who

introduced degenerated beam functions to overcome this restriction.

Orthogonal polynomials represent another common set in the Ritz approximation of plate problems.

They were first introduced by Bath [6], who discussed the comparison against results obtained with

beam characteristic functions [4] and simply-supported plate functions [7]. Different families of

orthogonal polynomials were successively used by other researchers [8, 9], and sometimes in com-

bination with the Gram-Schmidt orthogonalization process [10]. Another procedure, conceptually

simpler, consists of using ordinary polynomials expansions, where no orthogonalization process is

performed. Examples can be found in Refs. [11–13], where different boundary conditions can be

handled by proper modification of the trial functions. While different kinds of polynomial ex-

pansions were found to have similar convergence properties, they are generally characterized by

dissimilar stability properties [14]. Oosterhout et al. [15] observed that simple polynomials can be

adopted up to 11 trial functions before becoming unstable. On the contrary, orthogonal polynomi-

als satisfy the stability conditions, consisting in the strong minimalilty in the energy space of the

relevant operator, and higher number of terms in the Ritz series can be used [16].
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Another popular choice is given by the expansion in trigonometric series, with restriction to clamped

– in this case making use of Lagrange multipliers –, simply-supported and elastically restrained

edges [17–19]. It is worth noting that this choice is particularly useful when dealing with geomet-

rically nonlinear analyses due to the possibility of obtaining an exact solution of the compatibility

equation [19, 20]. Two decades ago, Beslin and Nicolas [21] proposed a simple yet powerful set

of trigonometric functions, which can be readily applied to plates having any combination of edge

conditions and offers great numerical stability at higher frequencies. In addition, the set involves

simple algebra and calculus and is very efficient from a computational point of view since it can

lead to highly sparse eigenvalue problems [22].

A comprehensive recent review regarding the admissible functions used in the Ritz method is avail-

able in Ref. [23], where focus is given on thin isotropic plates. Merits and demerits of six sets of

functions are discussed and compared in terms of convergence, computational time and numerical

stability.

When assessing the global response of isotropic plates in terms of frequency parameters and buck-

ling loads, the effect of different trial functions on the convergence of the solution is relatively

inconsequential, at least when the first few eigenvalues are of concern. One of the main advantages

of adopting efficient basis, such as orthogonal polynomials, is given by the possibility of accurately

capturing higher modes [15]. On the contrary, the analysis of composite plates is becomes more

challenging due to a series of complicating effects introduced by the elastic couplings characterizing

their constitutive law. Stone and Chandler showed the inadequacy of sine series expansions when

applied to the analysis of simply-supported anisotropic thin plates [24]. This inadequacy is mainly

associated with bending/twisting coupling effects: the inexact fulfillment of the natural boundary

conditions determines the onset of artificial constraints on the plate rotation at the edges, which,

in turn, leads to the over-prediction of the eigenvalues. Similar findings were observed in Ref. [?

], where sandwich plates with composite faceplates were analyzed using a refined B-spline finite

strip approach. In those configurations where elastic coupling effects are stronger, buckling loads

computed by the finite strip method are markedly smaller (with differences of the order of 25%) in

comparison with the over-stiff results derived in Ref. [25, 26] using trigonometric functions in the

Ritz method. The difficulties in the convergence of the Ritz method when applied to anisotropic

plates are also discussed in Ref. [27], where it is concluded that results using Ritz method can be

unsatisfactory depending on the lay-up and boundary conditions.
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Complicating effects are exacerbated by extreme levels of anisotropy, as demonstrated by Wu et

al. [28], where the authors, through comparison of different variational approaches, state that the

Ritz method suffers from very slow convergence due to the difficulties in satisfying natural bound-

ary conditions and the presence of highly localized deformations close to the boundaries. The

application of the method was restricted by the onset of ill-conditioning problems, detected for a

number of Legendre-type functions higher than 23.

With regard to the analysis of thick composite plates, efficient Ritz-based approaches were devel-

oped in the context of Carrera’s Unified Formulation (CUF) for the analysis of simply-supported

plates in Ref. [29–32]. Similarly, Fiedler et al. [33] proposed the use of trigonometric functions in

plate models based on a generalized higher-order equivalent single layer theory. Within the CUF

framework, different sets of boundary conditions were considered by the authors, using polynomial

functions [34], Chebyshev [35, 36] and Legendre polynomials [37, 38].

Despite the vast amount of studies focused on the method of Ritz in the last four decades, it is

believed that many aspects associated with its application to the analysis of highly anisotropic thin

and thick plates are still unexplored and not covered by the literature. First, the Ritz implementa-

tions available in the literature suffer from restrictions in terms of degrees of freedom that can be

successfully handled. In the great majority of the cases, 10 to 20 functions are adopted along the

two directions [27–33, 35, 36, 39]. This restriction prevents the possibility of obtaining accurate

upper-bound predictions for plates characterized by high degree of anisotropy, where several terms

are generally necessary. To this aim an efficient implementation is necessary, as the one proposed

in this work.

A second aspect of great interest is the evaluation of the effects of different kinds of anisotropy

on the convergence properties of the Ritz method. To the best of the authors’ knowledge, just

a few studies have tackled this topic but, in general, they are restricted to specific cases, and do

not provide a comprehensive presentation of the subject involving thick laminates. In addition, no

systematic study was found about the effects of different admissible functions on the convergence,

accuracy and computational burden of the Ritz method, when applied to thick and moderately

thick plates.

The present paper aims at filling these gaps by using a formulation capable of considering sev-

eral theories, from CLT up to high-order kinematic theories, in a way suitable for studying highly

anisotropic thick and moderately thick plates within a unified modeling framework.
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2 Theoretical framework

This section provides an overview of the Ritz-based variable-kinematic formulation. While further

details of this approach can be found in previous works of the authors [36, 40], emphasis is here given

on the choice among diverse admissible functions and the efficient evaluation of the Ritz in-plane

integrals. This latter aspect is a focal point for the subsequent derivation of refined solutions for

plates characterized by high degree of anisotropy. It is worth noting that the efficient computation

of the Ritz integrals as explained below has been similarly applied to the in-plane integrals arising

from CLT-based plate models, which are not reported here for the sake of brevity.

2.1 Variable-kinematic formulation

The variable-kinematic formulation is developed in the context of a displacement-based approach,

referring to the Principle of Virtual Displacements (PVD). A laminated plate composed of an

arbitrary number of plies Nl is considered, and a sketch is reported in Figure 1. The x- and y-

axis are directed along the longitudinal and transverse directions, respectively, while the z-axis is

normal to plate midsurface to obtain a right-handed system. The edges are numbered from 1 to

4 in according to the convention reported in the figure, which is adopted next for specifying the

boundary conditions.

The variational statement is here expressed with regard to the free-vibration and buckling problems.

The expression is:

Nl∑
k=1

∫
Ω

∫ zk+1

zk

(
δεk

T

p σkp + δεk
T

n σkn + δεk
T

pnl
σkp0

)
dz dΩ = −

Nl∑
k=1

∫
Ω

∫ zk+1

zk

ρkδuk
T
ük dz dΩ (1)

where the integration is carried out over the domain Ω, defined as [0 a] × [0 b]. The vector uk

collects the three displacement components of the generic ply k; the vectors εkp and εkn are those

relative to the in-plane and normal components of the small-displacement Green-Lagrange strain

tensor, respectively. In a similar fashion, the stress vector σ is partitioned into in-plane and normal

components σkp and σkn. In the context of buckling analysis, the additional contributions εk
T

pnl
and

σkp0 are accounted for, representing the nonlinear part of the Green-Lagrange strain tensor and the

pre-buckling stress distribution, whose expression can be found in [36].

