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ABSTRACT

The human brain can perform advanced computing tasks, such as learning, recognition, and cognition, with ex-
tremely low power consumption and low frequency of neuronal spiking. This is attributed to the highly-parallel
and the event-driven scheme of computation, where energy is used only when and where it is needed for pro-
cessing the information. To mimic the human brain, the fundamental challenges are the replication of the
time-dependent plasticity of synapses and the achievement of the high connectivity in biological neuron net-
works, where the ratio between synapses and neurons is around 10% This combination of high computing capa-
bility and density scalability can be obtained with the nanodevice technology, notably by resistive-switching
memory (RRAM) devices. In this work, the recent advances in RRAM device technology for memory and synaptic
applications are reviewed. First, RRAM devices with improved window and reliability thanks to SiOy dielectric
layer are discussed. Then, the application of RRAM in neuromorphic computing are addressed, presenting hybrid
synapses capable of spike-timing dependent plasticity (STDP). Brain-inspired hardware featuring learning and
recognition of input patterns are finally presented.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Moore's law of transistor scaling is approaching its ultimate limit
mainly due to the excessive power consumption caused by both static
and dynamic leakage processes [1]. The power consumption issue may
in principle be attenuated by novel devices with lower voltage supply
and steep subthreshold slope, including finFET, trigate FET [2], tunnel
FET [3], negative capacitance FET [4], and alternative non-charge
based switch concepts [5]. On the other hand, novel computing archi-
tectures are proposed to solve the von Neumann bottleneck, where
the physical separation between the data processing and the memory
units in conventional computers pose increasing limitations of latency
and power consumption, especially for data centric computation [6].
The von Neumann bottleneck can be solved either by creating a 3D
structure for co-integration of computing and memory elements [7],
or by introducing whole new architecture concepts of in-memory com-
puting, such as in-memory logic [8-19], and neuromorphic computing
[20-29]. These research efforts generally require novel switches, such
as resistive switching memory (RRAM) or phase change memory
(PCM), which can serve as memory and computing element at the
same time. For instance, in-memory computing circuits take advantage
of the PCM ability to add multiple applied pulses in its crystalline frac-
tion, thus serving as a logic gate [9,14] or an algebraic counter [30,31].
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Similarly, RRAM logic gates rely on the conditional switching in one or
more output RRAMs, depending on the applied voltage amplitudes
and the states of input RRAM devices [8,12,15,16]. On the other hand,
RRAM and PCM can be used as synaptic elements in neural networks,
for their ability to tune the device resistance [32-39]. Most recently,
neuron circuits based on RRAM [40] and PCM devices [41] have also
been reported to allow for the area downscaling of the integrate-and-
fire circuit. The use of RRAM devices as synaptic or neuron elements,
however, requires optimization of certain properties, such as multilevel
operation, high on/off ratio, linear change of the resistance upon set and
reset, and good reliability. In addition, brain-inspired circuits require
synaptic plasticity according to spike timing, which also poses critical
challenges at the device and circuit viewpoints.

This work reviews the recent advances in the development of brain-
inspired neuromorphic computing circuits based on RRAM. First, the
materials-engineered RRAM to address emerging needs in
neuromorphic circuits are discussed. Then, the development of synaptic
circuits capable of spike-timing dependent plasticity (STDP), similar to
the human brain, will be reviewed. Finally, spiking neural networks
with plastic synapses capable of evidencing learning, recognition, signal
reconstruction, and error correction, will be reviewed and discussed.

2. RRAM engineering for brain-inspired computing

In applications as synaptic and neuron elements, RRAM offers enor-
mous advantages from the standpoint of areal density, due to the small
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and scalable size of a single memory device within a crossbar array. At
the same time, there are significant performance and reliability require-
ments that should be satisfied for RRAM implementation in
neuromorphic circuits. One of the most studied application of RRAM is
the synaptic element in a deep learning network, consisting of a
feedforward multilayer perceptron (MLP) network where the learning
process takes place via backpropagation [42]. Fig. 1 shows an example
of MLP with 4 neuron layers, including one input, one output, and 2 hid-
den layers, where the synaptic connections are made of RRAM devices.
In an MLP, learning relies on the supervised backpropagation algorithm
[23,26,27,42], where the error signal €, namely the difference between
the teacher signal and the real output, linearly controls the update of
each synaptic weight in the network.

2.1. Linearity and symmetry of weight update

Fast and efficient learning requires that each synapse is potentiated
or depressed by blind pulses, independent of the initial resistive state.
This requires (i) a high linearity of the RRAM characteristics, where a
fixed applied pulse results in a known potentiation/depression by an
additive or multiplicative term, and (ii) a high symmetry of update,
where similar update characteristics are obtained under positive and
negative bias, for potentiation and depression, respectively. Symmetric
characteristics are generally difficult to achieve with conventional
metal-oxide RRAM devices, due to the different set and reset transitions.
Fig. 2a shows a schematic illustration of a RRAM device with TiN/HfO,/
TiN stack, where an oxygen-deficient layer was formed at the bottom
electrode to enable injection and migration of defects (oxygen vacancies
and metallic impurities) during forming and set transition [43]. Fig. 2b
shows the corresponding current-voltage (I—V) characteristics of the
device, indicating an abrupt set transition and a gradual reset transition.
While the reset transition can in principle be used to carefully tune the
synaptic weight [44], the abrupt set transition does not allow for a volt-
age-controlled tuning of the resistance. Note that this is similar to the
case of PCM synapses, where the set (crystallizing) transition is suffi-
ciently gradual thanks to nucleation and growth mechanisms, whereas
the reset (amorphizing) transition is abrupt. The strongly asymmetric
potentiation/depression is generally solved by adopting a 2-resistor
(2R) synapse, where the 2 devices play the role of excitatory and inhib-
itory synapse to control the weight update in both directions [23,24].

While synaptic applications require linear weight update, real RRAM
devices generally show a non-linear characteristic, as shown in Fig. 3
[45], comparing three RRAM devices based on (a) TaO/TiO, bilayer

Input layer

Hidden layer 1

Hidden layer 2

stack [46], (b) polycrystalline Pr;_,CayMnOs; (PCMO) [47,48], and (c)
amorphous Si with an Ag top electrode [32]. The figure shows the mea-
sured conductance of the RRAM device as a function of the number of
potentiating/depressing pulses of equal amplitude. All RRAM technolo-
gies shown in the figure display large non-linearity in both potentiation
and depression characteristics, with non-linearity coefficients ranging
between 1 and 6, thus potentially resulting in inaccuracies of pattern
recognition after learning for image and speech applications [23]. It
has been shown that the adoption of voltage pulses with linearly in-
creasing amplitude allows for an improvement of linearity of weight up-
date, however at the expense of additional circuit complexity and a
corresponding loss of speed [48]. Alternative one-transistor/2-resistor
(1T2R) structures have been proposed to improve linearity, although
resulting in a slightly larger area occupation in the synaptic array [49].

2.2. Stability of conductance state

RRAM synapses must also display ideal characteristics from the
viewpoint of reliability, including retention at high temperature, good
endurance, and immunity to noise. The latter has been carefully studied
in RRAM devices for memory application, especially for the high resis-
tance state (HRS) where the random network of conductive channels
is more impacted by defect -related fluctuations [50]. The study of
HRS indicates a complex noise structure which includes both random
telegraph noise (RTN) and random walk (RW), the latter consisting of
abrupt changes of resistance with purely random distributions of ampli-
tude and time tgy. This is shown in Fig. 4a, which compares the time
evolution of the measured resistance for 3 individual cells in a memory
array [50]. The figure shows that the resistance can randomly change
from time to time, resulting in an overall increase, decrease, or stability
of the cell resistance. A careful study of RW fluctuations indicates that
RW has a time-dependent activity, where the probability g(t) of RW
fluctuating within a given time step At decreases with time according
to g(t) ~t~ ! [50]. The time-dependent fluctuation of RW was attributed
to the distributed energy barrier for structural relaxation of newly gen-
erated defects in the dielectric layer. On the other hand, RTN is generally
attributed to individual unstable defects, affecting the conductance of
the localized path in the memory device [51,52]. The conductive path
might consist of the conductive filament in the low resistance state
(LRS), or the percolation path of Poole-Frenkel hopping in the HRS.
The localized nature of RTN is evidenced in Fig. 4b, showing the resis-
tance amplitude AR of RTN divided by the average resistance R, as a
function of R [52]. Data are collected from several RRAM materials
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Fig. 1. Schematic illustration of a MLP with 4 layers (input, output, and 2 hidden layers). The number of layers and of neurons in each layer is only for the purpose of representation. Each
neuron in one layer receives input from all neurons in the previous layer and provides output to all neurons in the next layer. According to the backpropagation scheme, the actual output Y;
is compared to the desired output o; to compute an error &;, which is then used to update the synaptic weights in each layer.
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Fig. 2. Schematic of a RRAM device with HfO, dielectric layer and TiN electrodes (a) and I—V curves showing set and reset transitions at positive and negative voltages, respectively (b).
Simulation results from an analytical model for RRAM are also shown. Reprinted with permission from [43]. Copyright (2014) IEEE.
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Fig. 3. Synaptic potentiation and depression characteristics for various RRAM materials, namely TaO,/TiO, [46] (a), PCMO [47,48] (b) and amorphous Si with Ag electrode [32] (c). The
characteristics show the conductance measured after application of a fixed-voltage pulse during either potentiation (weight increase, increasing pulse number) or depression (weight
decrease, decreasing pulse number). Reprinted with permission from [45]. Copyright (2015) IEEE.

including HfOy [52], NiOy [51], Cu-based RRAM [53] and Cu nanometallic
bridges [54]. Despite the wide range of materials considered, a general
trend can be seen in Fig. 4b, where AR/R increases linearly with the resis-
tance, which can be attributed to a defect-induced depletion within the
conductive path [51]. In the HRS, the path size becomes comparable to
the defect itself, thus AR/R saturates at a value of the order of 1, which
is also evidenced by the large RTN fluctuations in Fig. 4a.
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Data in Fig. 4a shows that, once a RRAM device is programmed in the
HRS, its resistance could significantly fluctuate, leading to a distribution
broadening within the memory array. This is a clear problem for synap-
tic applications, since the synaptic weight should remain constant with
time, e.g., to enable classification of patterns in the neural network of
Fig. 1. To stabilize the synaptic state with time, the RRAM materials
should be engineered to minimize fluctuations, or to increase the on/
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Fig. 4. Measured resistance as a function of time for three cells in a RRAM array (a) and relative noise amplitude AR/R of RTN as a function of R (b). Results indicate an increasing impact of
defect-induced fluctuations at increasing R. Reprinted with permission from [50,52]. Copyright (2015, 2014) IEEE.
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Fig. 5. Schematic illustration of a Ti/SiOx/C RRAM stack (a) and respective -V characteristic (b). Reprinted with permission from [64]. Copyright (2016) IEEE.

off ratio to improve the read margins between multiple resistance
levels, playing the role of analog synaptic weights.

2.3. RRAM devices with improved on-off ratio

Large on/off ratio of memory states is generally shown by conductive
bridge memory (CBRAM) [55-59], namely a particular type of RRAM
where the resistance change is due to the migration of cations from
one or both the electrodes in the memory stack, rather than the ionized
oxygen or their respective vacancy as usually considered for metal oxide
RRAM [60-62]. To enhance the switching speed at low voltage, metals
with relatively high mobility, such as Ag or Cu, are used as electrode ma-
terials in CBRAM, resulting in very low operation voltages (few hun-
dreds mV) and currents, even lower than 1 nA [57]. However, the
retention time in Ag- and Cu- based RRAMs is generally degraded due
to mobility-induced spontaneous disconnection of the conductive fila-
ment [63-67].

A better tradeoff between switching speed and volatile behavior can
be obtained by engineering the metal in the active electrode, i.e., the one
that is serving as reservoir for cation migration in the switching process.
This was recently shown for the Ti/SiO,/C RRAM stack shown in Fig. 5a
[64]. Fig. 5b shows the measured I—V curves after forming for the Ti/
SiOx RRAM, indicating set and reset transitions with a resistance win-
dow between HRS and LRS of 4 orders of magnitudes. The switching
process is attributed to Ti cation migration, as in CBRAM devices, al-
though the lower mobility of Ti requires voltages larger than 1V to in-
duce set and reset transitions. The migration of relatively low mobility

metals, such as Ti, Ta, and Hf, was postulated to contribute to the
switching process in metal oxide RRAM [61] and also experimentally
evidenced at the nanoscale [68]. Thanks to the relatively low mobility,
Ti-based conductive filament is much more stable at both room and el-
evated temperatures, resulting in data retention of 1 h at 260 °C [69].
The extremely large band gap and good insulating properties of SiOx
allow to reach high resistance in the HRS, resulting in a large on-off
ratio. The latter is also improved by the adoption of a highly inert C bot-
tom electrode, which prevents dielectric breakdown even at the rela-
tively large negative voltage in the range of —5 V, which is needed to
reach a deep HRS with high resistance. The stable bottom electrode ma-
terial is also beneficial for cycling endurance, which is around 10 for the
Ti/SiOx RRAM [64]. It should be noted that the large on-off ratio, com-
bined with the good stability of HRS and LRS, allows for larger read mar-
gins to counteract the defect-related fluctuations and noise in Fig. 4,
thus contributing to stable resistive states in memory and synaptic
applications.

The high resistance window in the Ti/SiOy device also enables multi-
level operation, which is required for high performance synaptic ele-
ments. Fig. 6a shows the measured I—V curves for Ti/SiOx RRAM
devices at variable Viop, namely the maximum negative voltage along
the reset sweep. As |Vp| increases, a larger resistance level of the
HRS is obtained, as a result of the voltage-controlled gradual change of
resistance in the reset process [43,63,70,71]. Note that the voltage Ve
increases with |Vp |, which can be attributed to the increasing gap
length along the disconnected filament in the HRS [62]. Fig. 6b shows
the measured resistance values for LRS and HRS as a function of
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Fig. 6. Measured -V curves for Ti/SiO, RRAM devices at variable V., (a), and measured resistance values for LRS and HRS as a function of V., evidencing the good control of R in the HRS

at increasing Vsop. Reprinted with permission from [64]. Copyright (2016) IEEE.



48 D. lelmini / Microelectronic Engineering 190 (2018) 44-53

| Vstop |, evidencing the good control of R in the HRS at increasing |Vsop |-
LRS is instead controlled by the compliance current Ic during the set
transition, which was constant (Ic = 50 pA) in the figure. Multilevel op-
eration can also be achieved by varying I¢, which results in LRS levels
with various resistances [69,72]. These results support the multilevel ca-
pability in Ti/SiOx RRAM devices, which can be potentially exploited for
synaptic application in neural networks for pattern learning and recog-
nition functions.