Within the context of the displacement-based approach considered here, the internal virtual work
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needs to be expressed in terms of the displacement components. This is accomplished by introducing

the 3D constitutive law, defined as:

σkp = C̃
k
ppε

k
p + C̃

k
pnε

k
n

σkn = C̃
kT

pnε
k
p + C̃

k
nnε

k
n

(2)

which leads to the expression:

Nl∑
k=1

∫
Ω

∫ zk+1

zk

{(
Dpuk

)T
[
C̃
k
ppDpuk + C̃

k
pn

(
Dnuk + uk,z

)]
+

+
(
Dnuk + uk,z

)T
[
C̃
k
npDpu

k + C̃
k
nn

(
Dnuk + uk,z

)]
+ δεk

T

pnl
σkp0

}
dz dΩ =

= −
Nl∑
k=1

∫
Ω

∫ zk+1

zk

ρkδuk
T
ük dz dΩ

(3)

where the terms Dn and Dp are matrices of differential operators defining the strain-displacement

relations that are detailed in Ref. [36].

The underlying kinematic theory adopted here refers to the Generalized Unified Formulation

(GUF), proposed by Demasi [41, 42], representing an extension of the well-known Carrera’s Uni-

fied Formulation (CUF) (see, for instance, [43, 44]). Within this framework, and after introducing

a nondimensional reference system where ξ =
2x

a
, η =

2y

b
and ζ =

2z

h
, the displacement field

components are axiomatically expressed as the product of thickness functions and generalized dis-

placement components:

ukr (ξ, η, ζ) = Fαur
(ζ)ukrαur

(ξ, η) with r = x, y, x and αur = 0, 1, . . . , Nr (4)

where the sum is implied with respect to the repeated index αur and the thickness functions

Fαur
are taken as proper combinations of Legendre polynomials [35, 36, 40, 43–45]. According

to Eq. (4), each displacement component ur can be expanded independently from the other ones.

Both equivalent single-layer (ED) and layerwise (LD) theories can be retrieved in the context of the

same framework, depending on the assembly procedure of the governing equations. Each theory

is identified with an acronym denoting the typology of the kinematic description and the order of

expansion of each displacement component. For example, the theory ED332 stands for an equivalent

single-layer theory where the global displacements ux and uy are expanded up to third order whilst

uz is described by a second-order expansion. Likewise, the theory LD444 identifies a layerwise

6



kinematics where the local displacement components ukx, uky and ukz in each layer k of the laminate

are expanded up to fourth order. Note also that ED110 corresponds to the assumed displacement

field of the well-known first-order shear deformation theory, which will be denoted in the following

by the common acronym FSDT.

2.2 Ritz approximation

The generalized displacement components ukrαur
of Eq. (4) are functions of the in-plane coordinates

ξ and η, as the dependency on the thickness-wise coordinate is condensed in the thickness functions

Fαur
. Referring to the Ritz method, they are approximated by means of global admissible functions,

whose general expression is given by:

ukrαur
(ξ, η) = Nuri(ξ, η)ukrαur i

with i = 1, . . . ,M = R× S (5)

where Nuri is the generic ith function, R and S denote the number of terms of the approxima-

tion along the x and y direction, respectively. For a rectangular domain, the trial functions are

represented by assuming separation of variables as:

Nuri(ξ, η) = φurm(ξ)ψurn(η) m = 1, . . . , R n = 1, . . . , S (6)

where the functions are identified so that the relation between the indexes m, n and i is given by:

i = S(m− 1) + n (7)

The Ritz approximation of the PVD is readily obtained after substituting Eq. (6) into Eq. (3).

By adopting a compact notation, where the separation between thickness and in-plane integrals is

highlighted, the expressions reads:

δuT
ri

(
Z(∂)ur(∂)usRS + Z(∂)ur(∂)usG

)
Idefgurusij

usj = −δuT
riZurusρI

defg
urusij

üsj (8)

where the sum is intended with respect to the repeated indexes r, s, i and j. The matrices

Z(∂)ur(∂)usRS , Z(∂)ur(∂)usG and Zurusρ are achieved after integrating and assembling the thickness

integrals as discussed in Ref. [37]; note that, according to the compact notation of Eq. (8), the

symbol (∂) denotes that the terms composing Z(∂)ur(∂)usRS may or may not be characterized by the

presence of a derivative with respect to z of the thickness function. The term Idefgurusij
represents the
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generic ijth component of the matrix collecting the in-plane integrals of the admissible functions,

which is sometimes referred to as Ritz integrals matrix. In particular, their expression is given as:

Idefgurusij
=
(
IIIdefgurus

)
ij

=

∫ 1

−1

∫ 1

−1

∂d+eNuri

∂xd∂ye
∂f+gNusj

∂xf∂yg
dηdξ (d, e, f, g = 0, 1)

=

∫ 1

−1

∫ 1

−1
N

(d+e)
uri

N
(f+g)
usj

dηdξ with i, j = 1, . . . , R× S
(9)

where the notation (A)ij is used to denote the component ij of the generic matrix A, while a

compact notation is adopted for denoting the differentiation with respect to ξ and η as:

(•)(i) =
∂i•
∂ξi

(i = d, f)

(•)(i) =
∂i•
∂ηi

(i = e, g)

(10)

According to Eqs. (9) and (10) and the separation of variables introduced in Eq. (6), the derivatives

of the admissible functions are written as:

N
(d+e)
uri

(ξ, η) = Φ(d)
urm (ξ) Ψ(e)

urn (η) N
(f+g)
usj

(ξ, η) = Φ
(f)
usm

(ξ) Ψ
(g)
usn

(η) (11)

After substituting Eq. (11) into Eq. (9), the matrix of Ritz integrals can be re-organized as:(
IIIdefgurus

)
ij

=

∫ +1

−1
Φ(d)
urmΦ

(f)
usm

dξ

∫ +1

−1
Ψ(d)
urnΨ

(f)
usn

dη (12)

From the previous definitions, the stiffness and mass matrices K and M are obtained by combining

the Ritz and the thickness integrals according to the Kronecker product:

K =
∑
rs

IIIdefgurus ⊗ Z(∂)ur(∂)usRS r, s = x, y, z (13)

M =
∑
rs

IIIdefgurus ⊗ Zurusρ r, s = x, y, z (14)

G =
∑
rs

IIIdefgurus ⊗ ZurusG r, s = x, y, z (15)

The thickness integrals appearing in Eqs. (13)-(15) can be easily determined after analytically

integrating the thickness functions along the normal direction. On the other hand, the evaluation

of the Ritz integrals IIIdefgurus can be a lengthy and onerous operation, thus affecting the performance
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of the method. For this reason, its efficient evaluation is outlined in the next paragraph.

The final form of the discrete governing equations is obtained as:(
−ω2M + K + λG

)
u = 0 (16)

where the free vibration problem is solved by neglecting the geometric stiffness G, whilst the

buckling analysis is conducted by setting to zero the mass matrix M.

2.3 Efficient computation of the Ritz integrals

The efficient evaluation of the matrix collecting the Ritz integrals is one of the significant aspects

of the present formulation. The approach discussed here is developed to guarantee improved per-

formance, a necessary feature for dealing with highly anisotropic plates, as discussed later.

The square matrix IIIdefgurus has dimensions RS × RS. This means that, potentially, several compu-

tations need to be performed when the number of functions is not restricted to just a few terms.

This difficulty is here overcome by introducing the so called integrals kernels – matrices of smaller

dimensions collecting the integrals –, which are successively expanded and properly assembled to

obtain Eq. (9). The efficiency of the approach is further improved with the help of the closed-form

integration of the integral kernels themselves. This operation, which is performed for all the ad-

missible functions discussed in the present work, is carried out by symbolic computations using

Mathematica.

The two kernels, which are the integrals of the trial functions associated with the displacement

components ur and us along the directions ξ and η, are indicated as:(
IIIdfurus

)
mp

=

∫ +1

−1
φ(d)
urmφ

(f)
usp dξ with m, p = 1, . . . , R

(
JJJegurus

)
nq

=

∫ +1

−1
ψ(e)
urnψ

(g)
usq dξ with n, q = 1, . . . , S

(17)

It can be noted that the two matrices of Eq. (17) are characterized by dimensions R×R and S×S,

respectively. Their evaluation, which suffices for the successive construction of the final matrix of

Ritz integrals of Eq. (9), can thus be performed by computing just (R × R) + (S × S) integrals.

The kernels of Eq. (17) are computed for a sufficiently large number of functions (up to 250) just

once, and are stored in a binary file. At every run, the kernels are simply loaded from the binary

file, and used to construct the matrix of Ritz integrals with a minimum computational effort. By
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using the Kronecker product, the kernel of the integrals IIIegurus can be expanded as:

Idfurus =

∫ +1

−1
φ(d)
urmφ

(f)
usm

dξ with m = m(i), and m = m(i)

= IIIdfurus ⊗ ISS and i = 1, . . . , R× S
(18)

where ISS is the identity matrix of dimension S × S, and the resulting matrix Idfurus has dimension

RS ×RS.

Similarly, the expansion of the kernels JJJegurus is obtained as:

Jegurus =

∫ +1

−1
ψ(e)
urnψ

(g)
usn

dη with n = n(j), and n = n(j)

= IRR ⊗ JJJegurus and j = 1, . . . , R× S
(19)

where IRR is the identity matrix of dimension R × R, and the expanded matrix of integrals Jegurus

has dimension RS ×RS.

Recalling now Eq. (12), it is possible to express the matrix of the Ritz integrals as the Hadamard

elementwise product between the expanded kernels of the integrals along the directions ξ and η

(Eqs. (18) and (19)):

IIIdefgurus = Idfurus ◦ Jegurus (20)

For clarity, a graphical description of the procedure for evaluating the Ritz integrals is provided

in Figure 2. Withouth loss of generality, it is considered the case where an expansion 3 × 2 is

adopted. Highlighted is the way the kernels are initially expanded (Eqs. (18) and (19)) and the

resulting matrices are successively multiplied through the Hadamard product (Eq. (20)).

2.4 Admissible functions

As outlined in the Introduction, different sets of functions can be used for approximating the

displacement field and this choice plays a crucial role in the development of a Ritz-based proce-

dure. Indeed, several properties are affected by the functions adopted, including the convergence,

efficiency, accuracy and numerical stability of the method. In the present work, two classes of

orthogonal polynomials are considered, namely Legendre and Chebyshev polynomials, and two sets

of trigonometric functions. The first is referred to as Navier-type expansion, consisting in the set

of sines and cosines descending from the classical Navier-solution of those problem for which an

exact solution can be sought. The second trigonometric set is denoted as extended trigonometric,
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and represents an enrichment of the Navier-type basis resulting from the introduction of linear

polynomial contributions. The implementation of different sets of functions allows one to compare

the quality of the various choices, and demonstrates the inadequacy of improperly adopting the

Navier-type expansion, unless special conditions are met.

Orthogonal polynomials

In the case of orthogonal polynomials, the one-dimensional functions φurm(ξ) and ψurn(η) are

expressed by taking the product with boundary functions, properly selected to impose the fulfillment

of the essential boundary conditions:

φurm(ξ) = fur(ξ)pm(ξ)

ψurn(η) = gur(η)pn(η)
(21)

where fur(ξ) and gur(η) are the boundary functions, defined as:

fur(ξ) = (1 + ξ)e1r(1− ξ)e2r

gur(η) = (1 + η)e1r(1− η)e2r
(22)

The coefficients e1r and e2r can be either 0 or 1, and are chosen depending on the boundary

conditions [35]. In the particular case of CLT, the coefficients can be 0, 1 or 2 for free, pinned and

clamped conditions, respectively.

Although any class of orthogonal polynomials could be implemented within the present framework,

the functions pm and pn are here expressed using Chebyshev or Legendre polynomials. In the first

case, the polynomials are expressed as:

pl(χ) = cos
[
(l − 1) arccos(χ)

]
with l = m,n (23)

while for the case of Legendre polynomials the expression is defined according to the recursion

formula:

p0 = 1; p1 = χ; pl+1 =
(2l + 1)χpl − lpl−1

l + 1
with l = m,n (24)

Trigonometric functions

The second class of functions discussed here is given by trigonometric functions. Their use is mainly

restricted to the case of simply-supported boundary conditions, and have been widely adopted in
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the literature [29–33]. One of the main reasons motivating their popularity is the simplicity of the

resulting in-plane integrals. In addition, the resulting matrices do not suffer from ill-conditioning

problems, as it may happen for some class of polynomial expansions.

In the Navier-type expansions, the three components of the displacement field are expressed as:

Nuxi(ξ, η) = cos
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

Nuyi(ξ, η) = sin
mπ

2
(ξ + 1) cos

nπ

2
(η + 1)

Nuzi(ξ, η) = sin
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

(25)

where the relation between the indexes i, m and n is given by Eq. (7). The expressions of Eq. (25)

are suitable for modeling simply-supported boundary conditions, meaning that the out-of-plane

displacement and the component tangential to the panel edges are assumed to be null along the

plate boundaries.

Similarly, the extended trigonometric representation is achieved by adding linear polynomial con-

tributions to Eq. (25) as:

Nux0(ξ, η) =
1

2
(ξ + 1) Nuxi(ξ, η) = cos

mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

Nuy0(ξ, η) =
1

2
(η + 1) Nuyi(ξ, η) = sin

mπ

2
(ξ + 1) cos

nπ

2
(η + 1)

Nuzi(ξ, η) = sin
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

(26)

Combination of trigonometric and polynomial terms have been successfully used in the literature, for

example see Monterrubio and Ilanko [46]. The enrichment of the basis by means of linear polynomial

terms is essential for guaranteeing the completeness of the basis in the energy norm [47], as shown in

the next section. The polynomial contributions are quite often neglected, and the basis is formally

identical to the displacement field description adopted in the context of Navier-type solutions. As

such, it can be successfully applied to those cases where an exact Navier-type solution is available.

In all the other cases, convergence to the exact solution cannot be achieved if Eq. (25) is adopted.

It is finally remarked that classical Fourier analysis could be used for improving the convergence

of the results [48–52]. However, this is not the approach adopted here and the derivatives of the

displacement field are assumed to be term-by-term differentiable.
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3 Results

This section aims at illustrating and discussing some results on free vibration and buckling of

highly anisotropic rectangular plates obtained from Ritz models based on CLT and the variable-

kinematic formulation. All the plates analyzed throughout the section are made of the material

P100/AS3501, taken from Refs. [28, 53], whose elastic properties are the following: E1=369 GPa,

E2=5030 MPa, G12=5240 MPa, and ν12=0.31. In addition, it is assumed that G13 = G23 = G12

and ν13 = ν23 = ν12, and the density ρ is taken equal to 1500 kg/m3. As seen, this material is

characterized by a high orthotropy ratio E1/E2 > 70, whose effect is to exacerbate the amount

of anisotropy of all the lay-ups considered, and highlight any potential convergence issue of the

discretization method. All the results are expressed in terms of the nondimensional quantities ωi

and Nx for the free vibration and the buckling force per unit length, respectively, as:

ωi = ωi
a2

h

√
ρ

E2
Nx = Nx

a2

E2h3
(27)

where a is the plate longitudinal dimension, h is the thickness, ρ the density and E2 the transverse

Young’s modulus; Nx denotes the force per unit length directed parallel to the x axis, and applied

at the edges at x = const.