3. Synapse and network circuits for brain-inspired computing

Developing brain-inspired computing systems does not only rely on
the device engineering, but necessarily requires a detailed design of cir-
cuit blocks displaying certain aspects of neuromorphic functions, such
as plasticity and learning. The individual synapses, for instance, must
serve as electrical connections between 2 neurons, as well as changing
its weight according to specific brain-inspired learning rules. The latter
might be significantly different from the backpropagation or, more gen-
erally, gradient descent algorithms, which provide the computational
basis for deep learning [42]. On the other hand, synaptic plasticity in
the brain has been shown to strongly depend on time. For instance,
the spike-timing dependent plasticity (STDP) is a weight update mech-
anism observed in the human brain, where the time delay between pre-
synaptic and post-synaptic spikes dictates the magnitude and sign of
the weight change, i.e., potentiation for the pre-synaptic spike preced-
ing the post-synaptic spike, and depression for the post-synaptic spike
preceding the pre-synaptic spike [73]. Other more complicated synaptic
weight update rules also rely on time computation between a pair or a
triplet of spikes [ 74-76]. These plasticity rules generally require the im-
plementation of complex circuits involving CMOS devices [77-79] or
nanoscale devices, e.g., PCM [34,38,80] or RRAM [32,33,35,37,39]. Al-
though examples of time-sensitive synapses have been reported [65,
81], plastic synapses based on PCM and RRAM generally include one

or more transistors in a hybrid configuration, to allow for a controllable
computation of time within the circuit block.

3.1. Hybrid STDP synapses

Fig. 7a shows an example of hybrid RRAM-CMOS synapse, featuring
2 transistors and one RRAM element in a 2T1R configuration [37]. The
pre-synaptic neuron drives the gate of one transistor, called the com-
munication transistor, and the top electrode of the RRAM device.
Fig. 7b shows the voltage V¢ applied to the gate of the communication
gate and Vg to the top electrode, which are both applied by the pre-syn-
aptic neuron in the spike event. The applied voltage spikes in the figure
induce a spiking synaptic current, which is proportional to the conduc-
tance of the RRAM, thus serving as a storage element of the synaptic
weight. The synaptic current flows through the synaptic circuit and is
fed into the input terminal of the post-synaptic neuron, where integra-
tion and fire take place as shown in the schematic circuit of Fig. 7c. Note
that the input node of the post-synaptic neuron is a virtual ground, thus
ensuring a zero potential at the bottom electrode of the 2T1R synapse,
and serving as a summing input of a virtually-unlimited number of syn-
aptic channels.

As the integrated current exceeds a certain threshold, the post-syn-
aptic neuron fires, sending a spike to the following neurons in the net-
work, as well as applying a feedback spike to the fire gate. This is
shown in Fig. 8, for the 2 cases of long-term potentiation (LTP) with
spike delay At > 0 (a) and long-term depression (LTD) with spike
delay At <0 (b). When the pre-synaptic spike Vg precedes the post-
synaptic spike Vg¢ (Fig. 8a), the overlap between the positive pulse in
Vre and Vg causes a set transition, hence potentiation, with an amount
which is controlled by Vg [37]. Due to the shape of Vgg, the compliance
current I¢ at the overlap point decreases with At, which results in a de-
creasing LTP, in agreement with the biological STDP characteristics [73].
This is confirmed in Fig. 8¢, showing that the measured change of con-
ductance Ry/R, where Ry and R are the RRAM resistance values before
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Fig. 7. Hybrid RRAM-CMOS synapse with 2T1R configuration (a), voltage waveforms for V¢ and Vg applied by the pre-synaptic neuron in the spike event (b), and overall circuit sketch
including the synapse and the pre- and post-synaptic neurons [37]. The overlap between Vg and Vyg pulses causes a negative current proportional to the synaptic weight, which is

integrated by the post-synaptic neuron and eventually contributes to fire.
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function of At, starting from the HRS (c) and the LRS (d) [37]. The STDP characteristics of Ro/R for LTP at At > 0 and LTD at At < 0 can be seen in (c) and (d), respectively.

and after the application of pre-and post-synaptic spikes, decreases
with At. The initial state was HRS, i.e., minimum conductance, for the
purpose of characterizing the potentiation characteristics. On the
other hand, when the pre-synaptic spike Vg follows the post-synaptic
spike Vg (Fig. 8b), the overlap between Vg and Vg causes a reset tran-
sition, hence depression, with an amount which is controlled by Vg, due
to the voltage controlled reset. As V¢ decreases with time, LTD de-
creases for increasing negative At, which is confirmed by the conduc-
tance change of Fig. 8d, measured with respect to an initial LRS.

Fig. 9a shows the conductance change for positive and negative At,
for various initial LRS, which were programmed at variable I¢ to modu-
late Ro. Data indicate time-dependent LTP and LTD for At >0 and At <0,
respectively. Simulation results by an analytical model of RRAM [43] ac-
count for the experimental data, thus supporting the solid understand-
ing of the STDP operation in the 2T1R synapse. Also, note that
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depression can take place at relatively large At> 0, as a result of the neg-
ative Vg overcoming the effects of set transition by the positive Vg in
Fig. 8a. A similar LTD for positive delay was also observed in some ex-
periments on biological samples [74], which supports the bio-realistic
behavior of the synapse. Fig. 9b shows the probability distribution in a
color map for a conductance change Rg/R in correspondence of a delay
At, for random initial states of the synapses. The shape of the STDP char-
acteristics evidences maximum probability for LTP at At > 0 and LTD at
At < 0, although the exact amount of conductance change depends on
the delay At and initial resistance Ry.

The 2T1R structure of the synapse allows for a detailed control of
both potentiation, via current-controlled set process, and depression,
via voltage-controlled reset process, thus enabling analog STDP with a
relatively simple structure of the synapse. Also, the 2 transistors allow
to discriminate between the 2 functions of the synapse, namely the

(b)

-2
10100

0
At [ms]

Fig. 9. Conductance change Ro/R as a function of At for initial LRS obtained at variable I from 25 pA to 170 pA (a) and color map of the probability distribution for a conductance change Ry/R

at a given delay At, for random initial state (b) [37].



50 D. Ielmini / Microelectronic Engineering 190 (2018) 44-53

transmission of spikes, during normal information processing in the
neural network, and the synaptic plasticity, during the learning process.
Similar 2T1R synapses were proposed for PCM devices with analog
STDP characteristics [38]. To simplify the synaptic layout and reduce
its circuit area, 1T1R synapses with RRAM devices were also proposed,
although at the expense of a digitalized STDP characteristics, featuring
only full potentiation or full depression [25,39].

3.2. Learning with RRAM STDP synapses

Demonstrating STDP in individual synapses cannot conclusively pro-
vide a conceptual proof of learning, which requires instead experiments
and simulations at the higher level of synaptic/neural networks. Fig. 10
shows a simple example of a feedforward neural network, called
perceptron [25,82,83]. The network consists of 2 layers, namely a pre-
synaptic layer where the neural spikes are submitted to the synaptic
channels, and a second layer with just a single post-synaptic neuron
to integrate the current spikes and fire. The network is fully connected,
namely, each pre-synaptic neuron has a connection to the post-synaptic
neuron, with the connection being a hybrid CMOS-RRAM synapse
discussed in Sec. 3a. At each fire event, the post-synaptic neuron sends
a feedback spike to each synapse to enable LTP/LTD, depending on the
delay At between pre- and post-synaptic spikes. As a result, submitted
patterns tend to be learnt by the network, in that the synapses corre-
sponding to the pattern channels are potentiated, whereas all other syn-
apses, also referred to as the background synapses, tend to get
depressed, thus enabling on-line learning of submitted patterns, e.g.,
images, sounds, or speech [37,39,80].

Fig. 11 shows an experimental demonstration of pattern learning in
a hardware neural network, using hybrid 1T1R synapses [25,39]. The
network consists of a circuit board hosting a 4 x 4 synaptic array con-
nected to a microcontroller, to handle the spike submission by the
pre-synaptic neurons and the integrate/fire operation by the post-syn-
aptic neuron. The operation of the hardware network was in real time,
i.e., spikes went through the synapses, gave rise to fire, eventually caus-
ing LTP/LTD of the synapses during the same experiment, without any
interruption for interaction with a computer, or any other supervisor
machine. After initializing the synaptic weights in LRS, pattern #1
shown in Fig. 11a was submitted for 300 epochs, followed by pattern
#2 (Fig. 11b) presented for 300 epochs and pattern #3 (Fig. 11c) for
400 epochs. Every pattern was submitted several times for the duration
of a spike (1 epoch), randomly alternated with noise images such as the
one shown in Fig. 11d. Each epoch lasted 10 ms in the experiment. Each
noise submission was fully random, with equal probabilities for the ap-
pearance of either noise or pattern.

Synapses

i 2nd layer

N (POST)

1st layer (PRE)

Fig. 10. Schematic illustration of a perceptron-like neural network with a 4 x 4 first layer,
and a single post-synaptic neuron in the second layer. Each neuron in the first layer is
connected to the post-synaptic neuron by synapses [25].

After each submission, the synaptic weights were measured, thus
allowing to monitor the evolution of the synapses in real time. Fig. 11e
shows the initial synaptic weights in a color map, and the final states
after submitting pattern #1 (f), pattern #2 (g) and pattern #3 (h).
Note that, in all cases, the final synaptic weights closely match the sub-
mitted pattern, demonstrating highly-accurate and fast pattern learn-
ing. Also, the network is capable of updating the states of all synapses,
either potentiating the pattern synapses, or depressing the background
synapses whenever needed. Potentiation is due to the submitted pat-
tern inducing fire in the post-synaptic neuron, resulting in the coexis-
tence of pre- and post-synaptic spikes with At > 0 in pattern synapses,
thus causing LTP. Fire is then most likely followed by the presentation
of noise, resulting in the coexistence of pre- and post-synaptic spikes
with At < 0 in background synapses, thus causing LTD. To partially in-
hibit depression of pattern synapses, a refractory time of 1 epoch was
introduced in all neuron channels, i.e., a pre-synaptic neuron cannot
fire in a time step and also in the following one. Note that the depression
of pattern synapses is still possible, e.g., when noise induces fire, follow-
ed by the submission of the pattern. To avoid massive instability of
learning due to pattern depression, the noise density was limited to
the activity of only few channels, e.g., only 2 spikes over 16 channels
in Fig. 11d.

Fig. 11i shows the submitted pattern in the three phases of learning,
while Fig. 11j shows the measured synaptic conductance as a function of
time, showing the convergence of all pattern weights to LRS, and the
convergence of all background weights to HRS. In general, the fastest
learning process is potentiation, as pattern spikes are all presented si-
multaneously by the PRE layer. Also, note that the synaptic array relies
on a binary coding of information, i.e., each synapse can be either LRS
or HRS, which makes the neural network sufficiently robust against var-
iability of LRS and HRS resistances. It was also shown that it is possible to
increase the number of levels for gray-scale pattern learning, by
adopting multilevel operation of the synapses with current-controlled
potentiation in the 1T1R synapse [25]. Similar STDP-based perceptron
networks have been presented [84-88], although only at the level of
software, or mixed software/hardware approaches. The concept of
feedforward network for pattern learning was also extended to multiple
patterns, and dynamic (instead of static) patterns, where the ability to
track the moving object by online learning was supported by hardware
data [25]. More recently, the STDP concept was extended to spike-rate
dependent plasticity (SRDP) [89] and to Hopfield-type recurrent net-
works [90], which have efficient capability of associative memory,
thus serving as tools for signal restoration and error correction.

4. Conclusions

This work reviews the recent progress in the development of brain-
inspired hardware with RRAM devices. First, optimization of RRAM de-
vices for neural networks is reviewed, covering the new materials and
device stacks, and their respective performance for improved stability
and accuracy of conductance tuning. Then, hybrid synapses combining
CMOS and RRAM technologies are shown to display STDP, which is a
fundamental algorithm for unsupervised learning. Finally, learning at
the level of neural network is shown with reference to full-hardware
demonstrations of spiking networks with RRAM synapses. The main
challenges for further development of CMOS/RRAM networks in the
near future is the co-integration of these technologies and a better un-
derstanding of biological neural networks to boost the range of applica-
tions in the area of neuromorphic engineering with nanoelectronic
devices.

Acknowledgments
The author would like to thank V. Milo and G. Pedretti for critical

reading of the manuscript. This article has received funding from the Eu-
ropean Research Council (ERC) under the European Union's Horizon



D. Ielmini / Microelectronic Engineering 190 (2018) 44-53 51

Pattern #1 Pattern #2 Pattern #3 Noise

a b c d
M
Initial Epoch 300 Epoch 600 Epoch 1000

e f g B h E 5x 105 Q-

1IR=

—
—_
D

Bpl
>

B

>
L3

Pattern

o |

@ a Noise

jeicesl 5 Ji

Epoch

N

0 100 200 300 400 500 600 700 800 900 1000

—-‘—-,

Pattern
} synapses
(LRS)

il M»M-**'fm e - Wi
L B .ﬂﬁﬂ“"ll I'H'I"lfll. (HRS)

0 100 200 300 400 500 600 700 800 900 1000

Epoch

Fig. 11. Summary of an unsupervised learning experiment in a memristive neural network, showing the submitted pattern #1 (a), pattern #2 (b), pattern #3 (c), an example of random
noise (d), the map of synaptic weights at time O (e), after submitting pattern #1 (f), after submitting pattern #2 (g), after submitting pattern #3 (h), the input spikes as a function of time (i)
and the resulting evolution of the synaptic weights (j). Each phase shows learning of the submitted pattern while the previous pattern fades away as a result of noise-induced depression

[25].

2020 research and innovation programme (grant agreement No.
648635).

References

[1] R.S.Williams, What's next? Comput. Sci. Eng. 19 (2) (2017) 7-13, https://doi.org/10.
1109/MCSE.2017.31.

KJ. Kuhn, Considerations for ultimate CMOS scaling, IEEE Trans. Electron Devices 59
(7) (2012) 1813-1828, https://doi.org/10.1109/TED.2012.2193129.

AM. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic
switches, Nature 479 (7373) (2011) 329-337, https://doi.org/10.1038/
nature10679.

S. Salahuddin, S. Datta, Use of negative capacitance to provide voltage amplification
for low power nanoscale devices, Nano Lett. 8 (2) (2008) 405-410, https://doi.org/
10.1021/n1071804g.

D.E. Nikonov, LA. Young, Overview of beyond-CMOS devices and a uniform method-
ology for their benchmarking, Proc. IEEE 101 (12) (2013) 2498-2533, https://doi.
org/10.1109/JPROC.2013.2252317.