This section is organized as follows: thin plates are analyzed first in Section 3.1 by considering

orthogonal polynomials and extended trigonometric functions. The effects due to different kinds of

elastic couplings, material anisotropy as well as the role of boundary conditions are assessed. Novel

benchmark results are also obtained by exploiting the efficiency of the present implementation for

highly anisotropic plates, where a huge number of terms in the Ritz series is required to achieve a

satisfactory level of accuracy of the solution. The investigation is then extended to the case of thick

plates in Section 3.2. The requirements on the completeness of the admissible set are discussed in

Section 3.3, and exemplary results are provided for highlighting potential errors associated with an

improper use of a Navier-type expansion. Finally, the computational efficiency of the various sets

of functions is discussed in Section 3.4, and the superiority of Legendre polynomials is illustrated.
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3.1 Thin plates

3.1.1 Anisotropic laminates with different elastic couplings

A set of four thin-plate configurations is initially analyzed for highlighting the effects of different

kinds of elastic couplings on the free vibration response. The results are presented in the context

of CLT, which is commonly adopted for thin plate analysis and for validating novel numerical

techniques (see, for instance, Refs. [54–56]). Note that rotatory inertia is neglected from the

following computations. Square plates are considered, and characterized by four distinct lay-ups,

hereinafter denoted as:

• Lay-up L1: [45/45]

• Lay-up L2: [0/90]

• Lay-up L3: [45/− 45]

• Lay-up L4: [0/45]

It is worth noting that the nature of the elastic couplings exhibited by the above lay-ups in terms

of the familiar A, B and D matrices of CLT-based models (see, e.g. [57–59]) is inherently differ-

ent. The first lay-up is symmetric and characterized by bending/twisting coupling; the second one

is cross-ply, non-symmetric with coupled in-plane and out-of-plane behavior due to not vanishing

terms B11 and B22 = −B11; L3 displays another sort of coupling between in-plane and out-plane

response through the terms B16 and B26; finally, L4 is also a non-symmetric configuration and

exhibits a fully populated ABD constitutive relation.

Simply-supported boundary conditions are assumed along the four edges. This means that, in addi-

tion to the out-of-plane displacement, the tangential in-plane component is prevented from motion,

while the normal one is free. In this first assessment, the admissible functions are Legendre polyno-

mials – it is here anticipated that identical results are obtained using Chebyshev polynomials – and

extended trigonometric functions. The first three nondimensional frequencies ωi are summarized in

Table 1 for an increasing number R = S of functions. It is noted at the outset that computations

using extended trigonometric functions are shown for a limited number of 50 functions along each

direction, due to their computational inefficiency, as addressed in more detail later in Section 3.4.

On the contrary, Legendre polynomials can be easily employed to consider higher number of terms
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in the Ritz series, and frequency parameters are presented for R up to 100.

The comparison is presented against refined finite element analysis, obtained using Abaqus S4 and

S4R four-node shell elements. A mesh size of 400× 400 elements is defined on the basis of a pre-

liminary study aimed at guaranteeing convergence of the finite element solution up to the second

digit. As far as S4R and S4 are general purpose elements, the numerical models are realized by

considering an artificially high ratio a/h=10000, in order to keep at minimum shear deformation

effects. Note that the sole scope of adopting such a high value is to perform a fair comparison with

CLT-based results obtained using Ritz. For layup L2, the exact Navier-type solution is available,

which is then taken as a reference instead of the finite element one.

The results of Table 1 illustrate the excellent level of agreement between reference results and those

obtained with the Ritz discretization. The percent differences, reported in the parenthesis, provide

a clear insight into the convergence of the solution and the differences arising from the adoption of

trigonometric and Legendre trial functions. It can be observed that orthogonal polynomials lead

to results which are almost identical to the reference solutions, provided the number of functions

is sufficiently high.

The most critical case is given by lay-up L1, which is the one characterized by the slowest con-

vergence rate. For this case, the results are still slightly different from the reference ones, even

when 100 functions are used along both the directions. This behaviour is motivated by the strong

bending/twisting coupling, which makes the solution unavailable by separation of variables, as

demonstrated by Wang [60].

From Table 1, it is also clearly visible that convergence is much faster for Legendre polynomials

than trigonometric functions. For lay-up L1, errors higher than 6% are obtained on the fundamen-

tal frequency of the plate even for trigonometric expansions of 50 terms. The only exception is

given by lay-up L2, where the present solution shows no difference with the exact solution. Indeed,

L2 is a cross-ply configuration, for which the exact solution exists in trigonometric form. For this

special case, the exact solution is thus exactly matched by the trigonometric set assumed in the

Ritz method.

It is worth noting that the Ritz results of Table 1 are upper bound predictions. This is not the

case for the Abaqus S4R results, which are based upon reduced integration, thus convergence from

above cannot be guaranteed. When comparing Ritz solutions with Abaqus S4 results, it is observed

that frequency values obtained with S4 elements are higher than predictions computed by the Ritz
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method using Legendre polynomials. Recalling that FEM results are here obtained with highly

refined meshes, it can be noted the better accuracy-to-degrees-of-freedom ratio offered by the Ritz

approach. With this regard, the total number of Ritz degrees of freedom, for R equal to 100, is

10000, two orders of magnitude less than Abaqus models.

Finally, it is observed that, for the examples here proposed, the elastic coupling responsible

for the most detrimental effects on the convergence is the bending/twisting one. Membrane-

bending/twisting coupled behaviour, as those characterizing the constitutive law of lay-ups L1,

L3 and L4, have a minor impact on the convergence of the solutions.

3.1.2 Effect of flxural anisotropy

Given the effects of bending/twisting coupling on the convergence of the method, another example

is considered in Table 2 involving a thin plate made of one single ply only with fibers oriented at

θ degrees. Results with three different angles θ = 15, 30, 45 are reported in order to highlight how

the results are affected by increasing amount of flexural anisotropy. The values in Table 2 refer

to the first natural frequency and the nondimensional buckling force per unit length according to

Eq. (27). The comparison is presented against refined Abaqus results obtained with S4R and S4

elements.

The results clearly show that the convergence becomes markedly slower as the flexural anisotropy,

which is maximum when θ is equal to 45, is increased. This conclusion holds both for vibration and

buckling analysis. With this regard, increasing values of flexural anisotropy render trigonometric

functions more and more inadequate. The errors with respect to finite element results for the

configuration with θ equal to 15 are well below 1%, while they are more than 3% and 6% when θ

is equal to 30 and 45.

It is worth noting that the errors achieved for the first natural frequency are, in general, smaller

than those relative to the buckling force, as also observed by Stone and Chandler [24]. The main

reason for this discrepancy is given by the relation between the result and the eigenvalue of the

problem, and not by the kind of problem itself. More specifically, the natural frequency depends

on the square root of the problem’s eigenvalue, while the buckling force depends linearly on the

eigenvalue itself. It can be shown that eω ≈
√
ebuckle, where eω and ebuckle are the ratios between

the approximate and the exact solutions associated with the frequency and buckling force predic-

tion, respectively.
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For the sake of completeness, the plot in Figure 3 illustrates the results obtained for various angles

θ ranging from 0 to 90 degrees by using Legendre and trigonometric functions in the Ritz method,

as compared to Abaqus S4R results.

3.1.3 Effect of boundary conditions

The effect of anisotropy cannot be analyzed without establishing a link with the boundary con-

ditions. Indeed, the solution for plates characterized by the same lay-up can exhibit different

convergence behaviour on the basis of the constraints specified at the boundaries. This effect is

assessed in Table 3, both for the free vibration and buckling response of the same plate of Example

2 made of one single ply oriented at 45 degrees. According to the convention adopted, the first and

the third edges are those at ξ = −1 and ξ = +1, while the second and the fourth ones are those at

η = −1 and η = +1, respectively.

The results are presented by using a relatively low number of Legendre polynomials in the Ritz

series, R = S = 20, and by exploiting the efficiency of the implementation proposed in Section 2.3

to derive highly refined results with 100 × 100 functions.

As seen from Table 3, the presence of natural boundary conditions is responsible for increased

difficulties in the convergence of the solution and higher errors for a given number of admissible

functions. Indeed, all of the conditions characterized by combinations of free and simply-supported

conditions are the most challenging ones. This is mainly due to the difficulties of the assumed ap-

proximation, obtained by separation of variables, to approximate the vanishing moment condition

along the edges. On the contrary, it can be seen that clamped conditions, which are of essential

type, tend to facilitate the convergence of the solution. Whenever two or more clamped edges are

present, the use of 20× 20 functions is generally sufficient to obtain accurate results. In this sense,

the fully clamped plate represents the most favorable case, and the use of 20 functions guarantees

convergence up to the fourth digit.

The role played by the material anisotropy is assessed in Table 4, where the fundamental frequency

parameter and the compressive buckling force are reported by comparing Abaqus results and Ritz

solutions computed with R = S = 50. All of the elastic constants are kept unchanged expect for

E1, which is varied to obtain different values of orthotropy ratios. As expected, the errors tend to

get smaller as the ratio E1/E2 is reduced, irrespective of the constraints along the plate bound-
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ary. Indeed, smaller values of the orthotropy ratio are associated with smaller degrees of flexural

anisotropy. The drop of the errors when the ratio is reduced from the original value of 73.36 to 20 is

noticeable. It is worth noting that the materials commonly used nowadays in advanced composite

structures are rarely associated with orthotropy ratios higher than 30-40. However, the reference

case with E1/E2 = 73.36 is selected to exaggerate the effects of elastic couplings and show the

capabilities of the method to properly handle configurations involving extreme levels of anisotropy.

3.1.4 Benchmark results for highly anisotropic plates

The numerical efficiency of the proposed Ritz implementation is here exploited to obtain additional

solutions for a square plate with one ply oriented at θ. The following results could be used as a

valuable reference for future benchmarking of novel numerical methods devoted to the analysis of

anisotropic plates, where no exact solutions are available. On the basis of the results discussed

in previous examples, simply-supported boundary conditions are assumed, as they constitute a

challenging set of conditions for the convergence and accuracy of the method in the presence of

high flexural anisotropy. Highly refined upper bound predictions are reported in Table 5 for different

orthotropy ratios using up to 250 × 250 Legendre functions. To the best of the author’s knowledge,

such a level of refinement is reported for the first time in the literature. Indeed, only few dozens

of admissible functions along each direction have been typically adopted in previous application

of the Ritz method to anisotropic laminates. As shown before, a small number of terms in the

Ritz approximation is inadequate for guaranteeing proper accuracy for problems characterized by

extreme anisotropy. On the contrary, the results of Table 5 with R = S = 250 can be considered as

very accurate upper bound solutions, which may prove particularly useful as no exact results can

be derived for the test cases under investigation.

3.2 Thick plates

This second part is devoted to the analysis of moderately thick and thick plates, in particular with

the aim of investigating how the effects of extreme anisotropy on the numerical behavior of the Ritz

solution are influenced by the plate thickness ratio. The efficiency of the present implementation

allows to manage Ritz approximations with a huge number of admissible functions, thus leading to

vibration and buckling results for highly anisotropic plates with a degree of refinement not available

in previous research efforts.
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The first set of results considers square plates characterized by width-to-thickness ratios a/h ranging

from 5 to 100. Two distinct configurations, characterized by elastic couplings of different nature,

are analyzed. The first configuration is a symmetric lay-up with three plies at [45/− 45/45], while

the second is a non-symmetric configuration with two plies at [±45].

The first fundamental frequency of each case is reported in Table 6, where various kinematic

theories are adopted. FSDT is applied by considering two different values of the shear factor. In

the first case, the shear factor is taken unitary; in the second case, denoted with FSDT*, the shear

factor is computed by adopting the technique implemented in the Abaqus S4-family elements [61].

For this specific case, the shear factor is equal to 0.7420 for the first layup, and 0.0677 for the

second. In addition, the equivalent single layer theories ED332 and ED554 and the layerwise LD222

are employed. The comparison of the Ritz predictions using Legendre polynomials is presented

against Abaqus 2D, using S4R elements, and 3D analyses. The latter are performed by making

use of C3D8I elements, 8-node elements with incompatible modes. The mesh sizes, defined after a

preliminary convergence study, are defined by considering:

• 100× 100 elements along the planar directions, and 4 elements per ply for a/h > 10

• 80× 80 elements along the planar directions, and 8 elements per ply for a/h ≤ 10

The choice is motivated by the prevalent role played by the transverse shear deformations as the

ratio a/h becomes smaller. It follows that thicker configurations, as it is the case for a/h = 5 and

10, need to be described with a higher through-the-thickness refinement. In this cases, the in-plane

description is reduced to 80 elements to mitigate the computational burden.

As observed from Table 6, the plate response becomes increasingly dominated by the through-

the-thickness behavior as the ratio a/h is reduced. It is noted that the refinement along in-plane

directions given by the increase of terms R in the assumed Ritz series becomes less and less im-

portant, and what drives the accuracy of the solution is the enrichment of the assumed kinematic

description rather than the adoption of more admissible functions. For example, for a thick plate

with layup [45/ − 45/45] and a/h = 5, the deviation of the Ritz prediction from the reference 3D

analysis goes from approximately 10.7% to only 10.5% by changing R from 10 to 60 when the

plate is modeled according to FSDT. Instead, only 10 functions are needed to have an accuracy of

approximately 1.6% when the theory is changed to ED554. Thus, in this case, the best tradeoff in

terms of degrees of freedom could be achieved by increasing the order of the theory while keeping

19



relatively low the number of admissible functions. When moderately thick plates are analyzed,

i.e. a/h = 25, it is more difficult to find the optimal balance between number of trial functions

and order of the theory. For this class of panels, the availability of a Ritz formulation capable of

handling efficiently several degrees of freedom could be important to detect the model with the

best accuracy-to-degrees-of-freedom ratio.

The results of Table 6 demonstrate also the advantages given by the use of FSDT with a shear

factor computed referring to an advanced approach, as it is done in Abaqus. For instance, for the

plates with lay-up [45/− 45/45], the results obtained with FSDT∗ are very close to those available

from high-order theories. However, the adoption of FSDT∗ can give very inaccurate predictions in

the presence of elastic couplings associated with the plate non-symmetry, thus suggesting the adop-

tion of higher-order theories not demanding for a shear factor evaluation. Indeed the approach

adopted from Abaqus [61] to estimate the shear correction factor relies on the assumption that

shell section directions are coincident with the principal bending directions. This is not the case

for the considered anti-symmetric angle-ply layup, which is characterized by a membrane-twisting

coupling. The shear factor obtained from the approach of Abaqus and employed in the FSDT∗

model is 0.0677: this excessively low value underestimates the transverse shear stiffness and yields

excessively low eigenfrequencies. Since high-order theories are capable of representing the through-

thickness distribution of the transverse shear, they do not require shear correction factors and can

provide more accurate results, as revealed by the percent differences with the 3D finite element

solutions.

As done in the case of thin plates, a comparison is here presented for different choices of the ad-

missible set when they are applied to the analysis of thick plate problems. The results are obtained

with models based on ED332 theory and are plotted in Figures 4 and 5 in terms of the first natural

frequency and the compressive buckling load, respectively. In the first case, three lay-ups are con-

sidered, with plies at [θ], [±θ] and [θ/ − θ/θ]. The buckling response of the anti-symmetric layup

[θ/ − θ] is non bifurcational and shall hence be omitted. The results are obtained by considering

R = S = 30 functions and are reported in terms of percent differences between the values obtained

by using the extended trigonometric shape functions and those computed by means of Legendre

polynomials.

As observed from Figure 4, the highest differences in the estimation of the fundamental frequency

occur when θ = 45. For the symmetric lay-ups, the errors due to the adoption of extended trigono-

20



metric functions tend to increase significantly for high values of a/h. This behavior is due to the

poor performance of the trigonometric functions in describing the skewed pattern of the first mode

shape associated with the plate flexural anisotropy. As the thickness increases, the dominant role

played by the in-plane response is progressively replaced by the through-the-thickness behavior,

which does not depend upon the admissible functions adopted. Despite the errors observed for

thick plates are relatively smaller – thus the use of trigonometric function is not as detrimental as

it is for thin plates –, it should be noticed that the errors can be as high as 2% when a/h is equal

to 10. On the contrary, the anti-symmetric configuration exhibits a response which is substantially

independent of the plate thickness ratio. Indeed, the in-plane response does not present a complex

skewed pattern, and is properly described even by trigonometric functions. It follows that no im-

provements are achieved when the through-the-thickness response becomes prevalent.