M.M.S. Aly, M. Gao, G. Hills, C.-S. Lee, G. Pitner, M.M. Shulaker, T.F. Wu, M. Asheghi, J.
Bokor, F. Franchetti, K.E. Goodson, C. Kozyrakis, I. Markov, K. Olukotun, L. Pileggi, E.
Pop, . Rabaey, C. Ré, H.-S.P. Wong, S. Mitra, Energy-efficient abundant-data comput-
ing: the N3XT 1,000x, Computer 48 (12) (2015) 24-33, https://doi.org/10.1109/MC.
2015.376.

H.-S.P. Wong, S. Salahuddin, Memory leads the way to better computing,
Nat. Nanotechnol. 10 (3) (2015) 191-194, https://doi.org/10.1038/nnano.
2015.29.

J. Borghetti, G.S. Snider, P.J. Kuekes, ].J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive’
switches enable ‘stateful’ logic operations via material implication, Nature 464
(7290) (2010) 873-876, https://doi.org/10.1038/nature08940.

M. Cassinerio, N. Ciocchini, D. Ielmini, Logic computation in phase change materials
by threshold and memory switching, Adv. Mater. 25 (41) (2013) 5975-5980,
https://doi.org/10.1002/adma.201301940.

2

3

[4

5

6

[7

8

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

E. Lehtonen, M. Laiho, Stateful implication logic with memristors, Proc. [EEE/ACM
Int. Symp. Nanosc. Archit Jul. 2009, pp. 33-36, https://doi.org/10.1109/
NANOARCH.2009.5226356.

S. Kvatinsky, G. Satat, N. Wald, E.G. Friedman, A. Kolodny, U.C. Weiser, Memristor-
based material implication (IMPLY) logic: design principles and methodologies,
IEEE Trans. Very Large Scale Integr. VLSI Syst. 22 (10) (2014) 2054-2066, https://
doi.org/10.1109/TVLSL.2013.2282132.

S. Balatti, S. Ambrogio, D. lelmini, Normally-off logic based on resistive switches -
part I: logic gates, IEEE Trans. Electron Devices 62 (6) (2015) 1831-1838, https://
doi.org/10.1109/TED.2015.2422999.

S. Balatti, S. Ambrogio, D. lelmini, Normally-off logic based on resistive switches -
part II: logic circuits, IEEE Trans. Electron Devices 62 (6) (2015) 1839-1847,
https://doi.org/10.1109/TED.2015.2423001.

Y. Li, Y.P. Zhong, Y.F. Deng, Y.X. Zhou, L. Xu, X.S. Miao, Nonvolatile “AND,” “OR,” and
“NOT” Boolean logic gates based on phase-change memory, ]. Appl. Phys. 114
(2013), 234503. https://doi.org/10.1063/1.4852995.

B. Chen, F. Cai, ]. Zhou, W. Ma, P. Sheridan, W.D. Lu, Efficient in-memory computing
architecture based on crossbar arrays, IEDM Tech. Dig 2015, pp. 17.5.1-17.5.4,
https://doi.org/10.1109/IEDM.2015.7409720.

P. Huang, J. Kang, Y. Zhao, S. Chen, R. Han, Z. Zhou, Z. Chen, W. Ma, M. L, L. Liu, X. Liu,
Reconfigurable nonvolatile logic operations in resistance switching crossbar array
for large-scale circuits, Adv. Mater. 28 (44) (2016) 9758-9764, https://doi.org/10.
1002/adma.201602418.

L. Xie, H.A. Du Nguyen, ]J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, S. Hamdioui,
Scouting logic: a novel memristor-based logic design for resistive computing, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), Bochum, Germany, 3-5
July 2017https://doi.org/10.1109/ISVLS.2017.39.

R. Rosezin, E. Linn, C. Kiigeler, R. Bruchhaus, R. Waser, Crossbar logic using bipolar
and complementary resistive switches, IEEE Electron Device Lett. 32 (2011)
710-712, https://doi.org/10.1109/LED.2011.2127439.

T. Breuer, A. Siemon, E. Linn, S. Menzel, R. Waser, V. Rana, A HfO,-based comple-
mentary switching crossbar adder, Adv. Electron. Mater. 1 (2015), 1500138.
https://doi.org/10.1002/aelm.201500138.


https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/TED.2012.2193129
https://doi.org/10.1038/nature10679
https://doi.org/10.1038/nature10679
https://doi.org/10.1021/nl071804g
https://doi.org/10.1021/nl071804g
https://doi.org/10.1109/JPROC.2013.2252317
https://doi.org/10.1109/JPROC.2013.2252317
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1109/MC.2015.376
https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.1038/nnano.2015.29
https://doi.org/10.1038/nature08940
https://doi.org/10.1002/adma.201301940
https://doi.org/10.1109/NANOARCH.2009.5226356
https://doi.org/10.1109/NANOARCH.2009.5226356
https://doi.org/10.1109/TVLSI.2013.2282132
https://doi.org/10.1109/TVLSI.2013.2282132
https://doi.org/10.1109/TED.2015.2422999
https://doi.org/10.1109/TED.2015.2422999
https://doi.org/10.1109/TED.2015.2423001
https://doi.org/10.1063/1.4852995
https://doi.org/10.1109/IEDM.2015.7409720
https://doi.org/10.1002/adma.201602418
https://doi.org/10.1002/adma.201602418
https://doi.org/10.1109/ISVLSI.2017.39
https://doi.org/10.1109/LED.2011.2127439
https://doi.org/10.1002/aelm.201500138

52

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

D. Ielmini / Microelectronic Engineering 190 (2018) 44-53

G. Indiveri, B. Linares-Barranco, TJ. Hamilton, A. van Schaik, R. Etienne-Cummings, T.
Delbruck, S.-C. Liu, P. Dudek, P. Héfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J.
Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y.
Wang, K. Boahen, Neuromorphic silicon neuron circuits, Front. Neurosci. 5 (2011)
73, https://doi.org/10.3389/fnins.2011.00073.

P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, A.S. Cassidy, . Sawada, F. Akopyan, B.L.
Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, . Vo, SK. Esser, R. Appuswamy,
B. Taba, A. Amir, M.D. Flickner, W.P. Risk, R. Manohar, D.S. Modha, A million spik-
ing-neuron integrated circuit with a scalable communication network and interface,
Science 345 (6197) (2014) 668-673, https://doi.org/10.1126/science.1254642.

G. Indiveri, S.-C. Liu, Memory and information processing in neuromorphic systems,
Proc. IEEE 103 (8) (2015) 1379-1397, https://doi.org/10.1109/JPROC.2015.2444094.
G.W. Burr, R.M. Shelby, S. Sidler, C. di Nolfo, J. Jang, 1. Boybat, R.S. Shenoy, P.
Narayanan, K. Virwani, E.U. Giacometti, B.N. Kurdi, H. Hwang, Experimental demon-
stration and tolerancing of a large-scale neural network (165,000 synapses) using
phase-change memory as the synaptic weight element, IEEE Trans. Electron Devices
62 (11) (2015) 3498-3507, https://doi.org/10.1109/TED.2015.2439635.

0. Bichler, M. Suri, D. Querlioz, D. Vuillaume, B. DeSalvo, C. Gamrat, Visual pattern
extraction using energy-efficient “2-PCM synapse” neuromorphic architecture,
IEEE Trans. Electron Devices 59 (8) (2012) 2206-2214, https://doi.org/10.1109/
TED.2012.2197951.

G. Pedretti, V. Milo, S. Ambrogio, R. Carboni, S. Bianchi, A. Calderoni, N. Ramaswamy,
A.S. Spinelli, D. Ielmini, Memristive neural network for on-line learning and tracking
with brain-inspired spike timing dependent plasticity, Sci. Rep. 7 (2017) 5288,
https://doi.org/10.1038/541598-017-05480-0.

P. Yao, H. Wu, B. Gao, S.B. Eryilmaz, X. Huang, W. Zhang, Q. Zhang, N. Deng, L. Shi, H.-
S.P. Wong, H. Qian, Face classification using electronic synapses, Nat. Commun. 8
(2017), 15199. https://doi.org/10.1038/ncomms15199.

M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, D.B. Strukov,
Training and operation of an integrated neuromorphic network based on metal-
oxide memristors, Nature 521 (7550) (2015) 61-64, https://doi.org/10.1038/
nature14441.

P.M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, W.D. Lu, Sparse coding with memristor
networks, Nat. Nanotechnol. 12 (2017) 784-789, https://doi.org/10.1038/nnano.
2017.83.

M. Ignatov, M. Ziegler, M. Hansen, H. Kohlstedt, Memristive stochastic plasticity en-
ables mimicking of neural synchrony: memristive circuit emulates an optical illu-
sion, Sci. Adv. 3 (Oct. 2017), e1700849. https://doi.org/10.1126/sciadv.1700849.
C.D. Wright, Y. Liu, K.I. Kohary, M.M. Aziz, RJ. Hicken, Arithmetic and biologically-in-
spired computing using phase-change materials, Adv. Mater. 23 (30) (2011)
3408-3413, https://doi.org/10.1002/adma.201101060.

P. Hosseini, A. Sebastian, N. Papandreou, C.D. Wright, H. Bhaskaran, Accumulation-
based computing using phase-change memories with FET access devices, IEEE Elec-
tron Device Lett. 36 (9) (2015) 975-977, https://doi.org/10.1109/LED.2015.
2457243.

S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor
device as synapse in neuromorphic systems, Nano Lett. 10 (4) (2010) 1297-1301,
https://doi.org/10.1021/n1904092h.

S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, D. Ielmini, Spike-timing dependent
plasticity in a transistor-selected resistive switching memory, Nanotechnology 24
(2013), 384012. https://doi.org/10.1088/0957-4484/24/38/384012.

D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.-S.P. Wong, Nanoelectronic programmable syn-
apses based on phase change materials for brain-inspired computing, Nano Lett. 12
(5) (2012) 2179-2186, https://doi.org/10.1021/n1201040y.

S. Yu, Y. Wy, R. Jeyasingh, D. Kuzum, H.-S.P. Wong, An electronic synapse device
based on metal oxide resistive switching memory for neuromorphic computation,
IEEE Trans. Electron Devices 58 (8) (2011) 2729-2737, https://doi.org/10.1109/
TED.2011.2147791.

K. Seo, I. Kim, S. Jung, M. Jo, S. Park, ]. Park, J. Shin, K.P. Biju, ]. Kong, K. Lee, B. Lee, H.
Hwang, Analog memory and spike-timing-dependent plasticity characteristics of a
nanoscale titanium oxide bilayer resistive switching device, Nanotechnology 22
(25) (2011) 254023, https://doi.org/10.1088/0957-4484/22/25/254023.

Z.-Q. Wang, S. Ambrogio, S. Balatti, D. Ielmini, A 2-transistor/1-resistor artificial syn-
apse capable of communication and stochastic learning for neuromorphic systems,
Front. Neurosci. 8 (2015) 438, https://doi.org/10.3389/fnins.2014.00438.

S. Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, W. Kim, R. Jordan, G.W. Burr, N. Sosa,
A. Ray, J.-P. Han, C. Miller, K. Hosokawa, C. Lam, NVM neuromorphic core with 64k-
cell (256-by-256) phase change memory synaptic array with on-chip neuron cir-
cuits for continuous in-situ learning, IEDM Tech. Dig 2015, pp. 443-446, https://
doi.org/10.1109/IEDM.2015.7409716.

S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z. Wang, A. Calderoni, N. Ramaswamy, D.
Ielmini, Neuromorphic learning and recognition with one-transistor-one-resistor
synapses and bistable metal oxide RRAM, IEEE Trans. Electron Devices 63 (4)
(2016) 1508-1515, https://doi.org/10.1109/TED.2016.2526647.

M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with
Mott memristors, Nat. Mater. 12 (2013) 114-117, https://doi.org/10.1038/
nmat3510.

T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, E. Eleftheriou, Stochastic phase-change
neurons, Nat. Nanotechnol. 11 (2016) 693-699, https://doi.org/10.1038/NNANO.
2016.70.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to docu-
ment recognition, Proc. IEEE 86 (11) (1998) 2278-2324, https://doi.org/10.1109/5.
726791.

S. Ambrogio, S. Balatti, D.C. Gilmer, D. lelmini, Analytical modeling of oxide-based bi-
polar resistive memories and complementary resistive switches, IEEE Trans. Elec-
tron Devices 61 (7) (2014) 2378-2386, https://doi.org/10.1109/TED.2014.2325531.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

(64

[65]

[66]

[67]

[68]

S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H.-S.P. Wong, A low energy oxide-based elec-
tronic synaptic device for neuromorphic visual systems with tolerance to device
variation, Adv. Mater. 25 (12) (2013) 1774-1779, https://doi.org/10.1002/adma.
201203680.

S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, H. Wu, Scaling-up resistive synaptic arrays
for neuro-inspired architecture: challenges and prospect, [IEDM Tech. Dig 2015,
pp. 451-454, https://doi.org/10.1109/IEDM.2015.7409718.

[-T. Wang, Y.-C. Lin, Y.-F. Wang, C.-W. Hsu, T.-H. Hou, 3D synaptic architecture with
ultralow sub-10 ] energy per spike for neuromorphic computation, IEDM Tech. Dig
2014, pp. 665-668, https://doi.org/10.1109/IEDM.2014.7047127.

S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B.R. Lee, B.H. Lee, H. Hwang,
Neuromorphic speech systems using advanced ReRAM-based synapse, IEDM Tech.
Dig 2013, pp. 625-628, https://doi.org/10.1109/IEDM.2013.6724692.

J-W. Jang, S. Park, G.W. Burr, H. Hwang, Y.-H. Jeong, Optimization of conductance
change in Pry_yCayMnOs-based synaptic devices for neuromorphic systems, IEEE
Electron Device Lett. 36 (5) (2015) 457-459, https://doi.org/10.1109/LED.2015.
2418342.

K. Moon, M. Kwak, J. Park, D. Lee, H. Hwang, Improved conductance linearity and
conductance ratio of 1T2R synapse device for neuromorphic systems, IEEE Electron
Device Lett. 38 (8) (2017) 1023-1026, https://doi.org/10.1109/LED.2017.2721638.
S. Ambrogio, S. Balatti, V. McCaffrey, D. Wang, D. lelmini, Noise-induced resistance
broadening in resistive switching memory - part II: array statistics, I[EEE Trans. Elec-
tron Devices 62 (11) (2015) 3812-3819, https://doi.org/10.1109/TED.2015.
2477135.

D. lelmini, F. Nardi, C. Cagli, Resistance-dependent amplitude of random telegraph
signal noise in resistive switching memories, Appl. Phys. Lett. 96 (5) (2010),
053503. https://doi.org/10.1063/1.3304167.

S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. lelmini, Statistical
fluctuations in HfOy resistive-switching memory: part Il - random telegraph noise,
[EEE Trans. Electron Devices 61 (8) (2014) 2920-2927, https://doi.org/10.1109/
TED.2014.2330202.