With regard to the buckling response, as reported in Figure 5, the behaviour is similar to that

observed for free vibrations. In this case, the magnitude of the errors is higher, and the relation

between the two errors can still be approximated as eω and ebuckle. The maximum difference is

observed for plates with a/h=100, and θ equal to 42 and 43 for the one- an three-ply configurations,

respectively. The sharp drop of error observed for higher values of θ is due to a mode change from

one to two halfwaves, which is predicted by the trigonometric functions but not by the Legendre

ones. For clarity purposes, the reasons for these discrepancies are further investigated in Figure 6,

where the mode shapes are reported for a set of significant points associated with the one-ply con-

figuration with a/h=100. Thus, apart from the effects associated with shifted buckling modes, the

shape of the curve still resembles the one obtained for the free vibration problem.

3.3 Remarks on the completeness of admissible functions

An aspect that is sometimes overlooked when developing Ritz models is the completeness of the

assumed basis. With this regard, it is useful to remind that completeness has to be defined with

respect to the strain energy norm, which is, in general, different from the L2 norm [47]. The energy

norm involves the first derivatives – or, in the particular case of CLT, even the second ones – of the

displacement components. The set of trial functions should then guarantee the ability of getting

arbitrarily close to the true strain energy value.

A classical example where the completeness requirement is not fulfilled is encountered in the analysis

of anisotropic simply-supported plates by means of the Navier-type expansion of Eq. (25). Whilst
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this set of functions satisfies the essential boundary conditions, the completeness is guaranteed

in the L2 norm, but not in the strain energy one. It follows that the displacement field cannot

represent a constant deformation field and, unless special conditions are met, the solution cannot

converge to the exact one. To clarify this aspect, an anti-symmetric plate with stacking [±45]

is considered. The plate is square and simply-supported at its four edges. The convergence of

the first fundamental frequency as R increases is reported in Figure 7 for thin and thick plates,

characterized by a/h equal to 100 and 5, respectively. The results are obtained by considering

ED332 theory, and a comparison is provided for Ritz expansion based on Legendre polynomials

and trigonometric functions in the form of Eqs. (25) and (26). It is observed that Legendre and

extended trigonometric functions converge to the same solution, although with a different rate. On

the contrary, the Navier-type solution tends asymptotically to an overstiff solution. This trend is

more clear for thin plates, where the role played by in-plane behavior is predominant. In any case,

the differences are not negligible even for the thick configuration. In this example, the errors are

mainly related to the coupling between in-plane and out-of-plane response induced by the non-

symmetry of the laminate. In fact, the bending deflections happen in conjunction with in-plane

displacements, and the inability to describe a constant strain state has the effect of overconstraining

the solution.

It is instructive to discuss a second example, which could appear as less intuitive, where the absence

of polynomial contributions prevents convergence to correct results. For this purpose, a symmetric

lay-up is considered, with one ply oriented at 45. Two length-to-thickness ratios are analyzed in

order to remark the role played by this parameter. The first nondimensional vibration frequency

of the plate is plotted in Figure 8, where the curves are relative to the solutions obtained using

Legendre polynomials and trigonometric shape functions, with and without the linear polynomial

terms (see Eqs. (25) and (26)). The results highlight a completely different mechanisms with

respect to the previous example. In the case of thin plates, no distinction exists between the

two trigonometric solutions. The convergence rate is very low due to the high amount of flexural

anisotropy, but the frequency parameter converges to the correct solution, provided the number of

functions is sufficiently high. In this case, the bending response is uncoupled from the membrane

one, thus the inability to represent a constant strain has no strong impact on the results. On the

contrary, the Navier-type functions lead to erroneous results when a/h is reduced to 5. Indeed,

the behavior of thick plates is inherently three-dimensional, and the coupling between in-plane and
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out-of-plane deflections happens by means of the constitutive 3D law. It follows that the bending

deflections promote the in-plane displacements, whose description is lacking of the presence of a

linear term. It is also observed that extended trigonometric functions converge much faster than

in the case of thick plates. As pointed out previously, the issues related to the flexural anisotropy

become less relevant for thick plates, as the through-the-thickness behavior gets more pronounced.

3.4 Remarks on the numerical efficiency of different basis

In previous examples, results associated with the generic wording orthogonal polynomials were com-

puted by adopting Legendre polynomials as admissible functions. It was anticipated that identical

values would have been obtained if Chebyshev polynomials were employed. An explicit comparison

between the two polynomial sets is here provided for the four lay-ups L1 to L4 considered in Section

3.1.1.

Table 7 shows the first nondimensional frequency when the laminates have two sets of boundary

conditions, fully simply-supported and fully clamped, and two different thickness ratios, a/h = 10

and a/h = 100. Thin plates are modeled according to FSDT, whereas the higher order theory

ED332 is adopted to better represent the moderately thick configurations. A number of 30 × 30

polynomial functions is used in all the cases. As seen, all the values in Table 7 are identical. This

outcome is in agreement with the findings of Ref. [14], where different sets of polynomial expressions

were compared and demonstrated to lead to equal results, and it can be explained by recalling that

the method of Ritz operates a projection of the exact solution onto the vector space spanned by

the trial functions. In this case, the vector space spanned by Legendre and Chebyshev polynomials

is the same, thus the solution is approximated with the same level of accuracy. Slight differences

may occur if the in-plane integrals are computed numerically, as it is done in most of the imple-

mentations available in the literature. On the contrary, no differences can be appreciated whenever

integration is performed exactly.

Despite the same degree of accuracy offered by the two set of functions, the computational efficiency

is, in general, very different. In particular, noticeable differences regard the degree of sparsity of

the resulting matrices, which, in turn, affects the time for computing the solution.

As an example, the percent number of nonzero terms in the stiffness matrix of the models based

on ED332 is shown in Table 8. For the sake of completeness, in addition to Chebyshev and Leg-

endre polynomials, the analysis now includes the models obtained using extended trigonometric
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functions. For the first two sets of functions, the results in the brackets illustrate the case where

the integration is carried out numerically by employing Gauss quadrature with R points along both

directions. Instead, trigonometric functions are always integrated analytically due to the simplicity

of the related expressions. As seen from Table 8, whenever integration is carried out analytically,

Legendre polynomials are always associated with a higher degree of sparsity than Chebyshev ones.

The difference is remarkable and so the impact on the computational cost. At the same time,

the advantages of performing analytical integration of the in-plane integrals can be appreciated.

Numerical integration determines the loss of any sort of sparsity – in some cases the stiffness matrix

is completely full –, and no significant differences can be observed between different sets of orthog-

onal polynomials. Trigonometric functions, whose adoption is restricted to the simply-supported

case, are generally less advantageous than Legendre polynomials. At the same time, the degree of

sparsity is higher than for Chebyshev polynomials, although convergence is generally slower. In the

case of layup L2, which is a cross-ply configuration, the orthogonality of sines and cosines is fully

exploited, and the stiffness matrix is almost diagonal. This is a special case and, in the presence

of any additional elastic coupling, the degree of sparsity offered by trigonometric functions is lost.

This situation is further illustrated in Figure 9, where the sparsity pattern of the stiffness matrix

is reported for different functions and lay-ups, after performing integration in closed-form manner.

As seen, the number of nonnull contributions is higher when the principal axis are aligned with

off-axis directions, as it happens for the lay-up [45]. This observation holds independently of the

kind of functions adopted. At the same time, the highest degree of sparsity offered by Legendre

polynomials can be clearly appreciated.

Given the efficiency of the proposed implementation, it is interesting to provide an insight into

the computational time required by typical calculations. A comparison is presented against the

results of Moreno-Garcia et. al [23], where computational times are reported for different sets of

shape functions. A fully clamped isotropic plate is taken as a benchmark; dimensions and material

properties are those of Ref. [23]. The time needed to extract the first ten frequencies is reported in

Figure 10(a) using a CPU with 32 GB of RAM, and 4 Intel core i7 and at 4 GHz. The efficiency of

the present Ritz approach can be observed by the maximum time taken for an analysis using 100

shape functions along both the directions, approximately equal to 0.75 s. Conversely, the results

reported in Ref. [23] using modified characteristic functions (MCF) and orthogonal polynomials

(OP) require computational times which are several order of magnitudes higher. This discrepancy,
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partly due to the smaller amount of RAM memory used in the computations of Ref. [23], is believed

to be mainly motivated by the analytical integration here performed, and the subsequent advan-

tages in terms of sparsity. At the same time, the results demonstrate the advantages of Legendre

polynomials against Chebyshev ones. The same consideration holds in the case of higher-order

theories, as reported in Figure 10(b), where FSDT and ED554 theory are applied to the same test

case. It can be noted that, using 100 Legendre functions along both directions, FSDT results are

available in 3 s, while ED554 in 109 s. On the contrary, the time needed by Chebyshev polynomials

is several orders of magnitudes higher.

Worth of mention is the fact that no numerical instabilities are encountered as the number of func-

tions is increased. This was verified up to 100 functions in Figure 10, and even to 250 functions

in Table 5. This is in contrast with some results in the literature where the onset of complex

eigenvalues is claimed, see for instance Ref. [23], or ill-conditioning restrictions are detected [28].

4 Conclusions

This work has discussed aspects related to the application of the Ritz method to buckling and free

vibration analysis of highly anisotropic thin and thick plates. An implementation of the method is

specifically developed with the aim of obtaining high computational efficiency. In so doing, problems

with high degree of anisotropy, for which the convergence of the solution is particularly hard to

achieve, can be analyzed using a large number of trial functions, leading to an unprecedented level

of accuracy.

A set of exemplary results has been first presented for thin plates, showing that the most detrimental

effects on the convergence of the solution are due to flexural anisotropy. This is particularly

true in the presence of natural boundary conditions, such as simply-supported and free edges.

Novel refined upper-bound solutions are provided for the most challenging cases, using up to 250

admissible functions along each in-plane direction. It is worth noting that no ill-conditioning issues

nor numerical instabilities have been detected.

In the case of thick plates, the effects of flexural anisotropy are mitigated by the increasing role

played by the through-the-thickness response. As the width-to-thickness ratio decreases, it has been

shown that the accuracy of the solution is driven by the enrichment of the kinematic description

more than the increase in the number of trial functions. Therefore, a variable-kinematic formulation
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capable of representing plate theories of increasing refinement within an unified modeling framework

can be particularly convenient to preliminarily perform a tuning of the model to be used in the

actual analysis.

An extensive comparison among different sets of admissible functions has been also presented.

Overall, the results indicate the superiority of orthogonal polynomials with respect to trigonometric

functions. This is true for all the cases, apart from those for which an exact Navier-type solution

is available.

The advantages of adopting orthogonal polynomials are more relevant for thin plates, especially

in the presence of strong flexural anisotropy. However, their use is suggested also for thick plates

if accurate solutions are sought. Among the class of orthogonal polynomials, it was shown that

identical results are obtained if Legendre and Chebyshev polynomials are adopted. In spite of

that, a drastic difference exists in terms of computational efficiency as far as Legendre polynomials

are responsible for a higher degree of sparsity. This feature is properly exploited only if in-plane

integration is carried out analytically.
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Table 3: Effect of boundary conditions on the nondimensional frequencies ω1 and buckling force

Nx of thin square plates, using CLT.

ω1 Nx

20× 20 100× 100 Abaqus S4R 20× 20 100× 100 Abaqus S4R

CCCC 40.7737 (0.00) 40.7733 (0.00) 40.7744 55.3424 (-0.02) 55.3414 (-0.02) 55.3521

CCCF 20.2789 (0.11) 20.2587 (0.01) 20.2575 21.6492 (0.10) 21.6263 (0.00) 21.6266

CCCS 35.5083 (0.07) 35.4818 (0.00) 35.4826 46.8415 (0.08) 46.7962 (-0.02) 46.8034

CCFF 8.4186 (0.00) 8.4186 (0.00) 8.4190 11.3127 (-0.01) 11.3127 (-0.01) 11.3133

CCSF 18.5710 (0.12) 18.5478 (0.00) 18.5485 20.2404 (0.17) 20.2049 (-0.01) 20.2064

CCSS 30.8442 (0.86) 30.6018 (0.06) 30.5823 42.8148 (1.62) 42.1822 (0.11) 42.1342

CFCF 19.4496 (0.15) 19.4214 (0.01) 19.4203 20.5305 (0.06) 20.5162 (-0.01) 20.5175

CFFF 2.1652 (0.23) 2.1597 (-0.03) 2.1603 0.7140 (0.29) 0.7115 (-0.06) 0.7119

CFSF 9.7317 (0.13) 9.7199 (0.01) 9.7193 6.8058 (0.13) 6.7970 (0.00) 6.7968

CSCF 20.1439 (0.12) 20.1213 (0.01) 20.1202 21.4780 (0.13) 21.4503 (0.00) 21.4507

CSFF 4.6943 (0.12) 4.6887 (0.00) 4.6889 3.5002 (0.12) 3.4956 (-0.01) 3.4959

CSSF 18.0708 (0.16) 18.0424 (0.00) 18.0424 19.7576 (0.25) 19.7068 (-0.01) 19.7083

SCSC 32.3753 (0.13) 32.3324 (0.00) 32.3328 44.0880 (0.11) 44.0351 (-0.01) 44.0404

SCSF 9.3224 (0.18) 9.3057 (0.00) 9.3058 6.6576 (0.21) 6.6431 (0.00) 6.6434

SCSS 26.2909 (0.89) 26.0755 (0.06) 26.0598 36.2924 (0.25) 36.2020 (0.00) 36.2020

SFSF 8.2593 (0.22) 8.2410 (0.00) 8.2412 6.0182 (0.16) 6.0085 (0.00) 6.0087

SSFF 2.2628 (7.31) 2.1195 (0.52) 2.1086 1.9831 (15.17) 1.7399 (1.05) 1.7219

SSSF 9.0843 (0.52) 9.0395 (0.03) 9.0372 6.5108 (0.63) 6.4721 (0.03) 6.4702

SSSS 22.4097 (1.88) 22.0258 (0.14) 21.9952 31.4656 (3.74) 30.4147 (0.28) 30.3310

SFFF 3.5083 (0.03) 3.5066 (-0.01) 3.5071 1.4845 (-0.02) 1.4845 (-0.02) 1.4848
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Table 4: Effect of material orthotropy on first nondimensional frequency and compressive buckling

force. Square plate with one ply at 45. Results obtained using CLT and 50 × 50 functions.

E1/E2 CCSS SSSS SSFF

Ritz Abaqus S4R % diff Ritz Abaqus S4R % diff Ritz Abaqus S4R % diff

ω1 73.36 30.6645 30.5823 0.27 22.1228 21.9952 0.58 2.1556 2.1086 2.23

40 24.3788 24.3496 0.12 17.7266 17.6809 0.26 1.9457 1.9302 0.80

20 19.0884 19.0818 0.03 13.9644 13.9543 0.07 1.7513 1.7486 0.15

10 15.2679 15.2672 0.00 11.1561 11.1547 0.01 1.5743 1.5736 0.04

Nx 73.36 42.3478 42.1342 0.51 30.6813 30.3308 1.16 1.7999 1.7215 4.55

40 32.5627 32.4791 0.26 23.1637 23.0360 0.55 1.4696 1.4461 1.63

20 23.8467 23.8270 0.08 16.4563 16.4293 0.16 1.1914 1.1878 0.30

10 17.2488 17.2465 0.01 11.4683 11.4651 0.03 0.9597 0.9588 0.09
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Table 5: Benchmark solutions derived using R × R functions. Simply-supported plate with one

ply oriented at θ.