R. Soni, P. Meuffels, A. Petraru, M. Weides, C. Kiigeler, R. Waser, H. Kohlstedt, Probing
Cu doped Geg3Seq7 based resistance switching memory devices with random tele-
graph noise, J. Appl. Phys. 107 (2) (2010), 024517. https://doi.org/10.1063/1.
3291132.

KS. Ralls, R.A. Buhrman, Microscopic study of 1/f noise in metal nanobridges, Phys.
Rev. B Condens. Matter 44 (11) (1991) 5800-5817, https://doi.org/10.1103/
PhysRevB.44.5800.

M.N. Kozicki, M. Park, M. Mitkova, Nanoscale memory elements based on solid-state
electrolytes, IEEE Trans. Nanotechnol. 4 (3) (2005) 331-338, https://doi.org/10.
1109/TNANO.2005.846936.

U. Russo, D. Kamalanathan, D. Ielmini, A.L. Lacaita, M.N. Kozicki, Study of multilevel
programming in programmable metallization cell (PMC) memory, IEEE Trans. Elec-
tron Devices 56 (5) (2009) 1040-1047, https://doi.org/10.1109/TED.2009.2016019.
C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Low current resistive switching in
cu-SiO, cells, Appl. Phys. Lett. 92 (2008), 122910. https://doi.org/10.1063/1.
2903707.

I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Electrochemical metallization
memories—fundamentals, applications, prospects, Nanotechnology 22 (25)
(2011), 254003. https://doi.org/10.1088/0957-4484/22/25/254003.

J.R. Jameson, N. Gilbert, F. Koushan, ]J. Saenz, ]. Wang, S. Hollmer, M.N. Kozicki,
One-dimensional model of the programming kinetics of conductive-bridge
memory cells, Appl. Phys. Lett. 99 (6) (2011), 063506. https://doi.org/10.1063/
1.3623485.

R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memo-
ries-Nanoionic mechanisms, prospects, and challenges, Adv. Mater. 21 (25-26)
(2009) 2632-2663, https://doi.org/10.1002/adma.200900375.

D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field-
and temperature-driven filament growth, IEEE Trans. Electron Devices 58 (12)
(2011) 4309-4317, https://doi.org/10.1109/TED.2011.2167513.

S. Larentis, F. Nardji, S. Balatti, D.C. Gilmer, D. lelmini, Resistive switching by voltage-
driven ion migration in bipolar RRAM - part II: modeling, IEEE Trans. Electron De-
vices 59 (9) (2012) 2468-2475, https://doi.org/10.1109/TED.2012.2202320.

S. Ambrogio, S. Balatti, S. Choi, D. lelmini, Impact of the mechanical stress on
switching characteristics of electrochemical resistive memory, Adv. Mater. 26 (23)
(2014) 3885-3892, https://doi.org/10.1002/adma.201306250.

A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, D. lelmini, SiOx-based
resistive switching memory (RRAM) for crossbar storage/select elements with
high on/off ratio, IEDM Tech. Dig 2016, pp. 87-90, https://doi.org/10.1109/I[EDM.
2016.7838344.

Z.Wang, S. Joshi, S.E. Savel'ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, ].P. Strachan, Z.
Li, Q. Wu, M. Barnell, G.-L. Li, H.L. Xin, R.S. Williams, Q. Xia, J.]. Yang, Memristors with
diffusive dynamics as synaptic emulators for neuromorphic computing, Nat. Mater.
16 (2017) 101-108, https://doi.org/10.1038/nmat4756.

R. Midya, Z. Wang, ]. Zhang, S.E. Savel'ev, C. Li, M. Rao, M.H. Jang, S. Joshi, H. Jiang, P.
Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z. Li, H.L. Xin, R.S. Williams, Q. Xia, JJ. Yang,
Anatomy of Ag/Hafnia-based selectors with 10'° nonlinearity, Adv. Mater. 29 (12)
(2017), 1604457. https://doi.org/10.1002/adma.201604457.

A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, D. lelmini, Resistive
switching device technology based on silicon oxide for improved on-off ratio -
part II: select devices, IEEE Trans. Electron Devices 65 (2018) 115-121, https://doi.
org/10.1109/TED.2017.2776085.

A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K.K.
Adepalli, B. Yildiz, R. Waser, I. Valov, Nanoscale cation motion in TaOyx, HfOx and
TiOx memristive systems, Nat. Nanotechnol. 11 (2016) 67-74, https://doi.org/10.
1038/nnano.2015.221.


https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/JPROC.2015.2444094
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1109/TED.2012.2197951
https://doi.org/10.1038/s41598-017-05480-0
https://doi.org/10.1038/ncomms15199
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nature14441
https://doi.org/10.1038/nnano.2017.83
https://doi.org/10.1038/nnano.2017.83
https://doi.org/10.1126/sciadv.1700849
https://doi.org/10.1002/adma.201101060
https://doi.org/10.1109/LED.2015.2457243
https://doi.org/10.1109/LED.2015.2457243
https://doi.org/10.1021/nl904092h
https://doi.org/10.1088/0957-4484/24/38/384012
https://doi.org/10.1021/nl201040y
https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1109/TED.2011.2147791
https://doi.org/10.1088/0957-4484/22/25/254023
https://doi.org/10.3389/fnins.2014.00438
https://doi.org/10.1109/IEDM.2015.7409716
https://doi.org/10.1109/IEDM.2015.7409716
https://doi.org/10.1109/TED.2016.2526647
https://doi.org/10.1038/nmat3510
https://doi.org/10.1038/nmat3510
https://doi.org/10.1038/NNANO.2016.70
https://doi.org/10.1038/NNANO.2016.70
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TED.2014.2325531
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1002/adma.201203680
https://doi.org/10.1109/IEDM.2015.7409718
https://doi.org/10.1109/IEDM.2014.7047127
https://doi.org/10.1109/IEDM.2013.6724692
https://doi.org/10.1109/LED.2015.2418342
https://doi.org/10.1109/LED.2015.2418342
https://doi.org/10.1109/LED.2017.2721638
https://doi.org/10.1109/TED.2015.2477135
https://doi.org/10.1109/TED.2015.2477135
https://doi.org/10.1063/1.3304167
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1109/TED.2014.2330202
https://doi.org/10.1063/1.3291132
https://doi.org/10.1063/1.3291132
https://doi.org/10.1103/PhysRevB.44.5800
https://doi.org/10.1103/PhysRevB.44.5800
https://doi.org/10.1109/TNANO.2005.846936
https://doi.org/10.1109/TNANO.2005.846936
https://doi.org/10.1109/TED.2009.2016019
https://doi.org/10.1063/1.2903707
https://doi.org/10.1063/1.2903707
https://doi.org/10.1088/0957-4484/22/25/254003
https://doi.org/10.1063/1.3623485
https://doi.org/10.1063/1.3623485
https://doi.org/10.1002/adma.200900375
https://doi.org/10.1109/TED.2011.2167513
https://doi.org/10.1109/TED.2012.2202320
https://doi.org/10.1002/adma.201306250
https://doi.org/10.1109/IEDM.2016.7838344
https://doi.org/10.1109/IEDM.2016.7838344
https://doi.org/10.1038/nmat4756
https://doi.org/10.1002/adma.201604457
https://doi.org/10.1109/TED.2017.2776085
https://doi.org/10.1109/TED.2017.2776085
https://doi.org/10.1038/nnano.2015.221
https://doi.org/10.1038/nnano.2015.221

[69]

[70]

[71]

[72]

[73]

[74]

[75]

D. Ielmini / Microelectronic Engineering 190 (2018) 44-53 53

A. Bricalli, E. Ambrosi, M. Laudato, M. Maestro, R. Rodriguez, D. lelmini, Resistive
switching device technology based on silicon oxide for improved on-off ratio -
part I: memory devices, IEEE Trans. Electron Devices 65 (2018) 122-128, https://
doi.org/10.1109/TED.2017.2777986.