ω1 Nx

θ 30 45 60 30 45 60

E1/E2 R=100 R=100

73.36 22.7151 22.0258 22.7151 38.9076 30.4147 24.1977

40 18.0025 17.6872 18.0025 26.8234 23.0524 19.3150

20 14.0540 13.9539 14.0540 17.7112 16.4281 15.0587

10 11.1989 11.1544 11.1989 11.8983 11.4641 11.7180

E1/E2 R=150 R=150

73.36 22.7024 21.9934 22.7024 38.8649 30.3253 24.174

40 17.9979 17.6753 17.9979 26.8080 23.0188 19.307

20 14.0530 13.9513 14.0530 17.7082 16.4209 15.057

10 11.1988 11.1540 11.1988 11.8980 11.4633 11.717

E1/E2 R=200 R=200

73.36 22.6964 21.9772 22.6964 38.8446 30.2806 24.1635

40 17.9959 17.6698 17.9959 26.8011 23.0031 19.3037

20 14.0526 13.9502 14.0526 17.7070 16.4179 15.0566

10 11.1987 11.1539 11.1987 11.8979 11.4630 11.7176

E1/E2 R=250 R=250

73.36 22.6929 21.9674 22.6929 38.8328 30.2538 24.1571

40 17.9948 17.6666 17.9948 26.7974 22.9941 19.3018

20 14.0524 13.9496 14.0524 17.7064 16.4163 15.0563

10 11.1987 11.1538 11.1987 11.8978 11.4628 11.7176
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Table 6: First nondimensional frequencies ω1 for SSSS square plates with different elastic couplings.

(Note: a used as reference for percent difference evaluation).

Layup a/h R FSDT FSDT* ED332 ED554 LD222

[45/− 45/45] 100 10 26.1231 (1.73) 26.0921 (1.61) 26.1046 (1.66) 26.0928 (1.61) 26.0899 (1.60)

20 25.8567 (0.69) 25.8294 (0.58) 25.8290 (0.58) 25.7989 (0.47) 25.7871 (0.42)

60 25.7573 (0.30) 25.7330 (0.21) 25.7174 (0.15) 25.6690 (-0.04) 25.6481 (-0.12)

Abaqus C3D8I-S4R: 25.6794a-25.6980

25 10 25.1194 (3.15) 24.8190 (1.92) 24.8958 (2.24) 24.7957 (1.83) 24.7655 (1.70)

20 24.9276 (2.37) 24.6409 (1.19) 24.6860 (1.37) 24.5533 (0.83) 24.5057 (0.63)

60 24.8636 (2.10) 24.5823 (0.95) 24.6037 (1.04) 24.4498 (0.40) 24.3963 (0.19)

Abaqus C3D8I-S4R: 24.3512a-24.5716

5 10 15.9845 (10.76) 14.6610 (1.59) 14.9577 (3.64) 14.6661 (1.62) 14.6294 (1.37)

20 15.9616 (10.60) 14.6454 (1.48) 14.9249 (3.42) 14.6282 (1.36) 14.5908 (1.10)

60 15.9546 (10.55) 14.6407 (1.45) 14.9101 (3.31) 14.6112 (1.24) 14.5731 (0.98)

Abaqus C3D8I-S4R: 14.4317a-14.6405

[±45] 100 10 23.8062 (0.92) 23.3349 (-1.07) 23.7503 (0.69) 23.7072 (0.50) 23.7266 (0.59)

20 23.8021 (0.91) 23.3296 (-1.10) 23.6882 (0.42) 23.6174 (0.12) 23.6443 (0.24)

60 23.8012 (0.90) 23.3284 (-1.10) 23.6674 (0.33) 23.5932 (0.02) 23.6142 (0.11)

Abaqus C3D8I-S4R: 23.5884a-23.3286

25 10 23.2574 (5.12) 18.4353 (-16.68) 22.5929 (2.11) 22.2454 (0.54) 22.3838 (1.17)

20 23.2521 (5.09) 18.4296 (-16.70) 22.5192 (1.78) 22.1676 (0.19) 22.2867 (0.73)

60 23.2509 (5.09) 18.4283 (-16.71) 22.5138 (1.76) 22.1610 (0.16) 22.2793 (0.70)

Abaqus C3D8I-S4R: 22.1252a-18.4295

5 10 16.1713 (20.14) 5.7214 (-57.50) 14.1054 (4.79) 13.5733 (0.84) 13.7696 (2.30)

20 16.1670 (20.11) 5.7212 (-57.50) 14.0858 (4.64) 13.5536 (0.69) 13.7486 (2.14)

60 16.1660 (20.10) 5.7211 (-57.50) 14.0768 (4.58) 13.5451 (0.63) 13.7390 (2.07)

Abaqus C3D8I-S4R: 13.4606a-5.7220
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Table 7: First nondimensional frequencies ω1 using different sets of orthogonal polynomials.

a/h=10, ED332 a/h=100, FSDT

Legendre Chebyshev Legendre Chebyshev

SSSS Layup L1 18.1320 18.1320 22.0812 22.0812

Layup L2 13.4136 13.4136 14.4961 14.4961

Layup L3 19.0494 19.0494 23.8015 23.8015

Layup L4 15.1286 15.1286 17.2967 17.2967

CCCC Layup L1 24.2226 24.2226 40.3987 40.3987

Layup L2 23.7414 23.7414 30.8179 30.8179

Layup L3 22.8171 22.8171 29.9020 29.9020

Layup L4 23.1717 23.1717 31.3885 31.3885

38



Table 8: Percent number of not-null terms in the stiffness matrix using analytical and numerical

integration; ED332 theory, 30 × 30 functions. (a using numerical integration).

Legendre Chebyshev Extended trig.

SSSS Layup L1 5.08 (83.47a) 39.22 (83.47a) 20.15

Layup L2 2.54 (93.26a) 23.41 (96.13a) 0.19

Layup L3 4.72 (99.03a) 37.57 (99.99a) 18.39

Layup L4 5.91 (100.00a) 47.35 (100.00a) 24.50

CCCC Layup L1 2.98 (83.47a) 39.88 (83.47a) /

Layup L2 1.83 (96.64a) 24.17 (96.69a) /

Layup L3 2.86 (99.99a) 38.22 (100.00a) /

Layup L4 3.60 (100.00a) 48.14 (100.00a) /
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Figure 1: Laminate with coordinate system, dimensions and numbering of the edges.
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Figure 2: Construction of the Ritz integrals matrix (R = 2 and S = 3): evaluation of the Ritz

kernels, expansion and final assembly.
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Figure 3: Comparison between Ritz and finite element results for different ply angles θ. Ritz results

obtained using 50 × 50 functions: (a) first nondimensional frequency, (b) nondimensional buckling

force.
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(c)

Figure 4: Percent difference between the first frequency ω1 obtained with Legendre and extended

trigonometric functions (R=S=30). Simply-supported plate, ED332 theory and lay-up: (a) [θ], (b)

[±θ], (c) [θ/-θ/θ].
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(b)

Figure 5: Percent difference between the buckling force per unit length Nx obtained with Legendre

and extended trigonometric functions (R=S=30). Simply-supported plate, ED332 theory and lay-

up: (a) [θ], (b) [θ/-θ/θ].
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Legendre        Extended trig.

Legendre        Extended trig.

Legendre        Extended trig.

Legendre        Extended trig.

Figure 6: Comparison of mode shapes predicted by Legendre and extended trigonometric functions

for lay-up [θ] and a/h=100.
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Figure 7: Convergence of the solution for different sets of shape functions using ED332 theory. First

fundamental frequency ω1 of SSSS plate, with lay-up [± 45].
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Figure 8: Convergence of the solution for different sets of shape functions using ED332 theory. First

fundamental frequency ω1 of SSSS plate, with lay-up [45].
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(a) (b) (c)

(d) (e) (f)

Figure 9: Sparsity pattern of the stiffness matrix using ED332 theory and 10 × 10 functions: (a) lay-

up [45], Legendre polynomials, (b) lay-up [45], Chebyshev polynomials, (c) lay-up [45], extended

trigonometric functions, (d) lay-up [0/90], Legendre polynomials, (e) lay-up [0/90], Chebyshev

polynomials, (f) lay-up [0/90], extended trigonometric functions.
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Figure 10: Computational time against number of shape functions R × R: (a) CLT and comparison

with Ref. [23], (b) FSDT and ED554.
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