F. Nardj, S. Larentis, S. Balatti, D.C. Gilmer, D. Ielmini, Resistive switching by voltage-
driven ion migration in bipolar RRAM - part I: experimental study, IEEE Trans. Elec-
tron Devices 59 (9) (2012) 2461-2467, https://doi.org/10.1109/TED.2012.2202319.
A. Marchewka, B. Roesgen, K. Skaja, H. Du, C.-L. Jia, J. Mayer, V. Rana, R. Waser, S.
Menzel, Nanoionic resistive switching memories: On the physical nature of the dy-
namic reset process, Adv. Electron. Mater. 2 (1) (2016) 1500233, https://doi.org/10.
1002/aelm.201500233.

S. Menzel, U. Bottger, R. Waser, Simulation of multilevel switching in electrochemi-
cal metallization memory cells, J. Appl. Phys. 111 (1) (2012) 014501 Online https://
doi.org/10.1063/1.3673239.

G.-Q. Bi, M.-M. Poo, Synaptic modifications in cultured hippocampal neurons: de-
pendence on spike timing, synaptic strength, and post synaptic cell type, ]. Neurosci.
18 (24) (1998) 10464-10472.

G.M. Wittenberg, S.S.-H. Wang, Malleability of spike-timing-dependent plasticity at
the CA3-CA1 synapse, ]. Neurosci. 26 (24) (2006) 6610-6617, https://doi.org/10.
1523/JNEUROSCI.5388-05.2006.

L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast, Nat. Neurosci. 3
(Suppl) (2000) 1178-1183, https://doi.org/10.1038/81453.

[76] ]. Gjorgjieva, C. Clopath, J. Audet, ].-P. Pfister, A triplet spike-timing-dependent plas-

[77]

[78]

ticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spa-
tiotemporal correlations, Proc. Natl. Acad. Sci. U. S. A. 108 (48) (2011)
19383-19388, https://doi.org/10.1073/pnas.1105933108.

G. Rachmuth, H.-Z. Shouval, M.F. Bear, C.-S. Poon, A biophysically-based
neuromorphic model of spike rate- and timing-dependent plasticity, Proc. Natl.
Acad. Sci. U. S. A. 108 (49) (2011) E1266-E1274, https://doi.org/10.1073/pnas.
1106161108.

G. Indiveri, E. Chicca, R. Douglas, A VLSI array of low-power spiking neurons and
bistable synapses with spike-timing dependent plasticity, IEEE Trans. Neural
Netw. 17 (1) (2006) 211-221, https://doi.org/10.1109/TNN.2005.860850.

[79]

[80]

(81]

(82]
(83]
[84]

[85]

[86]

(87]

(88]

[89]

[90]

C. Diorio, P. Hasler, B.A. Minch, C.A. Mead, A single-transistor silicon synapse, IEEE
Trans. Electron Devices 43 (11) (1996) 1972-1980, https://doi.org/10.1109/16.
543035.

S. Ambrogio, N. Ciocchini, M. Laudato, V. Milo, A. Pirovano, P. Fantini, D. lelmini, Un-
supervised learning by spike timing dependent plasticity in phase change memory
(PCM) synapses, Front. Neurosci. 10 (2016) 56, https://doi.org/10.3389/fnins.2016.
00056.

T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, ].K. Gimzewski, M. Aono, Short-term
plasticity and long-term potentiation mimicked in single inorganic synapses, Nat.
Mater. 10 (8) (2011) 591-595, https://doi.org/10.1038/nmat3054.

R. Rojas, Neural Networks: A Systematic Introduction, Springer, 1996.

M. Minsky, S. Papert, Perceptrons, MIT Press, 1969.

P.U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity, Front. Comput. Neurosci. 9 (2015) 99, https://doi.org/10.
3389/fncom.2015.00099.

T. Tuma, M. Le Gallo, A. Sebastian, E. Eleftheriou, Detecting correlations using phase-
change neurons and synapses, IEEE Electron Device Lett. 37 (9) (2016) 1238-1241,
https://doi.org/10.1109/LED.2016.2591181.

A. Serb, J. Bill, A. Khiat, R. Berdan, R. Legenstein, T. Prodromakis, Unsupervised learn-
ing in probabilistic neural networks with multi-state metal-oxide memristive syn-
apses, Nat. Commun. 7 (2016), 12611. https://doi.org/10.1038/ncomms12611.

E. Covi, S. Brivio, A. Serb, T. Prodromakis, M. Fanciulli, S. Spiga, Analog memristive
synapse in spiking networks implementing unsupervised learning, Front. Neurosci.
10 (2016) 482, https://doi.org/10.3389/fnins.2016.00482.

M. Hansen, F. Zahari, M. Ziegler, H. Kohlstedt, Double-barrier memristive devices for
unsupervised learning and pattern recognition, Front. Neurosci. 11 (2017) 91,
https://doi.org/10.3389/fnins.2017.00091.

V. Milo, G. Pedretti, R. Carboni, A. Calderoni, N. Ramaswamy, S. Ambrogio, D. Ielmini,
Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-de-
pendent plasticity, IEDM Tech. Dig 2016, pp. 440-443, https://doi.org/10.1109/
IEDM.2016.7838435.

V. Milo, D. Ielmini, E. Chicca, Attractor networks and associative memories with
STDP learning in RRAM synapses, IEDM Tech. Dig 2017, pp. 11.2.1-11.2.4.


https://doi.org/10.1109/TED.2017.2777986
https://doi.org/10.1109/TED.2017.2777986
https://doi.org/10.1109/TED.2012.2202319
https://doi.org/10.1002/aelm.201500233
https://doi.org/10.1002/aelm.201500233
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0365
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0365
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0365
https://doi.org/10.1523/JNEUROSCI.5388-05.2006
https://doi.org/10.1523/JNEUROSCI.5388-05.2006
https://doi.org/10.1038/81453
https://doi.org/10.1073/pnas.1105933108
https://doi.org/10.1073/pnas.1106161108
https://doi.org/10.1073/pnas.1106161108
https://doi.org/10.1109/TNN.2005.860850
https://doi.org/10.1109/16.543035
https://doi.org/10.1109/16.543035
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.3389/fnins.2016.00056
https://doi.org/10.1038/nmat3054
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0410
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0415
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/LED.2016.2591181
https://doi.org/10.1038/ncomms12611
https://doi.org/10.3389/fnins.2016.00482
https://doi.org/10.3389/fnins.2017.00091
https://doi.org/10.1109/IEDM.2016.7838435
https://doi.org/10.1109/IEDM.2016.7838435
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0450
http://refhub.elsevier.com/S0167-9317(18)30015-7/rf0450

	Brain-�inspired computing with resistive switching memory (RRAM): Devices, synapses and neural networks
	1. Introduction
	2. RRAM engineering for brain-inspired computing
	2.1. Linearity and symmetry of weight update
	2.2. Stability of conductance state
	2.3. RRAM devices with improved on-off ratio

	3. Synapse and network circuits for brain-inspired computing
	3.1. Hybrid STDP synapses
	3.2. Learning with RRAM STDP synapses

	4. Conclusions
	Acknowledgments
	References


